Introduction to Geotechnical Engineering

ground

Typical Geotechnical Project

Geotechnical Applications

Shallow Foundations

for transferring building loads to underlying ground
mostly for firm soils or light loads

firm ground

bed rock

Shallow Foundations

Deep Foundations

for transferring building loads to underlying ground
mostly for weak soils or heavy loads

Deep Foundations

Driven timber piles, Pacific Highway

Pier Foundations for Bridges

Millau Viaduct in France (2005)

Cable-stayed bridge Supported on 7 piers, 342 m apart Longest pier (336) in the world

Pier Foundations for Bridges

Millau Viaduct in France (2005)

Retaining Walls

~ for retaining soils from spreading laterally

~ for impounding water

Concrete Dams

Concrete Dams

Three Gorges Dam, Hong Kong

()

Concrete Dams

Earthworks

~ preparing the ground prior to construction

Roadwork, Pacific Highway

~ used for reinforcement, separation, filtration and drainage in roads, retaining walls, embankments...

Geofabrics used on Pacific Highway

Reinforced Earth Walls

~ using geofabrics to strengthen the soil

Tunneling

MSE (Mechanically stabilized Earth) wall

Tunneling

Retaining Walls

Rock anchors to support the vertical walls

Sheet Piles

 sheets of interlocking-steel or timber driven into the ground, forming a continuous sheet

Sheet Piles

resist lateral earth pressures
used in excavations, waterfront structures, ...

Sheet Piles

~ used in temporary works

 sheet pile walls enclosing an area, to prevent water seeping in

sheet pile walls enclosing an area, to prevent water seeping in

Landslides

Shoring

propping and supporting the exposed walls to resist lateral earth pressures

Chile (2006)

Earthquake Engineering

Loma Preita Earthquake, San Francisco (1989)

Ground Improvement

Impact Roller to Compact the Ground

Ground Improvement

Big weights dropped from 25 m, compacting the ground.

Craters formed in compaction -

Environmental Geomechanics

Waste Disposal in Landfills

Instrumentation

 to monitor the performances of earth and earth supported structures

 to measure loads, pressures, deformations, strains,...

Soil Testing

Standard Penetration Test

More Field Tests

Soil Testing

Some Civil Engineering marvels

foundations

tunneling

... buried right under your feet.

xploration
Sea wall in Brisbane (2005)

Hall of Fame

Great Contributors to the Developments in Geotechnical Engineering

Karl Terzaghi 1883-1963

C.A.Coulomb 1736-1806

M. Rankine 1820-1872

Geotechnical Engineering Landmarks

Leaning Tower of Pisa

Our blunders become monuments!

Hoover Dam, USA

Hoover Dam C45-300-021094

Burj Dubai (Khalifa Tower)

the tallest man-made structure ever built, at

Geotechnical Engineering (CE 336)

Geo-engineering at HU

110401336 (CE 336) Introduction to Geotechnical Engineering

110401338 (CE338) **Geotechnical Engineering Laboratory**

110401436 (CE436) **Engineering Geology**

110401435 (CE435) Foundation Engineering and Design

110401531(CE531) Soil Stabilization and Ground Reinforcement

Course Description

Index and classification of soils, water flow in soils (one and two dimensional water flow), soil stresses, soil compaction, distribution of stresses in soil due to external loads, consolidation and consolidation settlement, shear strength of soils, slope stability.

Course Objectives

- To know and understand the formation and mineralogy of soils especially the clay minerals
- To understand the classification and index properties of soils and the importance of soil classification on defining and integrating the engineering properties of soils, which in tern affect the engineering purpose
- 3. To know and understand the mechanical stabilization of soil (compaction)
- To evaluate soil stresses due to the weight of overburden soil and external stresses. Stress evaluation is very important for soil shear strength and settlement calculations

Course Objectives

- To understand the mechanism of water flow through the soil mass and the effect of this flow on soil effective stresses.
- To understand consolidation (compression), rate of consolidation, and settlement of soils under the change in soil stresses.
- 7. To understand and evaluate the soil shear strength which is a very important aspect in geotechnical engineering. Soil shear strength is very important in evaluating foundation bearing capacity, slope stability, earth retaining wall design, pavement design, and so on.
- To understand and evaluate the slope stability problems. Slopes could be natural, sloped formed by excavation, embankment slopes, and earth dam slopes.

(weeks-1&2) Introduction to Geotechnical Engineering Formation of Soils and Mineralogy of Soil Solids as Geotechnical Materials Formation of Soils Soil Profile Mineralogy of Soil Solids Clay Minerals

(week-3&part of week-4) Index Properties and Classification of Soils Basic Definitions and Phase Relations Solution of Phase Problems Role of Classification System in Geotechnical Engineering Soil Texture, Grain Size, and Grain Size Distribution Atterberg Limits and Consistency Indices Unified Soil Classification System (Rest of week-4) Soil Compaction Compaction Theory of Compaction Density-Water content (Compaction Curve) of Soils Field Compaction Control and Specification Relative Density of Cohesionless Soils

Stress (week-5)

Soil Effective Stresses

- Effective Vertical Stress
- Capillarity and Stresses in Capillarity Zone
- Response of Effective Stress to a Change in Total Stress
- Relationship between Horizontal and Vertical

(Weeks-6&7)

Water in Soils (Permeability, Seepage, and Effective Stresses)

- Introduction
- Darcy's Law for Flow
- Bernoulli Energy Equation for Steady Flow
- Total, Pressure, and Elevation Heads
- One Dimensional Flow and Measurement of Permeability
- Factors Affect the Permeability
- Permeability in Multi-layer Soil Profile
- Seepage Forces, Quicksand, and Liquifaction
- Seepage and Flow nets (Two-Dimensional Flow

(week-8)

Stress Distribution in Soils Due to External Loading

Point Loading

Line Loading

Uniform loading Distributed over Rectangular and Circular Areas
 Strip Loading

(Weeks-9&10 and part of week-11)

Soil Consolidation, Consolidation Settlement, and Rate of Consolidation

Components of Settlements
 The Oedometer and Consolidation Testing (One-Dim. Cons.)
 Pre-consolidation Pressure
 Settlement Calculations
 Prediction of Field Consolidation Curves
 Consolidation Process
 Terzaghi's One-Dim. Consolidation Theory
 Evaluation of Secondary Settlement
 Determination of Immediate Settlement

(Rest of week 11 and weeks-12&13) Shear Strength of Soils

- Shearing Resistance
 - ★ Granular Soils (Cohesionless Soils)
 - Clay Soils (Cohesive Soils)
 - ★ Shear Strength
 - ★ Failure
 - ★Mohr's Theory of Failure
 - Mohr-Coulomb Envelope in Terms of Principal Stress
 - Drained Versus Undrained Shear Strength
 - Measurement of Shear Strength in Laboratory (Triaxial Tests)
 - CD-Tests
 - CU-Tests
 - UU-Tests
 - Shear Strength of Cohesionless (Granular Soils)
 - Shear Induced Pore Water Pressures
 - ★ Stress Paths
 - ★Soil Sensitivity

📕 (week-14)

Stability of Slopes
 Type of slope failure
 Analysis of a plane translational slip
 Analysis of rotational, circular slips
 The method of slices

Course Requirements

- 1. Attending the lectures (no make up between lectures)
- **2.** Late coming to lectures (-3 minute from start consider absentee)
- 3. Home reading assignments for the related topics
- **4.** Home works and quizzes
- 5. Exams
- 6. No make up exams will be provided

Grade distribution

1.	Quizzes	0 %
2.	Attendance	0 %
3.	First Exam	30%
4.	Second Exam	30%
5.	Final exam	40%

Office Hours

Office Hours

Sunday

Tuesday:

Thursday:

Wednesday:

09:00-10:00 09:00-10:00 11:00-12:00 09:00-10:00

No office hours in the exams' Day and if the OH coincides with Department or University Event

Dates of Exams

Dates of Exams:

O First exam: Sunday Nov. 12, 2017
O Second Exam: Sunday Dec. 17, 2017
O Final Exam: will be determined by the registrar

No make up exams whatsoever (*Absent =0.0*)

Text book Das, B.M., *Principles of Geotechnical Engineering*

References

Budhu" Soil Mechanics and foundation", John Wiley (for slope stability part)

Terzaghi, Peck, and Mesri, "Soil Mechanics in Engineering Practice", John Wiley

Holtz, R. D., and Kovacs W. D., "An Introduction to Geotechnical Engineering", Prentice-Hall

Civil Engineeri challenges

II. Physical Properties

Outline

- 1. Soil Texture
- 2. Grain Size and Grain Size Distribution
- 3. Particle Shape
- 4. Atterberg Limits
- 5. References

1.1 Origin of Clay Minerals

"The contact of rocks and water produces clays, either at or near the surface of the earth" (from Velde, 1995).

```
Rock +Water \rightarrow Clay
```

For example,

The CO_2 gas can dissolve in water and form carbonic acid, which will become hydrogen ions H⁺ and bicarbonate ions, and make water slightly acidic.

 $CO_2+H_2O \rightarrow H_2CO_3 \rightarrow H^+ +HCO_3^-$

The acidic water will react with the rock surfaces and tend to dissolve the K ion and silica from the feldspar. Finally, the feldspar is transformed into kaolinite.

Feldspar + hydrogen ions+water \rightarrow clay (kaolinite) + cations, dissolved silica

2KAlSi₃O₈+2H⁺ +H₂O \rightarrow Al₂Si₂O₅(OH)₄ + 2K⁺ +4SiO₂

•Note that the hydrogen ion displaces the cations.

1.1 Origin of Clay Minerals (Cont.)

- The alternation of feldspar into kaolinite is very common in the decomposed granite.
- The clay minerals are common in the filling materials of joints and faults (fault gouge, seam) in the rock mass. *Weak plane!*

1.2 Basic Unit-Silica Tetrahedra

1.2 Basic Unit-Octahedral Sheet

Gibbsite sheet: Al³⁺

 $Al_2(OH)_6$, 2/3 cationic spaces are filled

One OH is surrounded by 2 Al: **Dioctahedral sheet**

Brucite sheet: Mg²⁺

 $Mg_3(OH)_6$, all cationic spaces are filled

One OH is surrounded by 3 Mg: Trioctahedral sheet

(Q) Hydroxyls in upper plane

Aluminums

- O Vacant octahedral positions (would be filled in brucite layer)
- O Hydroxyls in lower plane

Outline of those faces of alumina octahedra parallel to lower plane of hydroxyls

Outline of those faces of vacant octahedra parallel to lower plane of hydroxyls

Bonds from aluminums to hydroxyls (6 from each aluminum)

(Holtz and Kovacs, 1981)

1.2 Basic Unit-Summary

1.4 1:1 Minerals-Kaolinite

Basal spacing is 7.2 Å

- $Si_4Al_4O_{10}(OH)_8$. Platy shape
- The bonding between layers are van der Waals forces and hydrogen bonds (strong bonding).
- There is no interlayer swelling
- Width: 0.1~ 4 μ m, Thickness: 0.05~2 μ m

1.4 1:1 Minerals-Halloysite

Trovey, 1971 (from Mitchell, 1993)

- $Si_4Al_4O_{10}(OH)_8 \cdot 4H_2O_{10}(OH)_8 \cdot 4H_2O$
- A single layer of water between unit layers.
- The basal spacing is 10.1 Å for hydrated halloysite and 7.2 Å for dehydrated halloysite.
- If the temperature is over 50 °C or the relative humidity is lower than 50%, the hydrated halloysite will lose its interlayer water (Irfan, 1966). Note that this process is **irreversible** and will affect the results of soil classifications (GSD and Atterberg limits) and compaction tests.
- There is no interlayer swelling.
- Tubular shape while it is hydrated.

 $2\,\mu m$

1.5 2:1 Minerals-Montmorillonite

(Holtz and Kovacs, 1981)

- $Si_8Al_4O_{20}(OH)_4 \cdot nH_2O$ (Theoretical unsubstituted). Film-like shape.
- There is extensive isomorphous substitution for silicon and aluminum by other cations, which results in charge deficiencies of clay particles.
- n·H₂O and cations exist between unit
 layers, and the basal spacing is from 9.6 Å to ∞ (after swelling).
- The interlayer bonding is by van der Waals forces and by cations which balance charge deficiencies (weak bonding).
- There exists interlayer swelling, which is very important to engineering practice (expansive clay).
- Width: 1 or 2 μ m, Thickness: 10 Å~1/100 width

1.5 2:1 Minerals-Illite (mica-like minerals)

- Si₈(Al,Mg, Fe)_{4~6}O₂₀(OH)₄·(K,H₂O)₂. Flaky shape.
- The basic structure is very similar to the mica, so it is sometimes referred to as hydrous mica. Illite is the chief constituent in many shales.
- Some of the Si⁴⁺ in the tetrahedral sheet are replaced by the Al³⁺, and some of the Al³⁺ in the octahedral sheet are substituted by the Mg²⁺ or Fe³⁺. Those are the origins of charge deficiencies.
- The charge deficiency is balanced by the potassium ion between layers. Note that the potassium atom can exactly fit into the hexagonal hole in the tetrahedral sheet and form a strong interlayer bonding.
- The basal spacing is fixed at 10 Å in the presence of polar liquids (no interlayer swelling).
- Width: 0.1~ several μ m, Thickness: ~ 30 Å

7.5 μm

Mitchell. 1993)

1. Soil Texture
1.1 Soil Texture

The texture of a soil is its appearance or "feel" and it depends on the relative sizes and shapes of the particles as well as the range or distribution of those sizes.

