

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

$P = \tan^{-1}\left(\frac{4}{3}\right)$ $\lambda_{x} = \cos P = 0.6$		/10 x	×	lo	cal stiffnes Modrix
Jy = 0.8 [k2] = AE	$\frac{d1x}{5} = 0.072$ 0.096 -0.072	d14 6.096 0.128 -0.096	0.096	2 -0:	96 dix 128 diy 128 diy 13x 128 diy
5/4 Upl member 2 Jab	-0.096	-128 dzx -0.333	dry		-0.096 du
	0	0.333	0	0 0:072	0 de
Dof			6	0.096	0.128 3
	Fine in E	reig matrix		Global	
What instructs to committee, if a full of the first and the full of the Standard Control of the Standa	AND SECRETARIA COMPANIES CONTRACTOR CONTRACT	MICHEL CO. CO. SERVICE AND STATE AND ADDRESS OF THE PROPERTY O	CAMPANINE AND	Stiffn es Matri	AND ADMINISTRATION OF THE PARTY OF T

$$\theta_{x} = 270 + 53.1$$

= 323.1°

$$Az = \cos \theta z = 0.8$$

$$Ay = \sin \theta z = -0.6$$

$$Ay_{2} = -0.64$$

$$-0.48 = -0.36$$

$$Ay_{3} = 0.36$$

$$-0.48 = -0.36$$

$$-0.48 = -0.36$$

$$-0.48 = -0.36$$

$$-0.48 = -0.36$$

$$-0.48 = -0.36$$

مشترك	di=??
[K]=	1 * 10
	1 14

diz	dy 1	das	dyz	des	dy3	drive	dyy
256	4.2		0	_25.4	-19.2	0	1
19.2	14.4			< V	ww		
0	0	25.6		-31			+1
0	O	-19.2	14.4	125.4+	21		
-25.4	-19.2	-25.4	19.2	33.3+25.4	0		
-19.2	-14.4	19.2	-14.4	19.2	14.4		
1	.0	0	0	-33.3	0	33-3	-
0	U	O	O	0	0	0	0
1				t		11	1 ,1
				P. 17			