Coarse-grained soils:Fine-grained soils:GravelSandSiltClay0.075 mm (USCS)

Sieve analysis Hydrometer analysis

1.2 Characteristics

Soil name:	Gravels, Sands	Silts	Clays
Grain size:	Coarse grained	Fine grained	Fine grained
	Can see individ-	Cannot see	Cannot see
	ual grains	individual	individual
	by eye	grains	grains
Characteristics:			
	Nonplastic	Nonplastic	Plastic
	Granular	Granular	
Effect of water on engineering behavior:	Relatively unimportant (exception: loose sat- urated granular mater-	Important	Very important
	loadings)		
Effect of grain size	Important	Relatively	Relatively
distribution on engineering be-	and a state of the other ov	unimportant	unimportant
havior:		LUNCH LUNCH CONT.	e sels alm um

 TABLE 2-2
 Textural and Other Characteristics of Soils
 (Holtz and Kovacs, 1981)

2. Grain Size and Grain Size Distribution

classification systems (modified after Al-Hussaini, 1977).

Note:

Clay-size particles

For example:

A small quartz particle may have the similar size of clay minerals.

Clay minerals

For example:

Kaolinite, Illite, etc.

2.2 Grain Size Distribution

•Sieve size

▼ TABLE 1.5 U.S. Standard Sieve Sizes

Table 4.5(a). METRIC SIEVES (BS)

	(mm)	Opening	Sieve no.
Construction	- Server a	4.75	4
Derforated		4.00	5
steel place		3.35	6
(aquasa hala)	Server 24.	2.80	7
(square noie)	States and States	2.36	8
		2.00	10
		1.70	12
		1.40	14
	A STREET	1.18	16
		1.00	18
		0.850	20
	States Barrier	0.710	25
		0.600	30
		0.500	35
	HELETCHUD	0.425	40
	1 Department	0.355	50
		0.250	60
		0.212	70
		0.180	80
	an ine part of	0.150	100
		0.125	120
Lid and rece		0.106	140
Liu anu iece	The Revenue	0.090	170
	and the second	0.035	200
	and a second	0.053	270
	(Das, 1998)	0.000	210

	Aperture size:	'Standard'	'Short'	
	Full Set	set	set	
Construction	(A)	<i>(B)</i>	<i>C</i>)	
Perforated	75 mm	+		
steel place	63	+	+	
(square hole)	50			
	37.5	+		
	28			
	20	+	+	
	14			
	10	+		
	6.3	+	+	
	5		-	
	3.35	+		
	2	+	+	
	1.18	+		
	600 µm	+25000	(B) (+ 1)	
	425			
	300	+		
	212		+	
	150	+		
	63	+	+	
Lid and receiver	+	(20 + P)	28 9 + m	
	19 sieves	13 sieves	7 sieves	

•Experiment

Coarse-grained soils: Fine-grained soils: Gravel Sand Silt Clay 0.075 mm (USCS)

(Head, 1992)

Hydrometer analysis

Sieve analysis

• Describe the shape

Example: well graded

 $D_{10} = 0.02 \text{ mm} \text{ (effective size)}$ $D_{30} = 0.6 \text{ mm}$ $D_{60} = 9 \text{ mm}$

Coefficien t of uniformity

$$C_u = \frac{D_{60}}{D_{10}} = \frac{9}{0.02} = 450$$

Coefficien t of curvature

$$C_{c} = \frac{(D_{30})^{2}}{(D_{10})(D_{60})} = \frac{(0.6)^{2}}{(0.02)(9)} = 2$$

•Criteria

Well – graded soil $1 < C_c < 3$ and $C_u \ge 4$ (for gravels) $1 < C_c < 3$ and $C_u \ge 6$ (for sands)

•Question

What is the C_u for a soil with only one grain size?

Answer

•Question

What is the C_u for a soil with only one grain size?

Finer

Coefficient of uniformity $C_{u} = \frac{D_{60}}{D_{10}} = 1$ D

Grain size distribution

• Engineering applications

- It will help us "feel" the soil texture (what the soil is) and it will also be used for the soil classification (next topic).
- It can be used to define the grading specification of a drainage filter (clogging).
- It can be a criterion for selecting fill materials of embankments and earth dams, road sub-base materials, and concrete aggregates.
- It can be used to estimate the results of grouting and chemical injection, and dynamic compaction.
- Effective Size, D_{10} , can be correlated with the hydraulic conductivity (describing the permeability of soils). (Hazen's Equation).(Note: controlled by small particles)

The grain size distribution is more important to **coarse-grained** soils.

3. Particle Shape

- Important for granular soils
- Angular soil particle \rightarrow higher friction
- Round soil particle \rightarrow lower friction
- Note that clay particles are sheet-like.

(Holtz and Kovacs, 1981)

4. Atterberg Limits and Consistency Indices

4.1 Atterberg Limits

• The presence of water in fine-grained soils can significantly affect associated engineering behavior, so we need a reference index to clarify the effects. (The reason will be discussed later in the topic of clay minerals)

Fig. 2.6 Water content continuum showing the various states of a soil as well as the generalized stress-strain (Holtz and Kovacs, 1981)

4.1 Atterberg Limits (Cont.)

4.2 Liquid Limit-LL

Casagrande Method

(ASTM D4318-95a)

- Professor Casagrande standardized the test and developed the liquid limit device.
- Multipoint test
- •One-point test

Cone Penetrometer Method

(BS 1377: Part 2: 1990:4.3)

- This method is developed by the Transport and Road Research Laboratory, UK.
- Multipoint test
- •One-point test

4.2 Liquid Limit-LL (Cont.)

Dynamic shear test

- Shear strength is about 1.7 ~2.0 kPa.
- Pore water suction is about 6.0 kPa.

(review by Head, 1992; Mitchell, 1993).

Particle sizes and water

- Passing No.40 Sieve (0.425 mm).
- Using deionized water.

The type and amount of cations can significantly affect the measured results.

4.2.1 Casagrande Method

(Holtz and Kovacs, 1981)

The water content, in percentage, required to close a distance of 0.5 in (12.7mm) along the bottom of the groove after 25 blows is defined as the liquid limit

(8)

Reference: Budhu: Soil Mechanics and Foundation

Multipoint Method

One-point Method

- Assume a constant slope of the flow curve.
- The slope is a statistical result of 767 liquid limit tests.

$$LL = w_n \left(\frac{N}{25}\right)^{\tan\beta}$$

N = number of blows $w_n = corresponding moisture content$ $\tan \beta = 0.121$

Limitations:

- The β is an empirical coefficient, so it is not always 0.121.
- Good results can be obtained only for the blow number around 20 to 30.

4.2.2 Cone Penetrometer Method

•Device

This method is developed by the Transport and Road Research Laboratory.

(Head, 1992)

Fig. 2.11 Apparatus for cone penetrometer liquid test: (a) Cone penetrometer with automatic timing device, (b) cone and gauge plate

4.2.2 Cone Penetrometer Method (Cont.)

Multipoint Method

4.2.2 Cone Penetrometer Method (Cont.)

One-point Method (an empirical relation)

 Table 2.5.
 SUGGESTED FACTORS FOR CONE PENTRATION ONE-POINT LIQUID LIMIT TEST (from Clayton and Jukes, 1978)

Penetration (mm)	Soil of high plasticity	Soil of intermediate plasticity	Soil of low plasticity
15	1.098	1.094	1.057
16	1.075	1.076	1.052
17	1.055	1.058	1.042
18	1.036	1.039	1.030
19	1.018	1.020	1.015
20	1.001	1.001	1.000
21	0.984	0.984	0.984
22	0.967	0.968	0.971
23	0.949	0.954	0.961
24	0.929	0.943	0.955
25	0.909	0.934	0.954
Measured moisture	above 50%	35% to 50%	below 35%
content range			(Review by Head, 1992

Example: Penetration depth = 15 mm, w = 40%, Factor = 1.094, LL = $40 \cdot 1.094 \approx 44$

4.2.3 Comparison

A good correlation between the two methods can be observed as the LL is less than 100.

Fig. 2.9 Correlation of liquid limit results from two test methods

Littleton and Farmilo, 1977 (from Head, 1992)

Question: Which method will render more consistent results?

4.3 Plastic Limit-PL

The plastic limit PL is defined as the water content at which a soil thread with *3.2 mm diameter just* crumbles.

ASTM D4318-95a, BS1377: Part 2:1990:5.3

Reference: Budhu: Soil Mechanics and Foundation

4.4 Shrinkage Limit-SL

Definition of shrinkage limit:

The water content at which the soil volume ceases to change is defined as the shrinkage limit.

⁽Das, 1998)

4.4 Shrinkage Limit-SL (Cont.)

(b)

Soil volume: V_i Soil mass: M₁

Soil volume: V_f Soil mass: M₂

(Das, 1998)

$$SL = w_{i}(\%) - \Delta w(\%)$$
$$= \left(\frac{M_{1} - M_{2}}{M_{2}}\right)(100) - \left(\frac{V_{i} - V_{f}}{M_{2}}\right)(\rho_{w})(100)$$

4.4 Shrinkage Limit-SL (Cont.)

- "Although the shrinkage limit was a popular classification test during the 1920s, it is subject to considerable uncertainty and thus is no longer commonly conducted."
- "One of the biggest problems with the shrinkage limit test is that the amount of shrinkage depends not only on the grain size but also on the initial fabric of the soil. The standard procedure is to start with the water content near the liquid limit. However, especially with sandy and silty clays, this often results in a shrinkage limit greater than the plastic limit, which is meaningless. Casagrande suggests that the initial water content be slightly greater than the PL, if possible, but admittedly it is difficult to avoid entrapping air bubbles." (from Holtz and Kovacs, 1981)

4.5 Typical Values of Atterberg Limits

Mineral ^a	Liquid Limit (%)	Plastic Limit (%)	Shrinkage Limit
Montmorillonite	100-900	50-100	8.5-15
Nontronite	37-72	19-27	
Illite	60-120	35-60	15-17
Kaolinite	30-110	25-40	25-29
Hydrated Halloysite	50-70	47-60	
Dehydrated Halloysite	35-55	30-45	
Attapulgite	160-230	100 - 120	
Chlorite	44-47	36-40	
Allophane (undried)	200-250	130-140	

Table 10.1 Atterberg Limit Values for the Clay Minerals.

(Mitchell, 1993)

4.6 Indices

•Plasticity index PI

For describing the range of water content over which a soil was plastic

PI = LL - PL

	Liquid State	С	
, 	Plastia Stata	 R	Liquid Limit, LL
<u> </u>	Flashe Slate	D	Plastic Limit, PL
	Semisolid State	А	
	Solid State		Shrinkage Limit, SL

•Liquidity index LI

For scaling the natural water content of a soil sample to the Limits.

$$LI = \frac{w - PL}{PI} = \frac{w - PL}{LL - PL}$$

w is the water content

LI <0 (A), brittle fracture if sheared 0<LI<1 (B), plastic solid if sheared LI >1 (C), viscous liquid if sheared

4.6 Indices (Cont.)

•Sensitivity S_t (for clays)

 $S_t = \frac{\text{Strength (undisturbe d)}}{\text{Strength (disturbed)}}$ Unconfined shear strength

TABLE 11-7	Typical	Values	of	Sensitivity
------------	---------	--------	----	-------------

	Range of S _r		
Condition	U.S.	Sweden	
Low sensitive	2-4	< 10	
Medium sensitive	4-8	10-30	
Highly sensitive	8-16	> 30	
Quick	16	> 50	
Extra quick		> 100	
Greased lightning			

(Holtz and Kavocs, 1981)

Fig. 2.9 (a) Undisturbed and (b) thoroughly remolded sample of Leda clay from Ottawa, Ontario. (Photograph courtesy of the Division of Building Research, National Research Council of Canada. Hand by D. C. MacMillan.)

4.6 Indices (Cont.)

•Activity A

(Skempton, 1953)

 $A = \frac{PI}{\% \text{ clay fraction (weight)}}$ clay fraction :<0.002 mm Normal clays: 0.75<A<1.25 Inactive clays: A<0.75 Active clays: A> 1.25 High activity: •large volume change when wetted •Large shrinkage when dried •Very reactive (chemically) Mitchell, 1993

•Purpose

Both the *type* and *amount* of clay in soils will affect the Atterberg limits. This index is aimed to separate them.