· Global matrix - DoF. sie

Scanned by CamScanner

$$A_{1} = \frac{-7 \rho l^{3}}{12 E I}$$

$$A_{1} = \frac{3 \rho l^{2}}{4 E I}$$

$$A_{2} = \frac{\rho l^{2}}{4 E I}$$

$$A_{3} = \frac{E I}{2}$$

$$A_{4} = \frac{E I}{4 E I}$$

$$A_{5} = \frac{E I}{4 E I}$$

$$A_{1} = \frac{E I}{4 E I}$$

$$A_{2} = \frac{E I}{4 E I}$$

$$A_{3} = \frac{E I}{2} P$$

$$A_{4} = \frac{E I}{4 E I}$$

$$A_{5} = \frac{E I}{4 E I}$$

$$A_{6} = \frac{E I}{4 E I}$$

$$A_{7} = \frac{E I}{4 E I}$$

$$A_{8} = \frac{E I}{4 E I}$$

$$A_{1} = \frac{E I}{4 E I}$$

$$A_{2} = \frac{E I}{4 E I}$$

$$A_{3} = \frac{E I}{4 E I}$$

$$A_{4} = \frac{E I}{4 E I}$$

$$A_{5} = \frac{E I}{4 E I}$$

$$A_{6} = \frac{E I}{4 E I}$$

$$A_{7} = \frac{E I}{4 E I}$$

$$A_{8} = \frac{E I}{4 E I}$$

$$A_{1} = \frac{E I}{4 E I}$$

$$A_{2} = \frac{E I}{4 E I}$$

$$A_{3} = \frac{E I}{4 E I}$$

$$A_{4} = \frac{E I}{4 E I}$$

$$A_{5} = \frac{E I}{4 E I}$$

$$A_{6} = \frac{E I}{4 E I}$$

$$A_{1} = \frac{E I}{4 E I}$$

$$A_{1} = \frac{E I}{4 E I}$$

$$A_{1} = \frac{E I}{4 E I}$$

$$A_{2} = \frac{E I}{4 E I}$$

$$A_{3} = \frac{E I}{4 E I}$$

$$A_{4} = \frac{E I}{4 E I}$$

$$A_{5} = \frac{E I}{4 E I}$$

$$A_{6} = \frac{E I}{4 E I}$$

$$A_{1} = \frac{E I}{4 E I}$$

$$A_{2} = \frac{E I}{4 E I}$$

$$A_{3} = \frac{E I}{4 E I}$$

$$A_{4} = \frac{E I}{4 E I}$$

$$A_{5} = \frac{E I}{4 E I}$$

$$A_{6} = \frac{E I}{4 E I}$$

$$A_{1} = \frac{E I}{4 E I}$$

$$A_{2} = \frac{E I}{4 E I}$$

$$A_{3} = \frac{E I}{4 E I}$$

$$A_{4} = \frac{E I}{4 E I}$$

$$A_{5} = \frac{E I}{4 E I}$$

$$A_{6} = \frac{E I}{4 E I}$$

$$A_{1} = \frac{E I}{4 E I}$$

$$A_{2} = \frac{E I}{4 E I}$$

$$A_{3} = \frac{E I}{4 E I}$$

$$A_{4} = \frac{E I}{4 E I}$$

$$A_{5} = \frac{E I}{4 E I}$$

$$A_{6} = \frac{E I}{4 E I}$$

$$A_{1} = \frac{E I}{4 E I}$$

$$A_{2} = \frac{E I}{4 E I}$$

$$A_{3} = \frac{E I}{4 E I}$$

$$A_{4} = \frac{E I}{4 E I}$$

$$A_{5} = \frac{E I}{4 E I}$$

$$A_{6} = \frac{E I}{4 E I}$$

$$A_{1} = \frac{E I}{4 E I}$$

$$A_{2} = \frac{E I}{4 E I}$$

$$A_{3} = \frac{E I}{4 E I}$$

$$A_{4} = \frac{E I}{4 E I}$$

$$A_{5} = \frac{E I}{4 E I}$$

$$A_{6} = \frac{E I}{4 E I}$$

$$A_{7} = \frac{E I}{4 E I}$$

$$A_{8} = \frac{E I}{4 E I}$$

$$A_{1} = \frac{E I}{4 E I}$$

$$A_{2} = \frac{E I}{4 E I}$$

$$A_{3} = \frac{E I}{4 E I}$$

$$A_{4} = \frac{E I}{4 E I}$$

$$A_{5} = \frac{E I}{4 E I}$$

$$A_{6} = \frac{E I}{4 E I}$$

$$A_{7} = \frac{E I}{4 E I}$$

$$A_{1} = \frac{E I}{4 E I}$$

$$A_{1} = \frac{E I}{4 E I}$$

$$A_{2} = \frac{E I}{4$$

Scanned by CamScanner

$$\begin{bmatrix}
-10000 \\
-10000
\end{bmatrix} = \underbrace{EI}_{120^3} \begin{bmatrix} 24 \\
0 \\
24 \end{bmatrix} \begin{bmatrix} dy \\
dy \\
0 \\
24 \end{bmatrix}$$

$$\begin{bmatrix}
4 \\
19x \\
19x$$

 $\begin{cases}
f_{iy} \\
M_{i}
\end{cases} = \underbrace{EI}_{12} \begin{cases}
6L & -12 & 6L \\
4L^{2} & -6L & 2L^{2}
\end{cases} \begin{cases}
d_{iy} = 0 \\
4j = 0
\end{cases}$ $d_{2y} = -0.048$ $d_{2y} = -0.048$ $d_{2y} = -0.048$ ⇒: fiy = : 5000 16 M1 = 25000 16.ff · fry = - 5000 16. M2 = 25000 16. ft bean or de local force 3. de