Fable	10.4	Activities	of	Various	Clay	Minerals.
able	10.4	Activities	UI	various	Clay	winciais

Mineral	Activity ^a		
Smectites	1-7		
Illite	0.5-1		
Kaolinite	0.5		
Halloysite (2H ₂ O)	0.5		
Halloysite (4H ₂ O)	0.1		
Attapulgite	0.5-1.2		
Allophane	0.5-1.2		

4.7 Engineering Applications

- Soil classification (the next topic)
- The Atterberg limit enable ⁴⁰ clay soils to be classified.

Fig. 3.2 Casagrande's plasticity chart, showing several representative soil types (developed from Casagrande, 1948, and Howard, 1977).

- The Atterberg limits are usually correlated with some engineering properties such as the permeability, compressibility, shear strength, and others.
 - In general, clays with high plasticity have lower permeability, and they are difficult to be compacted.
 - The values of SL can be used as a criterion to assess and prevent the excessive cracking of clay liners in the reservoir embankment or canal.
6. References

Main References:

- Das, B.M. *Principles of Geotechnical Engineering*, 4th edition, PWS Publishing Company. (Chapter 2)
- Budhu M. (2007)"Soil Mechanics and Foundations" Wiley, New York Holtz, R.D. and
- Kovacs, W.D. (1981). *An Introduction to Geotechnical Engineering*, Prentice Hall. (Chapter 1 and 2)

Others:

Head, K. H. (1992). *Manual of Soil Laboratory Testing*, *Volume 1: Soil Classification and Compaction Test*, 2nd edition, John Wiley and Sons.

Lambe, T.W. (1991). Soil Testing for Engineers, BiTech Publishers Ltd.

Mitchell, J.K. (1993). Fundamentals of Soil Behavior, 2nd edition, John Wiley & Sons.

Hashemite University Department of Civil Engineering

Geotechnical Engineering Dr. Omar Al-Hattamleh

Part III: Phase relationships

Part I: Soil Mechanics

Volume-Volume relation
Mass-Mass relation
Mass-Volume relation
Derivative formulas

The nature of Soil

Soil is any uncemented or weakly cemented accumulation of mineral particles formed by the weathering of rocks.

The void space between the particles can be filled with

- Liquid Water and/or
- Gas (Air)

Volume -Volume Relation

Vs = volume of soil solids Vw= volume of water Va=volume of air Vv = volume of voids V = total volume of soil

Volume -Volume Relation

• The **void ratio** (e) is the ratio of the volume of voids to the volume of solid

$$e = \frac{V_v}{V_s}$$

• The **porosity** (**n**) is the ratio of the volume of voids to the total volume of the soil,

$$n = \frac{V_v}{V}$$

• The **degree of saturation** (**Sr**) is the ratio of the volume of water to the total volume of void space

The Sr can range between the limits of 0 for a dry soil and 1 (or 100%) for a saturated soil.

$$S_r = \frac{V_w}{V_v}$$

specific volume (*v***)** is the total volume of soil which contains unit volume of solids,

$$v = 1 + e$$

The **air content or air voids (A)** is the ratio of the volume of air to the total volume of the soil

$$A = \frac{V_a}{V}$$

Mass-Mass Relation

• The water content (w), or moisture content (m), is the ratio of the mass of water to the mass of solids in the soil,

Mass-Mass Relation

The bulk density (ρ) of a soil is the ratio of the total mass to the total volume,

$$\rho = \frac{M}{V}$$

- $\label{eq:convenient} \begin{array}{l} \square \ Convenient \ units \ for \ density \ are \ kg/m^3 \ or \ Mg/m^3. \\ \square \ The \ density \ of \ water \ (1000 \ kg/m^3 \ or \ 1.00 \ Mg/m^3) \ is \ denoted \\ by \ \rho_w. \end{array}$
- •The specific gravity of the soil particles (Gs) is given by

$$G_{\rm s} = \frac{M_{\rm s}}{V_{\rm s}\rho_{\rm w}} = \frac{\rho_{\rm s}}{\rho_{\rm w}}$$

where ρ_s is the particle density.

Derived Relation

The degree of saturation can be expressed as

$$S_r = \frac{wG_s}{e}$$

□In the case of a fully saturated soil, Sr = 1; hence

$$e = wG_s$$

The air content can be expressed as

$$A = \frac{e - wG_s}{1 + e} \qquad \text{or} \qquad A = n(1 - S_r)$$

Derived Relation

The bulk density of a soil can be expressed as

$$\rho = \frac{G_{\rm s}(1+w)}{1+e}\rho_{\rm w} \quad \text{or} \quad \rho = \frac{G_{\rm s}+S_{\rm r}e}{1+e}\rho_{\rm w}$$

 \Box For a fully saturated soil (Sr = 1)

$$\rho_{sat} = \frac{G_s + e}{1 + e} \rho_w$$

 \Box For a completely dry soil (Sr = 0)

$$\rho_{\rm d} = \frac{G_{\rm s}}{1+e} \rho_{\rm w}$$

100.0

Unit Weights

The unit weight (γ) of a soil is the ratio of the total weight (a force) to the total volume,

or

$$\gamma = \frac{W}{V} = \frac{Mg}{V}$$

 $\gamma = \frac{G_{\rm s}(1+w)}{1+e} \gamma_{\rm w}$

$$\gamma = \frac{G_s + S_r e}{1 + e} \gamma_w$$

Unit Weights

- where w is the unit weight of water. Convenient units are kN/m³, the unit weight of water being 9.8 kN/m³ (or 10.0 kN/m³ in the case of sea water).
- □ When a soil in situ is fully saturated the solid soil particles (volume: 1 unit, weight: G_sw) are subjected to upthrust (γ_w). Hence, the buoyant unit weight (γ') is given by

$$\gamma' = \frac{G_{\rm s}\gamma_{\rm w} - \gamma_{\rm w}}{1+e} = \frac{G_{\rm s} - 1}{1+e}\gamma_{\rm w} \quad \text{or} \qquad \gamma' = \gamma_{\rm sat} - \gamma_{\rm w}$$

Other name for buoyant unit weight is effective unit weight or submerged unit weight

Relative density

□ In the case of sands and gravels the density index (I_D) is used to express the relationship between the in-situ void ratio (e), or the void ratio of a sample, and the limiting values e_{max} and e_{min} . The density index (the term 'relative density, or Dr' is also used) is defined as

$$I_{\rm D} = \frac{e_{\rm max} - e}{e_{\rm max} - e_{\rm min}}$$

The density index of a soil in its densest possible state (e = e_{min}) is 1 (or 100%)
 The density index in its loosest possible state (e = e_{max}) is 0.

EXAMPLE 1

In its natural condition a soil sample has a mass of 2290 g and a volume of 1.15×10^{-3} m³. After being completely dried in an oven the mass of the sample is 2035 g. The value of Gs for the soil is 2.68. Determine

- 1. the bulk density,
- 2. unit weight
- 3. water content,
- 4. void ratio,
- 5. porosity,
- 6. degree of saturation and
- 7. air content.

EXAMPLE 2

- Given $\rho=1.76Mg/m^3$, $\rho_s=2.7Mg/m^3$ and w=10%
- 1. the dry density,
- 2. void ratio,
- 3. porosity,
- 4. degree of saturation and
- 5. air content
- 6. and Saturated density
- Hint Use the total Volume $=1m^3$

Outline

- 1. Compaction
- 2. Theory of Compaction
- 3. Properties and Structure of Compacted Fine-Grained Soils
- 4. Suggested Homework
- 5. References

2.1 Compaction and Objectives

Compaction

- •Many types of earth construction, such as dams, retaining walls, highways, and airport, require man-placed soil, or fill. To compact a soil, that is, to place it in a dense state.
- The dense state is achieved through the reduction of the air voids in the soil, with little or no reduction in the water content. This process must not be confused with consolidation, in which water is squeezed out under the action of a continuous static load.

Objectives:

- (1) Decrease future settlements
- (2) Increase shear strength
- (3) Decrease permeability

2.2 General Compaction Methods

Coarse-grained soils

•Vibrating hammer (BS)

Fine-grained soils

- •Falling weight and hammers
- •Kneading compactors
- •Static loading and press

•Hand-operated vibration plates

- •Motorized vibratory rollers
- •Rubber-tired equipment
- •Free-falling weight; dynamic compaction (low frequency vibration, 4~10 Hz)

Vibration

•Hand-operated tampers

- •Sheepsfoot rollers
- •Rubber-tired rollers

Kneading

(Holtz and Kovacs, 1981)

Field

Laboratory

3.1 Laboratory Compaction

Origin

The fundamentals of compaction of fine-grained soils are relatively new. R.R. Proctor in the early 1930's was building dams for the old Bureau of Waterworks and Supply in Los Angeles, and he developed the principles of compaction in a series of articles in Engineering News-Record. In his honor, the standard laboratory compaction test which he developed is commonly called the *proctor test*.

<u>Purpose</u>

The purpose of a laboratory compaction test is to determine the <u>proper</u> <u>amount of mixing water</u> to use when compacting the soil in the field and the <u>resulting degree of denseness</u> which can be expected from compaction at this optimum water

Impact compaction

The proctor test is an *impact compaction*. A hammer is dropped several times on a soil sample in a mold. The mass of the hammer, height of drop, number of drops, number of layers of soil, and the volume of the mold are specified.

3.1.1 Test Equipment

Das, 1998

3.1.2 Comparison-**Standard and Modified Proctor Compaction Test** <u>Standard Proctor</u> Compaction Test Specifications (ASTM D-698) <u>Modified Proctor</u> Compaction Test Specifications (ASTM D-698) Modified Proctor Test **Standard Proctor Test** 18 in height of drop 12 in height of drop 10 lb hammer 5.5 lb hammer 25 blows/layer 25 blows/layer 5 layers 3 layers Mold size: $1/30 \text{ ft}^3$ Mold size: 1/30 ft³ Energy 56,250 ft \cdot lb/ft³ Energy 12,375 ft·lb/ft³

Higher compacting energy

3.1.3 Comparison-Why?

- □ In the early days of compaction, because construction equipment was small and gave relatively low compaction densities, a laboratory method that used a small amount of compacting energy was required. As construction equipment and procedures were developed which gave higher densities, it became necessary to increase the amount of compacting energy in the laboratory test.
- □ The modified test was developed during World War II by the U.S. Army Corps of Engineering to better represent the compaction required for airfield to support heavy aircraft. The point is that increasing the compactive effort tends to increase the maximum dry density, as expected, but also decrease the optimum water content.

3.2 Variables of Compaction

Proctor established that compaction is a function of four variables:

(1)Dry density (ρ_d) or dry unit weight γ_d .

(2)Water content w

(3)Compactive effort (energy E)

(4)Soil type (gradation, presence of clay minerals, etc.)

For standard Proctor test $E = \frac{2.495 \text{ kg}(9.81 \text{ m/s}^2)(0.3048 \text{ m})(3 \text{ layers})(25 \text{ blows / layer})}{0.944 \times 10^{-3} \text{ m}^3}$ = 592.7 kJ/m³ (12,375 ft⁻¹b/ft³)

3.3 Procedures and Results

Procedures

(1) Several samples of the same soil, but at different water contents, are compacted according to the compaction test specifications.

The first four blows

The successive blows

(2) The total or wet density and the actual water content of each compacted sample are measured.

 $\rho = \frac{M_t}{V_t}, \rho_d = \frac{\rho}{1+w}$ Derive ρ_d from the known ρ and w

(3) Plot the dry densities ρ_d versus water contents w for each compacted sample. The curve is called as a *compaction curve*.

3.3 Procedures and Results (Cont.)

3.3 Procedures and Results (Cont.)

The peak point of the compaction curve

The peak point of the compaction curve is the point with the maximum dry density $\rho_{d max}$. Corresponding to the maximum dry density $\rho_{d max}$ is a water content known as the optimum water content w_{opt} (also known as the optimum moisture content, OMC). Note that the maximum dry density is only a maximum for a specific compactive effort and method of compaction. This does not necessarily reflect the maximum dry density that can be obtained in the field.

Zero air voids curve

The curve represents the fully saturated condition (S = 100 %). (*It cannot be reached by compaction*)

Line of optimums

A line drawn through the peak points of several compaction curves at different compactive efforts for the same soil will be almost parallel to a 100 % S curve, it is called the line of optimums

3.3 Procedures and Results (Cont.)

Holtz and Kovacs, 1981

3.3 Procedures and Results-Explanation

Below w_{opt} (dry side of optimum):

As the water content increases, the particles develop larger and larger water films around them, which tend to "lubricate" the particles and make them easier to be moved about and reoriented into a denser configuration.

<u>At w_{opt}:</u>

The density is at the maximum, and it does not increase any further.

<u>Above w_{opt} (wet side of optimum):</u>

Water starts to replace soil particles in the mold, and since $\rho_w \ll \rho_s$ the dry density starts to decrease.

Lubrication or loss of suction??

3.3 Procedures and Results-Notes

- Each data point on the curve represents a single compaction test, and usually four or five individual compaction tests are required to completely determine the compaction curve.
- At least two specimens wet and two specimens dry of optimum, and water contents varying by about 2%.
- Optimum water content is typically slightly less than the plastic limit (ASTM suggestion).
- Typical values of maximum dry density are around 1.6 to 2.0 Mg/m³ with the maximum range from about 1.3 to 2.4 Mg/m³. Typical optimum water contents are between 10% and 20%, with an outside maximum range of about 5% to 40%.

3.4 Effects of Soil Types on Compaction

The soil type-that is, grainsize distribution, shape of the soil grains, specific gravity of soil solids, and amount and type of clay minerals present.

Figure 1.13 Dry density-water content curves for a range of soil types.

4.1 Structure of Compacted Clays

□ For a given compactive effort and dry density, the soil tends to be more flocculated (random) for compaction on the dry side as compared on the wet side.

□ For a given molding water content, increasing the compactive effort tends to disperse (parallel, oriented) the soil, especially on the dry side.

Fig. 5.5 Effect of compaction on soil structure (after Lambe, 1958a).

4.2 Engineering Properties-Swelling

• Swelling of compacted clays is greater for those compacted dry of optimum. They have a relatively greater deficiency of water and therefore have a greater tendency to adsorb water and thus swell more.

From Holtz and Kovacs, 1981

5.1 Control Parameters

□ *Dry density* and *water content* correlate well with the engineering properties, and thus they are convenient construction control parameters.

□ Since the objective of compaction is to stabilize soils and improve their engineering behavior, it is important to keep in mind the desired engineering properties of the fill, not just its dry density and water content. This point is often lost in the earthwork construction control.

5.2 Design-Construct Procedures

- □ Laboratory tests are conducted on samples of the proposed borrow materials to define the properties required for design.
- □ After the earth structure is designed, the compaction specifications are written. Field compaction *control tests* are specified, and the results of these become the standard for controlling the project.
5.3 Specifications

(1) End-product specifications

This specification is used for most highways and building foundation, as long as the contractor is able to obtain the specified *relative compaction*, how he obtains it doesn't matter, nor does the equipment he uses.

Care the results only !

(2) <u>Method specifications</u>

The type and weight of roller, the number of passes of that roller, as well as the lift thickness are specified. A maximum allowable size of material may also be specified.

It is typically used for large compaction project.

5.4 Relative Compaction (R.C.)

Relative compaction or percent compaction

$$R.C. = \frac{\rho_{d-field}}{\rho_{d \max - laboratory}} \times 100\%$$

Correlation between relative compaction (R.C.) and the relative density Dr

$$R.C. = 80 + 0.2D_r$$

It is a statistical result based on 47 soil samples.

As Dr = 0, R.C. is 80

Typical required R.C. = 90% ~ 95%

5.6 Determine the Relative Compaction in the Field

Where and When

• First, the test site is selected. It should be representative or typical of the compacted lift and borrow material. Typical specifications call for a new field test for every 1000 to 3000 m² or so, or when the borrow material changes significantly. It is also advisable to make the field test at least one or maybe two compacted lifts below the already compacted ground surface, especially when sheepsfoot rollers are used or in granular soils.

Method

• Field control tests, measuring the dry density and water content in the field can either be *destructive* or *nondestructive*.

5.6.1 Destructive Methods

Methods

- (a) Sand cone
- (b) Balloon
- (c) Oil (or water) method

Calculations

•Know M_s and V_t

•Get $\rho_{d \text{ field}}$ and w (water content) (c) •Compare $\rho_{d \text{ field}}$ with $\rho_{d \text{ max-lab}}$ and calculate relative compaction R.C.

5.6.1 Destructive Methods (Cont.)

□ The measuring error is mainly from the determination of the volume of the excavated material.

For example,

For the sand cone method, the vibration from nearby working equipment will increase the density of the sand in the hole, which will gives a larger hole volume and a lower field density.

 $\rho_{d-field} = M_s \,/\, V_t$

- If the compacted fill is gravel or contains large gravel particles. Any kind of unevenness in the walls of the hole causes a significant error in the balloon method.
- If the soil is coarse sand or gravel, none of the liquid methods works well, unless the hole is very large and a polyethylene sheet is used to contain the water or oil.

5.6.2 Nondestructive Methods Nuclear density meter (a) Direct transmission (b) Backscatter

(c) Air gap

Principles

Density

The Gamma radiation is scattered by the soil particles and the amount of scatter is proportional to the total density of the material. The Gamma radiation is typically provided by the radium or a radioactive isotope of cesium.

Water content

The water content can be determined based on the neutron scatter by hydrogen atoms. Typical neutron sources are americium-beryllium isotopes.

9. References

Main References:

Holtz, R.D. and Kovacs, W.D. (1981). An Introduction to Geotechnical Engineering, Prentice Hall. (Chapter 5)

Others:

Das, B.M. (1998). *Principles of Geotechnical Engineering*, 4th edition, PWS Publishing Company.

Lambe, T.W. and Whitman, R.V. (1979). *Soil Mechanics*, SI Version, John Wiley & Sons.

Schaefer, V. R. (1997). Ground Improvement, Ground Reinforcement, Ground Treatment, Proceedings of Soil Improvement and Geosynthetics of The Geo-Institute of the American Society of Civil Engineers in conjunction with Geo-Logan'97. Edited by V.R. Schaefer.

III. Soil Classification

1

Outline

- 1. Purpose
- 2. Classification Systems
- 3. The Unified Soil Classification System (USCS)
- 4. American Association of State Highway and Transportation Officials System (AASHTO)
- 5. Suggested Homework

1. Purpose

Classifying soils into groups with similar behavior, in terms of *simple* indices, can provide geotechnical engineers a general guidance about engineering properties of the soils through the *accumulated experience*.

Communicate between engineers Classification Estimate Achieve Simple indices system engineering \rightarrow engineering GSD, LL, PI (Language) properties purposes Use the accumulated experience

2. Classification Systems

Two commonly used systems:

- Unified Soil Classification System (USCS).
- American Association of State Highway and Transportation Officials (AASHTO) System
- Craig's Soil Mechanics use **BS**

3. Unified Soil Classification System (USCS)

Origin of USCS:

This system was first developed by Professor A. Casagrande (1948) for the purpose of airfield construction during World War II. Afterwards, it was modified by Professor Casagrande, the U.S. Bureau of Reclamation, and the U.S. Army Corps of Engineers to enable the system to be applicable to dams, foundations, and other construction (Holtz and Kovacs, 1981).

Four major divisions:

- (1) Coarse-grained
- (2) Fine-grained
- (3) Organic soils
- (4) Peat

3.2 General Guidance

3.3 Symbols

Soil symbols:

- G: Gravel
- S: Sand
- M: Silt
- C: Clay
- O: Organic
- Pt: Peat

Example: SW, Well-graded sand SC, Clayey sand SM, Silty sand, MH, Elastic silt

Liquid limit symbols: H: High LL (LL>50) L: Low LL (LL<50) **Gradation symbols:** W: Well-graded P: Poorly-graded Well – graded soil $1 < C_c < 3$ and $C_u \ge 4$ (for gravels) $1 < C_c < 3$ and $C_u \ge 6$ (for sands)

3.4 Plasticity Chart

• The A-line generally separates the more claylike materials from silty materials, and the organics from the inorganics.

• The U-line indicates the upper bound for general soils.

Note: If the measured limits of soils are on the left of U-line, they should be

Fig. 3.2 Casagrande's plasticity chart, showing several representative soil types (developed from Casa- rechecked. grande, 1948, and Howard, 1977).

(Holtz and Kovacs, 1981)

3.5 Procedures for Classification

	COARSE	Gravel:	Less than 5% fines	$C_{\rm u} > 4, 1 \le C_{\rm c} \le 3$	\rightarrow	GW
Coarse-grained	More than	coarse fraction		Not satisfying GW	\rightarrow	GP
material	50% retained sieve #200	sieve #4	More than	Below 'A' line	\rightarrow	GM
			1 1270 miles	Above 'A' line	\rightarrow	GC
Grain size		Sand:	Less than 5% fines	$C_{\rm u} > 6, 1 \le C_{\rm c} \le 3$	\rightarrow	SW
distribution		coarse fraction		Not satisfying SW	\rightarrow	SP
		sieve #4	More than	Below 'A' line	\rightarrow	SM
 			1 12% Intes	Above 'A' line	\rightarrow	SC
	FINE	LL < 50	60			ML
Fine-grained	Less than 50%		50	A line		CL
material	retained sieve #200		x 40			OL
II DI		LL > 50	00 ticit	СН		MH
				OH or		CH
				OL or MH ML		OH
			0 10 20 30	40 50 60 70 80 90 10 liquid limit	0	
	Highly ORGANIC SC	UL S				Dt
	on on the be	11.0			-	rt

			Soil classification		
Crite	Group symbol	Group name ^b			
Coarse-grained soils	Gravels More than 50% of coarse fraction retained on No. 4 since	Clean Gravels	$C_n \ge 4$ and $1 \le C_r \le 3^\circ$	GW	Well-graded gravel
More than 50% retained on		Less than 5% tines"	C ₁₁ < 4 and/or 1 > C _e > 3*	GP	Poorly graded gravel
NO.200sieve		Gravels with Fines	Fines classify as ML or MH	GM	Silty gravel ^{L_U,h}
		More than 12% finese	Fines classify as CL or CH	GC	Clayey gravef . s. 1
	Sands	Clean Sands	$C_s \ge 6$ and $1 \le C_s \le 3^s$	sw	Well-graded sand
	50% or more of coarse fraction passes No.4 sieve	Less than 2% fines ^d	C. < 6 and/or 1 > C. > 3*	SP	Poorly graded sand
		Sand with Fines	Fines classify as ML or MH	SM	Silty sand ^{g, b, s}
		More than 12% fines4	Fines classify as CL or CH	SC .	Claycy sand ^{s, h, i}
Fine-grained soils	Silts and Clays Liquid limit less than 50	Inorganic	PI > 7 and plots on or above "A" line	CL	Lean clay ^{k, Lan}
50% or more passes the			PI < 4 or plots below "A" line	ML	Sült ^{k J.m}
5.200 seve		Organic	Liquid limit-oven dried	~	Organic clay ^{k,1,41,41}
			Liquid limit-not dried < 0.75	OL	Organic säth Luna
	Silts and Clays	Inorganic	PI plots on or above "A" line	CH	Fatclay ^{k J} .m
	Liquid limit 50 or more		PI plots below "A" line	MH	Elastic siltk. Las
		Organic	Liquid limitoven dried	~	Organic clay ^{k, t, m, p}
		-	Liquid limit-not dried < 0.75	OH	Organic silt Laug
Highly organic soils	Pri	marily organic matter, dar	k in color, and organic o dor	PT	Peat

Table 1.6 Unified Soil Classification Chart (after ASTM, 2005)

"Based on the material passing the 75-mm- (3-in) sieve, "If field sample contained cobbles or boulders, or both, add "with cobbles or boulders, or both" to group name.

Gravels with 5 to 12% fines require dual symbols: GW-GM well-graded gravel with sih; GW-GC wellgraded gravel with clay; GP-GM poorly graded gravel with silt; GP-GC poorly graded gravel with clay.

Sands with 5 to 12% fines require dual symbols: SW-SM well-graded sand with silt; SW-SC wellgraded sand with clay; SP-SM poorly graded sand with silt; SP-SC poorly graded sand with clay

$$= D_{yy}/D_{yy} \quad C_{c} = \frac{(D_{xy})^{2}}{D_{yy} \times D_{yy}}$$

۰С.,

flf soil contains >15% sand,add "with sand" to group name.

*If fines classify as CL-ML, use dual symbol GC-GM or SC-SM.

^bIf fines are organic, add "with organic fines" to group name.

"If soil contains ≥ 15%, gravel, add "with gravel" to group name, ⁱ If Atterberg limits plot in hatched area, soil is a CL-ML, silty clay. ^k If soil contains 15 to 29% plus No. 200, add "with sand" or "with gravel," whichever is predominant. ^IIf soil contains >30% plus No. 200, predominantly sand, add "sandy" to group name. "If soil contains >30% plus No. 200, predominantly gravel, add "gravelly" to group name. "PI ≥ 4 and plots on or above "A" line. "PI = 4 or plots below"A" line. "PI plots on or above "A" line.