Scanned by CamScanner

Scanned by CamScanner

Fy =
$$1069.9 \times 1.402 \times 10^{3} = 1.5 \text{ K}$$

Fy = 102708×9

Fy = 8559×9

Fy = 1008×100

Fy = -9×9

Fy = $-9 \times$

Scanned by CamScanner

Scanned by CamScanner

$$\begin{bmatrix} F_{1}y \\ M_{1} \\ F_{2}y \\ M_{2} \\ \end{bmatrix} = EI \begin{bmatrix} 1.5 & 1.5 & -1.5 & 1.5 & 0 & 0 \\ 1.5 & -1.5 & 1 & 0 & 0 & 0 \\ 1.5 & -1.5 & 1 & 0 & 0 & -1.5 & 1 \\ 0 & 0 & -1.5 & -1.5 & 1 & -1.5 & 1 \\ 0 & 0 & 1.5 & 1 & -1.5 & 1 & -1.5 \\ 0 & 0 & 1.5 & 1 & -1.5 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ -5/6 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} F_{2}y \\ M_{3} \\ \end{bmatrix} = \begin{bmatrix} 7.5 \\ 10 \\ -120 \\ 0 \\ -120 \\ -10 \end{bmatrix} \begin{bmatrix} -120 \\ 10275 \\ 0 \\ 1275 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} F_{2}y \\ M_{2} \\ F_{3}y \\ M_{3} \end{bmatrix} = \begin{bmatrix} 7.5 \\ 10 \\ -120 \\ -120 \\ -10 \end{bmatrix} \begin{bmatrix} -120 \\ 10275 \\ 0 \\ 1275 \\ 0 \end{bmatrix}$$

Scanned by CamScanner

$$\frac{1}{EE} = 4D_1 + 2D_2 + 6D_4$$

$$= 2D_1 + 4D_2 + 6D_4$$

$$0 = 2D_3 - 1.5 D_4$$

$$0 = 6D_1 + 6D_2 - 1.5 D_3 + 13.5 D_4$$
Solving the above equations yields
$$D_1 = -\frac{3M}{EI} \qquad D_2 = -\frac{2.5M}{EI}$$

$$D_3 = \frac{2M}{EI} \qquad D_4 = \frac{2.667M}{EI}$$

$$\Rightarrow F_5 = -6EI \left(-\frac{3M}{EI}\right) - 6EI\left(\frac{-25.M}{EI}\right)$$

$$\Rightarrow F_5 = 0M$$

$$F_6 = -M$$

$$Q_7 = -2M$$

(14.8) Trasses Having Thermal changes and Fabricatio Errors

Scanned by CamScanner

$$= \frac{-2}{0.16037} \frac{AE}{AE} \frac{dz}{dz} + \frac{100}{0.00761} \frac{1}{AE} = \frac{100}{0.00761} \frac{1}{AE} = \frac{100}{0.00761} \frac{1}{AE}$$

$$\Rightarrow dz_1 = \frac{3.119 \times 10^6}{0.00761} \frac{1}{AE}$$

$$\Rightarrow dz_1 = \frac{AE}{1.380} \times \frac{10^6}{10} \frac{1}{100}$$

$$\Rightarrow dz_1 = \frac{AE}{1.380} \times \frac{10^6}{100} \frac{1}{100}$$

$$\Rightarrow dz_1 = \frac{AE}{1.00761} = \frac{100}{100} = \frac{100}{100}$$

$$\begin{bmatrix} (Q_1)_2 \\ (Q_2)_3 \\ (Q_3)_4 \\ (Q_3)_4 \\ (Q_4)_5 \\ (Q_5)_6 \\ (Q$$

Scanned by CamScanner

K=12+12 Ø 172

[10000] 0 = 250000 0 0	10.167 0 10.0835 10 5 1200 -10 0 0 0 0.0835 -5 0 5 200	10.167
$\begin{cases} d2x \\ d2y \\ d2 \\ d3x \\ d3y \\ d3y \\ d3y \\ d3y \end{cases}$	dex dey	

$$\begin{array}{c}
| J | = [T][D] \\
| J | = [T][D]$$

Scanned by CamScanner