TABLE 3-2 Unified Soil Classification System*

Major Divisions				Typical Names	Field Id (excluding and basing fr	Field Identification Procedures (excluding particles larger than 75 mm and basing fractions on estimated weight				
1 2			3	4		5				
ŧ	arse Gravels nest		GW	Well-graded gravels, gravel sand mix- tures, little or no fines.	Wide range in grain sizes and substantial amounts of all intermediate particle sizes					
No. 200	weis valf of co re size. I	Clean Differ Differ	GP	Poorly graded gravels, gravel-sand mix- tures, little or no fines.	Predominantly with some in	one size or a range of sizes Itermediate sizes missing.				
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	re than fr Gra A. 4 sich A. 75 mm May be u Tre)		Ġм	Sitty gravels, gravel-sand-sitt mixtures,	Nonplastic fina (for identific	w plasticity see ML below).				
nined So rial is lan d eye.	A sieve s	Grave Grave anno anno of f	GC	Clayey gravels, gravel-sand-clay mixtures.	Plastic fines (fo see CL below	r identification procedures				
Adria gr of mater size.	arse than then the No.	in the Samuel	sw	Well-graded sands, gravelly sands, little or no fines.	Wide range in g amounts of a	rain sizes and sub all intermediate p	stantial erticle sizes.			
han half mi sieve sihle to :	nds alf of co smaller - sval class sval class	Clean Titt	SP	Poorly graded sands, gravelly sands, little or no fines.	Predominantly with some in	Predominantly one size or a range of sizes with some intermediate sizes missing.				
More t (75 µ	e than h action is action is 0.4 siew 2.5 mm) ffor vit equin	rwith Hes Kunt Triable	SM	Silty sends, sand silt mixtures.	Nonplastic fines or fines with low plasticity (for identification procedures see ML below)					
	DE Z Z	Sand: Fil amc amc of f	sc	Clayey sands, sand-clay mixtures.	Plastic fines (for identification procedures see CL below)					
1 the s					Ider on Frection S	Identification Procedures on Frection Smaller than No. 40 Sieve Size				
No. 200 e is abou				-	Dry Strength (crushing characteristics)	Dilatancy (reaction to shaking)	Toughness (consistency near PL)			
ier than l	 5.		ML	Inorganic silts and very fine sands, rock flour, silty or clayey fine sands or clayey silts with slight plasticity.	None to slight	Quick to slow	None			
ned Soils M is small No. 200	the and	Silts and (Liquid II less than		이 가 있는 것을 하는 것을 하는 것을 하는 것을 하는 것을 하는 것을 가지 다니었다. 이 가 다니었다. 이 가 다니었다. 이 가 다니었다. 이 가 다니 가	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays,	Medium to high	None to very slow	Medium		
Fine-grati A materii ize. The	»			Organic silts and organic silty clays of low plasticity.	Slight to medium	Slow	Slight			
l an half o sìeve s	Sitts and Clays Liquid fimit graater than 50		мн	Leorgenic silts, micaceous or distorneceous fine sandy or silty soils, elastic silts.	Slight to medium	Slow to none	Slight to medjum			
More th 175 µn			СН	Inorganic clays of high plasticity, fat clays.	High to very high	None	High			
			он	Organic clays of medium to high plasticity, organic silts.	Medium to high	None to very slow	Slight to medium			
Highly Organic Soils				Peat and other highly organic soils.	Readily identif	Readily identified by color, odor, spongy fer and frequently by fibrous texture.				

[†] Boundary classifications soils, possessing characteristics of two groups are designated by combinations of group symbols. For example, GW-GC, well-graded gravel sand mixture with clay binder.

TABLE 3-2 Continued

$2 \in \Gamma_{}$	Passing	g No.200 si	LL= 33			
3.6 Example	Passin	g No.4 siev	PI= 12			
	COARSE	Gravel:	Less than 5% fines	$C_{\rm u} > 4, 1 \le C_{\rm c} \le 3$	\rightarrow	GW
	More than	coarse fraction		Not satisfying GW	\rightarrow	GP
	50% retained sieve #200	sieve #4	More than	Below 'A' line	\rightarrow	GM
Dessing No 200 siovo 30 %			1270 11105	Above 'A' line	\rightarrow	GC
r assing 140.200 sieve 30 70		Sand: less than 50%	Less than 5% fines	$C_{\rm u} > 6, 1 \le C_{\rm c} \le 3$	\rightarrow	SW
Passing No.4 sieve 70 %		coarse fraction		Not satisfying SW	\rightarrow	SP
0		sieve #4	More than	Below 'A' line	\rightarrow	SM
LL= 33		······		Above 'A' line	\rightarrow	SC
PI = 12	FINE	LL < 50	60		-	ML
DI = 0.73(II = 20) A line	Less than 50%		50	A line	1	CL
I = 0.73(LL-20), A-IIIIe	#200	1	40	CII		OL
PI=0.73(33-20)=9.49		LL > 50	30 Strictly	Ch		MH
SC				L or MH		CH
				ML		OH
(≥15% gravel)			0 10 20 30	40 50 60 70 80 90 1 liquid limit	00	
Clayey sand with	Highly	NI S		ann ann		D.
graver	OKGANIC SC	JILS			\rightarrow	Pt

3.7 Organic Soils

- Highly organic soils- Peat (Group symbol PT)
 - A sample composed primarily of vegetable tissue in various stages of decomposition and has a fibrous to amorphous texture, a dark-brown to black color, and an organic odor should be designated as a highly organic soil and shall be classified as peat, PT.
- Organic clay or silt(group symbol OL or OH):
 - "The soil's liquid limit (LL) after oven drying is less than 75 % of its liquid limit before oven drying." If the above statement is true, then the first symbol is O.
 - The second symbol is obtained by locating the values of PI and LL (not oven dried) in the plasticity chart.

3.8 Borderline Cases (Dual Symbols)

For the following three conditions, a dual symbol should be used.

- Coarse-grained soils with 5% 12% fines.
 - About 7 % fines can change the hydraulic conductivity of the coarsegrained media by orders of magnitude.
 - The first symbol indicates whether the coarse fraction is well or poorly graded. The second symbol describe the contained fines. For example: SP-SM, poorly graded sand with silt.
- Fine-grained soils with limits within the shaded zone. (PI between 4 and 7 and LL between about 12 and 25).
 - It is hard to distinguish between the silty and more claylike materials.
 - CL-ML: Silty clay, SC-SM: Silty, clayed sand.
- Soil contain similar fines and coarse-grained fractions.
 - possible dual symbols GM-ML

3.8 Borderline Cases (Summary)

Note: Only two group symbols may be used to describe a soil. Borderline classifications can exist within each of the above groups.

6. References

Main References:

Holtz, R.D. and Kovacs, W.D. (1981). *An Introduction to Geotechnical Engineering*, Prentice Hall. (Chapter 3)

Das, B.M. (1998). *Principles of Geotechnical Engineering*, 4th edition, PWS Publishing Company. (Chapter 3)

Water in Soil

Omar H. Al-Hattamleh The Hashemite University, Zarqa, Jordan

Outlines

- □ Introduction
- Darcy's Law
- □ Volume of water flowing per unit time
- □ Measuring K in laboratory
- □ Seepage Theory
- □ Flow Net

Introduction

- □ All soils are permeable materials, water being free to flow through the interconnected pores between the solid particles.
- □ You must know how much water is flowing through a soil per unit time.
- □ This knowledge is required to
 - Design earth dams.
 - Determine the quantity of seepage under hydraulic structures.
 - and dewater foundations before and during their construction.
- □ The pressure of the pore water is measured relative to atmospheric pressure and the level at which the pressure is atmospheric (i.e. zero) is defined as the water table (WT) or the phreatic surface.
- Below the water table the soil is assumed to be fully saturated,
- □ Below the water table the pore water may be static, the hydrostatic pressure depending on the depth below the water table, or may be seeping through the soil under hydraulic gradient: this PPT is concerned with the second case.

Introduction

Bernoulli's theorem applies to the pore water but seepage velocities in soils are normally so small that velocity head can be neglected

$$h = \frac{u}{\gamma_{\mathbf{w}}} + z$$

where h is the total head, u the pore water pressure, γ_w the unit weight of water (9.8 kN/m³) and z the elevation head above a chosen datum.

Darcy's law

Darcy (1856) proposed the following equation for calculating the velocity of flow of water through a soil:

- v = Darcy velocity (unit: cm/sec)
- k = hydraulic conductivity of soil (unit: cm/sec)
- i = hydraulic gradient

The hydraulic gradient is defined as

$$i = \frac{\Delta h}{L}$$

where

 Δh = piezometric head difference between the sections at AA and B B

L = distance between the sections at AA and BB

(Note: Sections AA and BB are perpendicular to the direction of flow.)

Volume of water flowing per unit time

$$q = Aki$$

where q is the volume of water flowing per unit time, A the crosssectional area of soil corresponding to the flow q,

The K also varies with temperature, upon which the viscosity of the water depends. If the value of k measured at 20 C is taken as 100% then the values at 10 and 0 C are 77 and 56%, respectively. The coefficient of permeability can also be represented by the equation:

$$k = \frac{\gamma_w}{\eta}K$$

where γ_w is the unit weight of water, the viscosity of water η and K (units m2) an absolute coefficient depending only on the characteristics of the soil skeleton.

The values of k for different types of soil are typically within the ranges shown in Table

I 10 ⁻¹	10-2	10-3	10-	4 I0 ⁻⁵	10-6	ŀ	0-7	10-8	10-9	10-10	
Clean Clean sands gravels and sand–gravel mixtures			el	Very fine sands, silts and clay-silt laminate			Unfissured clays and clay-silts (>20% clay)				
	Desiccated and fissured clays										

seepage velocity

On the microscopic scale the water seeping through a soil follows a very tortuous path between the solid particles but macroscopically the flow path

The seepage velocity
$$v' = \frac{q}{A_v}$$
 $v' = \frac{ki}{n}$

Av: the average area of voids

The porosity, n, can also be expressed as

$$n = \frac{A_v}{A}$$

Measuring K in laboratory

Two Main Method

The coefficient of permeability for coarse soils can be determined by means of the constant-head permeability test

For fine soils (clays and silt) the falling-head test should be used

Laboratory permeability tests: (a) constant head and (b) falling head.

Measuring K in laboratory

(a) constant head and

$$k = \frac{ql}{Ah}$$

(b) falling head.

$$k = \frac{al}{At_1} \ln \frac{h_0}{h_1}$$
$$= 2.3 \frac{al}{At_1} \log \frac{h_0}{h_1}$$

For Clean Uniform sands, Hazen showed that the approximate value of k is given by $k = 10^{-2}D_{10}^2$ (m/s)

where D_{10} is the effective size in mm.

Seepage Theory

- □ The general case of seepage in two dimensions will now be considered
 - Assumption

- soil is homogeneous and isotropic
 - Generalized Darcy Law will be used

Derivation

$$v_x = ki_x = -k\frac{\partial h}{\partial x}$$
(1)
$$v_z = ki_z = -k\frac{\partial h}{\partial z}$$

total head h decreasing in the directions of v_x and v_z

$$q_{in} = q_{out} \quad (2)$$

$$v_x \, dy \, dz + v_z \, dx \, dy = \left(v_x + \frac{\partial v_x}{\partial x} \, dx\right) dy \, dz + \left(v_z + \frac{\partial v_z}{\partial z} \, dz\right) dx \, dy$$

$$\frac{\partial v_x}{\partial x} + \frac{\partial v_z}{\partial z} = 0 \quad (3) \quad \text{equation of continuity in two dimensions.}$$

Solution

- \Box Two \bot Functions satisfy Laplace Equation
 - First function $\phi(x, z)$, called the potential function,
 - Second function $\psi(x, z)$, called the flow function,

$$\frac{\partial \phi}{\partial x} = v_x = -k \frac{\partial h}{\partial x}$$

$$\frac{\partial \phi}{\partial z} = v_z = -k \frac{\partial h}{\partial z}$$

$$\frac{\partial \psi}{\partial z} = v_z = -k \frac{\partial h}{\partial z}$$
If the function $\psi(x, z)$ is given a constant value ψ_1
then $d\psi = 0$ and
$$\frac{dz}{dx} = \frac{v_z}{v_x}$$
If $\phi(x, z)$ is constant then $d\phi = 0$ and
$$\frac{dz}{dx} = -\frac{v_x}{v_z}$$

Flow Net

A flow net is a graphical representation of a flow field and comprises a family of flow lines and equipotential lines. The flow terms are:

- 1. Flow lines or streamlines represent flow paths of particles of water.
- 2. The area between two flow lines is called a flow channel.
- 3. The rate of flow in a flow channel is constant.
- 4. Flow cannot occur across flow lines.
- 5. An equipotential line is a line joining points with the same head.
- 6. The velocity of flow is normal to the equipotential line.
- 7. The difference in head between two equipotential lines is called the potential drop or head loss.

Constrained for Flow Net

CONSTRAINTS FOR SKETCHING FLOW NET

A flow net must satisfy the following criteria.

1. Flow conditions at entrances and exits.

2. Flow lines must intersect equipotential lines at right angles.

3. The area between flow lines and equipotential lines must be curvilinear squares. A curvilinear square has the property that an inscribed circle can be drawn to touch each side of the square and continuous bisection results, in the limit, to a point.

4. The quantity of flow through each flow channel is constant.

5. The head loss between each consecutive equipotential line is constant.

6. A flow line cannot intersect another flow line.

7. An equipotential line cannot intersect another equipotential line.

An infinite number of flow lines and equipotential lines can be drawn to satisfy Laplace's equation. However, only a few are required to obtain an accurate solution. Thus, a very fine mesh may not result in a significant increase in accuracy.

Flow Net under Dam

Flow Net in Backfill of Retaining Wall

INTERPRETATION OF FLOW NET

□ Head loss between each consecutive pair of equipotential lines $\Delta h = \frac{\Delta H}{N_{\perp}}$

Hydraulic Gradient

- Hydraulic gradient over each square
- Maximum hydraulic gradient
- Critical Hydraulic Gradient
 - Critical hydraulic gradient that brings a soil mass to static liquefaction, , Heaving, Boiling, and Piping

$$i = i_{cr} = \frac{\gamma'}{\gamma_w} = (\frac{G_s - 1}{1 + e})\frac{\gamma_w}{\gamma_w} = \frac{G_s - 1}{1 + e}$$

max

min

 $\Box \quad \text{Safe if } i < i_{\text{critical}} \Rightarrow F.S = i_{\text{critical}} / i_{\text{exit}} \ge 1.0$

Pore Water Pressure Distribution

Pressure head

$$(h_p)_j = \Delta H - (N_d)_j \Delta h - h_z$$

Pore water pressure $u_{j} = (h_{p})_{i} \gamma_{w}$ **Uplift Forces** $P_w = \sum_{i=1}^n u_j \Delta x_j$ Calculating the uplift force per unit length using Simpson's rule $P_{w} = \frac{\Delta x}{3} \left| u_{1} + u_{n} + 2\sum_{i=3}^{n} u_{i} + 4\sum_{i=2}^{n} u_{i} \right|$

ANISOTROPIC SOIL CONDITIONS

□ Most natural soil deposits are anisotropic, with the coefficient of permeability having a maximum value in the direction of stratification and a minimum value in the direction normal to that of stratification; these directions are denoted by x and z, respectively, i.e.

$$k_x = k_{\max}$$
 and $k_z = k_{\min}$

Same solution but you need to have x_t instead of x and K' instead of K in flow equation.

$$x_{t} = x \sqrt{\frac{k_{z}}{k_{x}}} \qquad \qquad k' = k_{x} \sqrt{\frac{k_{z}}{k_{x}}} = \sqrt{(k_{x}k_{z})}$$

Non-homogeneous Soil Conditions

□ For horizontal flow, the head drop Dh over the same flow path length H1+H2 will be the same for each layer.

□ For vertical flow, the flow rate q through area A of each layer is the same. $\therefore \overline{k_z} = \frac{H_1 + H_2}{\left(\frac{H_1}{L_1}\right) + \left(\frac{H_2}{L_1}\right)}$

Flow Nets Example

Omar H. Al-Hattamleh The Hashemite University, Zarqa, Jordan

Outlines

- □ Sheet pile Problem
- Procedure to get the drawing
- Compute no of flow and drops
- Compute the uplift pressure and uplift force

Problem

TWO DIMENSIONAL FLOW OF WATER THROUGH A SHEET PILE WALL

Step 1: Draw the sheet pile wall and soil mass to a suitable scale as shown.

<u>scale</u> 10m

Г

Step 2: Identify equipotential and flow boundaries. AB and CD are equipotential boundaries because the heads at each point on each of these boundaries are equal; the head along AB is 8m and the head along CD is 0m. EF and BGC are flow lines because particles of water can take these paths as flow takes place from the upstream to the downstream side of the wall. Flow lines follow impervious boundaries.

Step 3: Sketch in a few flow lines and equipotential lines subjected to the following constraints. (1) Flow lines cannot intersect each other (2) Equipotential lines cannot intersect each other (3) Flow lines and equipotential lines intersect at right angles (approximately) and (4) The flow net must be comprised of curvilinear squares.

Step 4: Check for curvilinear squares by inscribing a circle in each square. Obviously, this is a poorly drawn flow net. You must now manipulate or redraw the flow net by adding or erasing flow and equipotential lines to satisfy the flow net constraints. In this case, we will have to add more flow lines and consequently we will get more equipotential lines. You will have to erase your flow net and start over.

After repeated trials, you should get a reasonably accurate flow net as shown. This flow net could be refined further. We could have exploited vertical symmetry in this problem and drawn the flow net for only the left half of the flow domain. You should consider this in problems where symmetry exists.

DETERMINATION OF FLOW CHANNELS AND EQUIPOTENTIAL DROPS

CALCULATION OF HEAD LOSS

The amount of head loss from the upstream to the downstrean end is $\Delta H = 8m$. Our flow net construction is based on a uniform head loss along each flow channel. That is, the head loss over each equipotential drop is $\Delta h = \Delta H/N_d = 8/18 = 4/9$

DETERMINATION OF CRITICAL HYDRAULIC GRADIENT

The maximum hydraulic gradient is $i_{max} = \Delta h/L_{min}$. We will now have to determine the minimum length of an equipotential drop (L_{min}). Usually, L_{min} occurs at exits. In our case, L_{min} occurs at the exit at the base of the sheet pile. Click at the base to expand the region near it by a factor of 2. By measurement using a scale, $L_{min} = 0.6m$; this is the average distance between the equipotential lines in cell near the base. Therefore, $i_{max} = (4/9)/0.6 = 0.74$

CALCULATION OF PORE WATER PRESSURES

Let us now calculate the pore water pressures at any point, say a, near the sheet pile wall. Firstly, we need to define a datum. Let us take the downstream end as datum. The elevation head, measured from the flow net, at a is $h_z = -3.4m$. The head loss at a =1.75 Δ h = 1.75 * 4/9 = 0.78m. Note that you can have frational head loss. The pore water pressure head is Δ H - 1.75 Δ h - $h_z = 8 - 0.78 - (-3.4) = 10.62m$. The pore water pressure head is Δ H - 1.75 Δ h - $h_z = 8 - 0.78 - (-3.4) = 10.62m$. The pore water pressure head is Δ H - 1.75 Δ h - $h_z = 8 - 0.78 - (-3.4) = 10.62m$. The pore water pressure head is Δ H - 1.75 Δ h - $h_z = 8 - 0.78 - (-3.4) = 10.62m$.

Let us plot the distribution of pore water pressures on the upstream face of the retaining wall.

Example 2.2 (text)

□ The section through a dam is shown in Figure. Determine the quantity of seepage under the dam and plot the distribution of uplift pressure on the base of the dam. The coefficient of permeability of the foundation soil is 2.5x10⁻⁵ m/s.

$q = kh \frac{N_{\rm f}}{N_{\rm d}} = 2.5 \times 10^{-5} \times 4.00 \times \frac{4.7}{15}$ $= 3.1 \times 10^{-5} {\rm m}^3/{\rm s} ({\rm per \ m})$				
Point	h	z	h − z	$u = \gamma_w(h - z)$
	(m)	(m)	(m)	(kN/m ²)
	0.27	-1.80	2.07	20.3
2	0.53	-1.80	2.33	22.9
3	0.80	-2.10	2.60	25.5
4	1.07	-2.40	3.17	31.1
5	1.33	-2.40	3.73	36.6
6	1.60	-2.40	4.00	39.2
7	1.87	-2.40	4.27	41.9
7	2.00	-2.40	4.40	43.1

Recommendation problem

- Do the following problem in Chapter Two
 - 2.1
 - 2.2
 - 2.3
 - 2.4
 - 2.5
 - 2.6
 - 2.9
- References Craig Chapter Two Sections 2.1 2.6

Effective Stresses

Omar H. Al-Hattamleh The Hashemite University, Zarqa, Jordan

Outlines

Introduction

- □ The principle of effective stress
- □ Response of effective stress to a change in total stress
- Partially saturated soils
- □ Influence of seepage on effective stress

Introduction

- □ A soil can be visualized as a skeleton of solid particles enclosing continuous voids which contain water and/or air.
- □ For the range of stresses usually encountered in practice the individual solid particles and water can be considered incompressible; air, on the other hand, is highly compressible.
- □ The volume of the soil skeleton as a whole can change due to rearrangement of the soil particles into new positions, mainly by rolling and sliding, with a corresponding change in the forces acting between particles.
- □ The actual compressibility of the soil skeleton will depend on the structural arrangement of the solid particles.
- □ In a fully saturated soil, since water is considered to be incompressible, a reduction in volume is possible only if some of the water can escape from the voids.
- □ In a dry or a partially saturated soil a reduction in volume is always possible due to compression of the air in the voids, provided there is scope for particle rearrangement.

THE PRINCIPLE OF EFFECTIVE STRESS

- Effective stress: the forces transmitted through the soil skeleton from particle to particle was recognized in 1923 By Terzaghi
- □ The the principle applies only to fully saturated soils and relates the following three stresses:
 - 1. The total normal stress (σ) on a plane within the soil mass, being the force per unit area transmitted in a normal direction across the plane
 - 2. The pore water pressure (u), being the pressure of the water filling the void space between the solid particles;
 - 3. The effective normal stress (σ') on the plane, representing the stress transmitted through the soil skeleton only.

Effective vertical stress due to self-weight of soil (overburden pressure)

The total vertical stress (i.e. the total normal stress on a horizontal plane) at depth z is equal to the weight of all material (solids + water) per unit area above that depth, i.e.

$$\sigma_v = \gamma_{sat} z$$

The pore water pressure (static or hydrostatic) at any depth will be hydrostatic since the void space between the solid particles is continuous, so at depth z $u = \gamma_w z$

The effective vertical stress at depth z will be

$$\sigma'_{\mathbf{v}} = \sigma_{\mathbf{v}} - u = (\gamma_{\text{sat}} - \gamma_{\mathbf{w}})z = \gamma' z$$

where γ' is the buoyant unit weight of the soil.

Component of Pore water pressure

If the soil subjected to seepage or to the load the pore water pressure (pwp). At any time during drainage the overall pore water pressure (u) is equal to the sum of the static and excess components, i.e.

$$u = u_{\rm s} + u_{\rm e}$$

- □ The reduction of excess pore water pressure as drainage takes place is described as dissipation and when this has been completed (i.e. when ue= 0) the soil is said to be in the drained condition.
- Prior to dissipation, with the excess pore water pressure at its initial value, the soil is said to be in the undrained condition.
- □ It should be noted that the term 'drained' does not mean that all water has flowed out of the soil pores: it means that there is no stress-induced pressure in the pore water. The soil remains fully saturated throughout the process of dissipation.

Example

A layer of saturated clay 4m thick is overlain by sand 5m deep, the water table being 3m below the surface. The saturated unit weights of the clay and sand are 19 and 20 kN/m³, respectively; above the water table the unit weight of the sand is 17 kN/m³. Plot the values of total vertical stress and effective vertical stress against depth. If sand to a height of 1m above the water table is saturated with capillary water, how are the above stresses affected?

Depth (m) σ_v (kN/m ²)	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	W.T3 Sand m
$u (kN/m^2) \qquad \sigma'_v = \sigma_v - u (kN/m^2)$ $0 \qquad 51.0$ $2 \times 9.8 = 19.6 \qquad 71.4$ $6 \times 9.8 = 58.8 \qquad 108.2$	Clay g_{0} σ' σ g_{0} σ' σ g_{0} σ' σ g_{0} σ' σ g_{0} σ' σ g_{0} σ' σ g_{0} σ' σ' σ' σ' σ' σ' σ' σ'

Effect of capillary rise

- What Would happen to σ' If sand to a height of 1m above the water table is saturated with capillary water, how are the above stresses affected?
- Effect of capillary rise The water table is the level at which pore water pressure is atmospheric (i.e. u = 0). Above the water table, water is held under negative pressure and, even if the soil is saturated above the water table, does not contribute to hydrostatic pressure below the water table. The only effect of the 1m capillary rise, therefore, is to increase the total unit weight of the sand between 2 and 3m depth from 17 to 20 kN/m³, an increase of 3 kN/m³. Both total and effective vertical stresses below 3m depth are therefore increased by the constant amount 3 x 1 = 3.0 kN/m², pore water pressures being unchanged.
Example (from here)

A 5m depth of sand overlies a 6m layer of clay, the water table being at the surface; the permeability of the clay is very low. The saturated unit weight of the sand is 19 kN/m3 and that of the clay is 20 kN/m3. A 4m depth of fill material of unit weight 20 kN/m3 is placed on the surface over an extensive area. Determine the effective vertical stress at the centre of the clay layer (a) immediately after the fill has been placed, assuming this to take place rapidly and (b) many years after the fill has been placed.

Sand

Clay

a.

 $\sigma'_{\rm v} = (5 \times 9.2) + (3 \times 10.2) = 76.6 \, \rm kN/m^2$

b. $\sigma'_{\rm v} = (4 \times 20) + (5 \times 9.2) + (3 \times 10.2) = 156.6 \, \rm kN/m^2$

Imperial (B.S.) Unit example

Stress Increment From Elastic Solution

Omar H. Al-Hattamleh Hashemite University, Zarqa, Jo

Class of Year 2017-2018

Outlines

- Point load
- Line load
- □ Strip Load
- Circular loaded area
- Rectangular loaded area
- Approximate Method 2:1 method

Stresses Caused by a Point Load

Table 10.1 Variation of I, for Various Values of r/z [Eq. (10.14)]

Hgure 10.7 Stresses in an elastic medium caused by a

$\Delta \sigma_z =$	$\frac{P}{z^{2}} \left\{ \frac{3}{2\pi} \right\}$	$\frac{1}{[(r/z)^2 + 1]}$	$\left\{\frac{p}{z^2}\right\} = \frac{p}{z^2}I_1$
---------------------	---	---------------------------	---

211 (12 -

2m L3

	rl z	<i>I</i> 1	riz	I ₁	riz	4
	0	0.4775	0.36	0.3521	1.80	0.0129
	0.02	0.4770	0.38	0.3408	2.00	0.0085
	0.04	0.4765	0.40	0.3294	2.20	0.0058
	0.06	0.4723	0.45	0.3011	2.40	0.0040
	0.08	0.4699	0.50	0.2733	2.60	0.0029
	0.10	0.4657	0.55	0.2466	2.80	0.0021
	0.12	0.4607	0.60	0.2214	3.00	0.0015
	0.14	0.4548	0.65	0.1978	3.20	0.0011
	0.16	0.4482	0.70	0.1762	3.40	0.00085
	0.18	0.4409	0.75	0.1565	3.60	0.00066
	0.20	0.4329	0.80	0.1386	3.80	0.00051
	0.22	0.4242	0.85	0.1226	4.00	0.00040
	0.24	0.4151	0.90	0.1083	4.20	0.00032
	0.26	0.4050	0.95	0.0956	4.40	0.00026
_	0.28	0.3954	1.00	0.0844	4.60	0.00021
	0.30	0.3849	1.20	0.0513	4.80	0.00017
	0.32	0.3742	1.40	0.0317	5.00	0.00014
	0.34	0.3632	1.60	0.0200		

Vertical Stress Caused by a Vertical Line Load

Vertical Stress Due to Embankment Loading

$$\Delta \sigma_{z} = \frac{q_{o}}{\pi} \left[\left(\frac{B_{1} + B_{2}}{B_{2}} \right) (\alpha_{1} + \alpha_{2}) - \frac{B_{1}}{B_{2}} (\alpha_{2}) \right]$$

where $q_o = \gamma H$

- γ = unit weight of the embankment soil
- H = height of the embankment

$$\alpha_1 (\text{radians}) = \tan^{-1} \left(\frac{B_1 + B_2}{z} \right) - \tan^{-1} \left(\frac{B_1}{z} \right)$$
$$\alpha_2 = \tan^{-1} \left(\frac{B_1}{z} \right)$$

$$\sigma_z = \frac{q}{\pi} \{ \alpha + \sin \alpha \cos(\alpha + 2\beta) \}$$

Figure 10.15

Osterberg's chart for determination of vertical stress due to embankment loading

Circular area carrying uniform pressure

$$\sigma_z = q \left[1 - \left\{ \frac{1}{1 + (R/z)^2} \right\}^{3/2} \right] = q I_c$$

Figure 5.9 Vertical stress under the centre of a circular area carrying a uniform pressure.

Rectangular area carrying uniform pressure

 $\sigma_z = qI_r$

Figure 5.10 Vertical stress under a corner of a rectangular area carrying a uniform pressure. (Reproduced from

Approximate Method 2:1 method

EXAMPLE

A rectangular foundation 6 X 3m carries a uniform pressure of 300 kN/m2 near the surface of a soil mass. Determine the vertical stress at a depth of 3m below a point (A) on the centre line 1.5m outside a long edge of the foundation (a) using influence factors

Soil Shear Strength

Hashemite University CE 336 Geotechnical Engineering Class 2017-2018

Definition of Shear Strength

The shear strength of a soil mass is the internal resistance per unit area that the soil mass can offer to resist failure and sliding along any plane inside it.
Needed to analyze soil stability problems such as :

- 1. Bearing capacity, 2) slope stability, and 3) lateral pressure on earth-retaining structures.
- **Shear strength** for all of the stability analyses is represented by a Mohr-Coulomb failure envelope that relates shear strength to either total or effective normal stress on the failure plane

Type of Shear Strength Parameters In general there are two types:

Total normal stress
Effective normal stress

In the case of total stresses, the shear strength is expressed as:

$s=\tau=c+\sigma \tan \phi$

Where

- c = cohesion intercept
- ϕ = friction angle
- σ = total normal stress on the failure plane

Effective Shear Strength

For effective stresses the shear strength is expresses as:

$s=\tau=c'+(\sigma-u) \tan \phi'$

Table 12.1 Typical Values of Drained Angle of Friction for Sands and Silts

Soil type	φ' (deg)		
Sand: Rounded grains	- 100 - 100		
Loose	27-30		
Medium	30-35		
Dense	35-38		
Sand: Angular grains			
Loose	30-35		
Medium	35-40		
Dense	40-45		
Gravel with some sand	34-48		
Silts	26-35		

c' and ϕ' = intercept and slope angle for the failure envelope plotted in terms of effective stresses σ and u = total normal stress and pore water pressure, respectively, on the failure plane

Mohr–Coulomb failure criterion

 $\boldsymbol{\theta}$ is the theoretical angle between the major principal plane and the plane of failure

$$\sin \phi' = \frac{\frac{1}{2}(\sigma'_1 - \sigma'_3)}{c' \cot \phi' + \frac{1}{2}(\sigma'_1 + \sigma'_3)} \sigma'_1 = \sigma'_3 \tan^2 \left(45^\circ + \frac{\phi'}{2}\right) + 2c' \tan \left(45^\circ + \frac{\phi'}{2}\right)$$

Laboratory Strength Test

The shear strength parameters, c and \phi or c' and \phi', are determined from laboratory shear test data.

Two common tester in the lab:

- 1. Direct shear test
- 2. Triaxial test
- 3. Direct simple shear test
- 4. Plane strain triaxial test
- 5. Torsional ring shear test

A two-stage loading procedure is used in each of these tests

>First stage, a confining stress is applied

➢ Second involves shearing the specimen

Direct Simple Shear

Direct Shear I

Direct Shear II

Explode View Of Direct Shear Cell

Typical Shear Stress – shear Displacement

Ultimate

strength

Figure 12.7 Plot of shear stress and change in height of specimen against shear displacement for loose and dense dry sand (direct shear test)

Data Reduction For Shear Strength Parameters

Note that the value of $\mathbf{c'} \approx \mathbf{0}$. for a normally consolidated clay and sand.

Direct Shear Test In Over Consolidated Soil

Figure 12.11: Failure envelope for clay obtained from drained direct shear tests

Triaxial Tester

Triaxial Test on Soil Sample in Laboratory

Residual Soil Strength

(a) Stress-strain plot applicable for any soil,(b) Mohr's circle qualitatively shown for a dense sand.

Advantages and Disadvantages of Direct Shear Tester

The advantages of the direct shear test are:

- 1. Cheap, fast and simple especially for sands.
- 2. Failure occurs along a single surface, which approximates observed slips or shear type failures in natural soils.

Disadvantages of the test include:

- 1. Difficult or impossible to control drainage, especially for fine-grained soils.
- 2. Failure plane is forced--may not be the weakest or most critical plane in the field
- **3.** Non-uniform stress conditions exist in the specimen.
- 4. The principal stresses rotate during shear, and the rotation cannot be controlled.

Principal stresses are not directly measured.

Comparison Of Triaxial with Direct Shear Test

The advantages of the triaxial test over the direct shear test are:

Progressive effects are less in the triaxial.

□ The measurement of specimen volume changes are more accurate in the triaxial.

The complete state of stress is assumed to be known at all stages during the triaxial test, whereas only the stresses at failure are known in the direct shear test.

The triaxial machine is more adaptable to special requirements.

Types of Tests

There are 3 types of tests

1. UU Quick Q Test

- □ Unconsolidated-Undrained (UU) test which is also called the quick test (abbreviations commonly used are UU and Q test).
- □ This test is performed with the drain valve closed for all phases of the test.
- Axial loading is commenced immediately after the chamber pressure σ3 is stabilized.

Types of Tests

2. CU or R Test

□ Consolidated-Undrained (CU)test, also termed consolidated-quick test or R test (abbreviated CU or R).

\Box In this test, drainage or consolidation is allowed to take place during the application of the confining pressure σ 3.

□ Loading does not commence until the sample ceases to drain (or consolidate).

□The axial load is then applied to the specimen, with no attempt made to control the formation of excess pore pressure.

□ For this test, the drain valve is closed during axial loading, and excess pore pressures can be measured.

Types of Tests

3. CD or S Test

Consolidated-Drained (CD) test, also called slow test (abbreviated CD or S).

□ In this test, the drain valve is opened and is left open for the duration of the test, with complete sample drainage prior to application of the vertical load.

□The load is applied at such a slow strain rate that particle readjustments in the specimen do not induce any excess pore pressure.

□ Since there is no excess pore pressure total stresses will equal effective stresses.

Use of Data

Unconsolidated-Undrained (UU) or Q test

Results from UU are always plotted using total stresses.

Thus, the shear strength is expressed in terms of total stress, using c and \phi.

Pore water pressures are not measured and are unknown

Use of Data

Consolidated-Undrained (CU) or R test

- Shear strength data from Consolidated-Undrained tests are used in four different ways for slope stability computations:
- 1. To determine the effective stress shear strength parameters for long-term, steady-state seepage analyses.
- 2. To determine the relationship between undrained shear strength and effective consolidation pressure (τ_{ff} vs. σ'_{fc}) for analyses of rapid drawdown.
- 3. To estimate undrained-shear strengths and reduce effects of sample disturbance for end-of construction stability analyses.
- 4. To estimate undrained shear strength for analyses of staged construction of embankments.

Use of Data

Consolidated-Drained (CD or S)

□ CD test used to determine the effective stress shear (ESA) strength parameters of freely draining soils.

□ These soils will drain with relatively short testing times and the consolidated-drained loading procedure comes closest to representing the loading for long-term, drained conditions in the field.

□ Consolidated-Drained tests procedures are also used to measure the residual shear strength of clays using direct shear or torsional shear equipment.

Summary of Use of Data

Design Condition

Shear Strength

During Construction and End-of-Construction

Steady-State Seepage Conditions

Sudden Drawdown Conditions

Free draining soils – use drained shear strengths related to effective stresses

Low-permeability soils – use undrained strengths related to total stresses

Use drained shear strengths related to effective stresses.

Free draining soils – use drained shear strengths related to effective stresses.

Summary of Use of Data

Design Condition	Shear Strength
Sudden Drawdown Conditions	Low-permeability soils –
Conditions	Three-stage computations: First stage-use drained shear strength related to effective stresses;
	second stage-use undrained shear strengths related to consolidation pressures from the first stage;
	Third stage-use drained strengths related to effective stresses, or undrained strengths related to consolidation pressures from the first stage, depending on which strength is lower – this will vary along the assumed shear surface.

Typical Shear Strength Values

Representative values for angle of internal friction ϕ

	Type of test*			
Soil	Unconsolidated- undrained, U	Consolidated- undrained, CU	Consolidated- drained, CD	
Gravel				
Medium size	40-55°		4055°	
Sandy	35-50°		35-50°	
Sand				
Loose dry	28-34°			
Loose saturated	28-34°			
Dense dry	35–46°		43-50°	
Dense saturated	1–2° less than		43–50°	
	dense dry			
Silt or silty sand	-			
Loose	20–22°		27-30°	
Dense	25-30°		30-35°	
Clay	0° if saturated	3–20°	20-42°	

Correlation between ϕ' and plasticity index Ip for normally consolidated

Unconfined Compression Test

 \square In this test, the confining pressure σ 3 is 0. An axial load is

rapidly applied to the specimen to cause failure.

□ At failure, the total minor principal stress is zero and the total major principal stress is σ 1

Figure 12.33 Unconfined compression test

Table 12.4	General Relationship of Consistency and
Unconfined	Compression Strength of Clays

	q	u
Consistency	kN/m ²	ton/ft ²
Very soft	0-25	0-0.25
Soft	25-50	0.25-0.5
Medium	50-100	0.5-1
Stiff	100-200	1-2
Very stiff	200-400	2-4
Hard	>400	>4

Su for NC

Undrained Shear Strength for Normally consolidated Clay (NC)

$$\frac{S_u}{P_o'} = 0.45(I_p)^{1/2}$$
 Ip in decimal and > 0.5

$$\frac{S_u}{P_o'} = 0.11 + 0.0037I_p$$
 Ip in percent

S_u = Undrained Shear Strength

P_o'= In Situ overburden stress

 $I_p = plasticity index$

HW

Try solve questions as much as possible from problems at the end of Chapter 12 in your text book

<section-header><image>

- Slip or Failure Zone: A thin zone of soil that reaches the critical state or <u>residual state</u> and results in movement of the upper soil mass
- □ Slip plane; failure plane; Slip surface; failure surface: Surface of sliding
- □ Sliding mass: mass of soil within the slip plane and the ground surface
- □ Slope angle: Angle of inclination of a slope to the horizontal
- Pore water pressure ratio (r_u): The ratio of pore water force on a slip surface to the total weight of the soil and any external loading.

Examples # 1 Solution												
Bishop's Homoge S _u φ' γ _w γ _{sat} Z _{cr} Z _s FS	s simplif enous so 30 33 9.8 18 3.33 4 1.06	ied meth bil kPa deg. kN/m ³ kN/m ³ m m	ıod			-				*		
No tensio	on ci ack								ESA	TSA		
Slice	b	Z	W=ybz	Zw	r _u	θ	mj	Wsinθ	W (1 - r _u)tanó' m _j	$s_u b/cos\theta$		
	m	m	kN	m		deg						
1	4.9	1	88.2	1	0.54	-23	1.47	-34.5	38.3	159.7		
2	2.5	3.6	162.0	3.6	0.54	-10	1.14	-28.1	54.6	76.2		
3	2	4.6	165.6	4.6	0.54	0	1.00	0.0	49.0	60.0		
4	2	5.6	201.6	5	0.49	9	0.92	31.5	62.1	60.7		
5	2	6.5	234.0	5.5	0.46	17	0.88	68.4	72.2	62.7		
6	2	6.9	248.4	5.3	0.42	29	0.85	120.4	80.1	68.6		
7	2	6.8	244.8	4.5	0.36	39.5	0.86	155.7	87.6	77.8		
8	2.5	5.3	238.5	2.9	0.30	49.5	0.90	181.4	97.5	115.5		
9	1.6	1.6	46.1	0.1	0.03	65	1.02	41.8	29.6	113.6		
							Sum	536.6	570.9	794.8		
						-		FS	1.06	1.48		

No tonsi	on araal								L V	
ivo tensi	on crack								ESA	TSA
Slice	b	z	W=ybz	Zw	ru	θ	mi	Wsinθ	W (1 - r _u)tan _o ' m _i	s _u b/cos0
	m	m	, kN	m	-	deg	,		(_, _)	
1	4.9	1	88.2	1	0.54	-23	1.47	-34.5	38.3	159.7
2	2.5	3.6	162.0	3.6	0.54	-10	1.14	-28.1	54.6	76.2
3	2	4.6	165.6	4.6	0.54	0	1.00	0.0	49.0	60.0
4	2	5.6	201.6	5	0.49	9	0.92	31.5	62.1	60.7
5	2	6.5	234.0	5.5	0.46	17	0.88	68.4	72.2	62.7
6	2	6.9	248.4	5.3	0.42	29	0.85	120.4	80.1	68.6
7	2	6.8	244.8	4.5	0.36	39.5	0.86	155.7	87.6	77.8
8	2.5	5.3	238.5	2.9	0.30	49.5	0.90	181.4	97.5	115.5
9	1.6	1.6	46.1	0.1	0.03	65	1.02	41.8	29.6	113.6
							Sum	536.6	570.9	794.8
								FS	1.06	1.48

E	Examples # 2 Solution												
Three s _u φ' γ _w γ _{sat}	soil la Soil 1 30 33 9.8 18	yers Soil 2 42 29 17.5	Soil 3 58 25 17	kPa deg. kN/m ³ kN/m ³						R Zw	y		
FS	1.01	assun	ned										
											ESA	TSA	
Slice	b	Z ₁	Z ₂	Z ₃	W=γbz	Zw	r _u	θ	m _i	Wsinθ	ESA W(1 - r _u)tan₀' m _i	TSA s _u b/cosθ	
Slice	b m	z ₁ m	z ₂ m	z ₃ m	W=γbz kN	z _w m	r _u	θ deg	mj	Wsinθ	ESA W(1 - r _u)tan∳' m _j	TSA s _u b/cosθ	
Slice	b m 4.9	z ₁ m 1	z ₂ m 0	z ₃ m	W=γbz kN 88.2	z _w m	r _u 0.54	θ deg -23	m _j 1.49	Wsinθ -34.5	ESA W(1 - r _u)tanφ' m _j 39.0	TSA s _u b/cosθ 159.7	
Slice 1 2	b m 4.9 2.5	z ₁ m 1 2.3	z ₂ m 0 1.3	z ₃ m 0	W=γbz kN 88.2 160.4	z _w m 1 3.6	r _u 0.54 0.55	θ deg -23 -10	m _j 1.49 1.15	Wsinθ -34.5 -27.8	ESA W(1 - r _u)tanφ' m _j 39.0 53.7	TSA s _u b/cosθ 159.7 76.2	
Slice 1 2 3	b m 4.9 2.5 2	z ₁ m 1 2.3 2.4	z ₂ m 0 1.3 2.2	Z ₃ m 0 0	W=γbz kN 88.2 160.4 163.4	Z _w m 1 3.6 4.6	r _u 0.54 0.55 0.55	θ deg -23 -10 0	m _j 1.49 1.15 1.00	Wsinθ -34.5 -27.8 0.0	ESA W(1 - r _u)tanφ' m _j 39.0 53.7 47.6	TSA s _u b/cosθ 159.7 76.2 60.0	
Slice 1 2 3 4	b m 4.9 2.5 2 2 2	z ₁ m 2.3 2.4 2	z ₂ m 0 1.3 2.2 3.6	Z ₃ m 0 0 0	W=γbz kN 88.2 160.4 163.4 198.0	Z _w m 1 3.6 4.6 5	r _u 0.54 0.55 0.55 0.49	θ deg -23 -10 0 9	m _j 1.49 1.15 1.00 0.92	Wsinθ -34.5 -27.8 0.0 31.0	ESA W(1 - r _u)tanǫ' m _j 39.0 53.7 47.6 59.7	TSA s _u b/cosθ 159.7 76.2 60.0 60.7	
Slice 1 2 3 4 5	b m 4.9 2.5 2 2 2 2	z ₁ m 2.3 2.4 2 0.9	z ₂ m 0 1.3 2.2 3.6 4.1	Z ₃ m 0 0 0 0 1.5	W=γbz kN 88.2 160.4 163.4 198.0 226.9	Z _w m 1 3.6 4.6 5 5.5	r _u 0.54 0.55 0.55 0.49 0.48	θ deg -23 -10 0 9 17	m _j 1.49 1.15 1.00 0.92 0.87	Wsinθ -34.5 -27.8 0.0 31.0 66.3	ESA W(1 - r _u)tanǫ' m _j 39.0 53.7 47.6 59.7 67.6	TSA s _u b/cosθ 159.7 76.2 60.0 60.7 62.7	
Slice 1 2 3 4 5 6	b m 4.9 2.5 2 2 2 2 2 2	z ₁ m 2.3 2.4 2 0.9 0.8	Z ₂ m 0 1.3 2.2 3.6 4.1 4.1	Z ₃ m 0 0 0 0 1.5 2	W=γbz kN 88.2 160.4 163.4 198.0 226.9 240.3	Z _w m 3.6 4.6 5 5.5 5.3	r _u 0.54 0.55 0.55 0.49 0.48 0.43	θ deg -23 -10 0 9 17 29	m _j 1.49 1.15 1.00 0.92 0.87 0.84	Wsinθ -34.5 -27.8 0.0 31.0 66.3 116.5	ESA W(1 - r _u)tanǫ' m _j 39.0 53.7 47.6 59.7 67.6 74.7	su b/cosθ 159.7 76.2 60.0 60.7 62.7 68.6	
Slice 1 2 3 4 5 6 7	b m 2.5 2 2 2 2 2 2 2 2 2	z ₁ m 2.3 2.4 2 0.9 0.8 0	z ₂ m 1.3 2.2 3.6 4.1 4.1 3.7	Z ₃ m 0 0 0 0 1.5 2 3.1	W=γbz kN 88.2 160.4 163.4 198.0 226.9 240.3 234.9	Z _w m 1 3.6 4.6 5 5.5 5.3 4.5	r _u 0.54 0.55 0.55 0.49 0.48 0.43 0.38	θ deg -23 -10 0 9 17 29 39.5	m _j 1.49 1.15 1.00 0.92 0.87 0.84 0.89	Wsinθ -34.5 -27.8 0.0 31.0 66.3 116.5 149.4	ESA W(1 - r _u)tan¢' mj 39.0 53.7 47.6 59.7 67.6 74.7 72.6	TSA s _u b/cosθ 159.7 76.2 60.0 60.7 62.7 68.6 108.9	
Slice 1 2 3 4 5 6 7 8	b m 2.5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 5	Z ₁ m 2.3 2.4 2 0.9 0.8 0 0 0	z ₂ m 0 1.3 2.2 3.6 4.1 4.1 3.7 1.5	Z ₃ m 0 0 0 0 1.5 2 3.1 3.8	W=γbz kN 88.2 160.4 163.4 198.0 226.9 240.3 234.9 227.1	Z _w m 1 3.6 4.6 5 5.5 5.3 4.5 2.9	r _u 0.54 0.55 0.55 0.49 0.48 0.43 0.38 0.31	θ deg -23 -10 0 9 17 29 39.5 49.5	m _j 1.49 1.15 1.00 0.92 0.87 0.84 0.89 0.94	Wsinθ -34.5 -27.8 0.0 31.0 66.3 116.5 149.4 172.7	ESA W(1 - r _u)tan¢' mj 39.0 53.7 47.6 59.7 67.6 74.7 72.6 81.1	TSA s _u b/cosθ 159.7 76.2 60.0 60.7 62.7 68.6 108.9 161.7	
Slice 1 2 3 4 5 6 7 8 9	b m 2.5 2 2 2 2 2 2 2 2 2 2 5 1.6	Z ₁ m 2.3 2.4 2 0.9 0.8 0 0 0 0	Z ₂ m 0 1.3 2.2 3.6 4.1 4.1 3.7 1.5 0	Z ₃ m 0 0 0 0 1.5 2 3.1 3.8 1.6	W=γbz kN 88.2 160.4 163.4 198.0 226.9 240.3 234.9 227.1 43.5	Z _w m 1 3.6 4.6 5 5.5 5.3 4.5 2.9 0.1	r _u 0.54 0.55 0.55 0.49 0.48 0.43 0.38 0.31 0.04	θ deg -23 -10 0 9 17 29 39.5 49.5 65	m _j 1.49 1.15 1.00 0.92 0.87 0.84 0.89 0.94 1.19	Wsin0 -34.5 -27.8 0.0 31.0 66.3 116.5 149.4 172.7 39.4	ESA W(1 - r _u)tan¢' mj 39.0 53.7 47.6 59.7 67.6 74.7 72.6 81.1 23.3	TSA su b/cosθ 159.7 76.2 60.0 60.7 68.6 108.9 161.7 219.6	
Slice 1 2 3 4 5 6 7 8 9	b m 2.5 2 2 2 2 2 2 2 2 2 2 5 1.6	Z ₁ m 2.3 2.4 2 0.9 0.8 0 0 0 0	Z ₂ m 0 1.3 2.2 3.6 4.1 4.1 3.7 1.5 0	Z ₃ m 0 0 0 1.5 2 3.1 3.8 1.6	W=γbz kN 88.2 160.4 163.4 198.0 226.9 240.3 234.9 227.1 43.5	Z _w m 1 3.6 4.6 5 5.5 5.3 4.5 2.9 0.1	r _u 0.54 0.55 0.55 0.49 0.48 0.43 0.38 0.31 0.04	θ deg -23 -10 0 9 17 29 39.5 49.5 65	mj 1.49 1.15 1.00 0.92 0.87 0.84 0.89 0.94 1.19 Sum	Wsinθ -34.5 -27.8 0.0 31.0 66.3 116.5 149.4 172.7 39.4 513.1	ESA W(1 - r _u)tan¢' mj 39.0 53.7 47.6 59.7 67.6 74.7 72.6 81.1 23.3 519.1	TSA su b/cosθ 159.7 76.2 60.0 60.7 68.6 108.9 161.7 219.6 978.1	

