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P(r: M) = Zﬁ(m: Ar),

f@mwdwu.ummng&mnu:mlau Wo illustrate the use of thi
with the following two examples. f,rq.(b:aé <1 ““-@

- _m;ﬁullm the tsoan il Uhe vnrtanice of Lo Polsson disteilinthm ”ﬂu;m =
.1?.1 Dunng a laboratory c-xpenumnt the average number’ of radoactive particles | pass-

\“5 J-Q- {f ing through a counter in 1 millisecond 1s 4. What i :5 the probability that 6 : m

enter the counter in a mm ANV o F Oufcome |
o 1 §d lution: Using the Poisson distribution with x = 6 and At = 4 and referring to Table A 2
b we have < _(J
LRy P (’_’x .. M
|"l |I . —3 Ih = (ﬁll F (5-}]
e pl6:d) = —— = Zp{r 1)/~ Zp{:; 1) = 0.8803 — 0.7851 = 0.1042.
| e
| =0 roil
| gl
25 ﬁ("d{é = AM=3 At — Ve numbel — P
Uaue_
“ =
] e {
Example 5.19: In a certain industrial facility, aco idents oceur infrequently. It is known that the {
s s\ probability of an accident on any given day 18 0.005 and accide nts are mdt pvndr“m 1
[T AN ®) o of each other. P n
& ".:-'?'E,gi'- o (a) What is the probahility that jn any given ps riod of 100 tla}':-_ t'l_u:nj will hu._ an 7
l 'ﬂt X ?I?L a.-:}j accident on one day? [Q;—mﬁ
" s ﬂ? . (h) W hat is the probability that there are at most three days with an accident?

Solution: Let X be a binomial random variable with n = 400 and p = 0.005. Thus, np = 2 I‘

Using the Poisson approximation. f,-ﬁ m bable _
|
‘H‘ }:Df [ﬂj[ Pf_.'&'=l'lf:f =221 = (0.271 and C-D\MDEL?AEII.EBBJ
+
_ (b) 2 X < le ¢%97 /r! = 0857,  0.135335+0.270671 +0.270671 +0.180447 a
3‘5. M“[L _J|1, (S — sl

In a mamufacturing process where ::,1 wss products are made, defects or bubbles
oceur, occasionally rendering the piece undesirable for marketing™ It w'knuwn
that, on average, 1 in every 1000 of these items ]:rmiutﬁl has one or mo bles. | =
What i= the pm}mhlim that a random sample ofSU00 fwill 311_1‘:] fewer lhan T items |

o, pmmg bubhles?
~ Solution: This is essentially a hinomial experiment with n = 8000 and p = 0.001. Sinee

.1 ;... il p is very close to 0 and n is quite large, we shall approximate with the Poisson

dntfbmian using

a my = (8000)(0.001) = 8.

_Example 5.20:
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LUptbort | The density function of the continuous uniform random variable X on the in-

) | Disusibotion | terval |4, B] is

3 T A<r< B,
C‘E‘P Er\ J(#:4.8) :ﬁﬂ_ elsewhere. ?.{a ba-g"' I(b"’ i
f(x) ; t_dﬂ?.ﬁfql{,{—
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(b) PX 23] = [ 1dr=1.

| The mean and variance of the uniform distribution are

B ':-'.'15_ :

sormal Distribution

e e

Norl  The density of the normal random variable X, with mean g and variance a,
E-]:.I-I I"l|.~.:|T:|-|_- e g I-_ ;5 - o
(ru.0)= e WM, —x<r<,
ni{r; .0} ..,a’;';'_.-.rr

where 7 = 3.14159... and e = 2.71828.. .. \27&31
o1& \\ b‘g’“
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Figure 6,3: Normal CUurves n‘tthﬁ-: foa \r@
&

‘Pﬂa nurmall curves having the same standard deviation but different means. The tb'-‘ﬂ

. _-E:urves are identical in form but are centered at different positions along the harlmrﬂml
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Figure 6.4: Normal curves with ji; = jiz and oy < a3,

‘Two normal curves with the same mean but different standard deviations g




ccurs at x = H..
mmetric about a vertical axis through the
has its points of inflection at/x = pioy it |s
if p—o<X<p+ o and is concave UpW
'mal curve approaches the horizonta

_.'E-'ﬁﬁbtieed in either direction away from the mean.

» iy ""ijﬁé‘-‘-‘tb'tﬂl area under the curve and above the horizontal axis IS

equal to 1.

Theorem 6.2: | The mean and variance of n{x: i, a) are g and o7, respectively. Hence, the stan-
dard deviation is 7.

o A\ ;f“'k A reas under the Normal Curve

The curve of any continyols probalality distribution or density function 18 con-
structed so that the area under the eurve hounded by the two ordinates r = r,
and r = r; equals the probahility that the pindom variable X assumes a value
hitween r = I .H]fl I =TI, r['};m_lni_ f{}r Ihr 't||l!|'|!'|.|h|. 1rve in Fi_L"l:Il"u' .6,

g T
= 1 - L 2
Pliry< X -::.rg]=f nlx;p,a) -I::_,.?j o~ Tl gy
Tt \-P-‘-"T i

is represented by the arcea of the shaded region,
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g Figure 8.8 The original and transfored normnal distnbutions

Examnple G IIGI\T:II a standard numm] distribution, find the area under the curve that lies .
P dV Sl (=

o (a) to the right ﬂfz_— 1.84 and ?Cz. o [tﬁ?qj = F MI T ﬁ]_;:yb
1 (b) betwoen z = —1.97 and z = .56, E,-"I;L-J[J'I. L}}A Lq ) /

Pz <o) R T
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Figure 6.9: Arcas for Example 6.2.
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j i the
lh I'igum G.10(a). we see that the k value leaving an area 5 to
[l] right must 1‘.!11‘.115“1::3&11! an area of Uzgg to the left. From Table A 3 it follows

(b) From Table A3 wo note that the total area to the left of —0.18 is oqual to
0.4286. In Figure 6.10(h), we see that the area between L and —0.18 is 0.4197,
<o the arca to the left of & must be 0.1286 — i} Hfh —~ 00050, Hence, from

Table A3, we have k= —2.37. Bl ‘sz*‘i‘gy
; A3 }C'f:"r{_ IV £ I

~.J
Oy \a i
i

]

| s - - “ . - -
Example 0.1: Given a random variable X having a normal distribution with g = 50 and & = 10,
find the probability that X assumes a value betwe n 45 and 62

/X_“b %) cjf'—Ma{

] ZsSfondord B |
1 i gV / | "rf

PG 11T mﬁa_l:_"i;unplr .4,

__E&'lﬂﬁan: The = walues corresponding to xy = 45 and ry = 62 are
45-50 62 - 50

-] = = = .lr a = = :!,

33 0 0.5 and 2. 10 1.

— e, —_———

s show! hy%maafﬂmahadedmgunm?meﬂu This
wwwmsthemammmomurd:m;u—w




X >362) = P(Z > 1.24) = | - P(Z < 1.21) = 108025 = 0.1075.

o #

o=

Figure 6.12: Area for Example 6.5.

12

' Example 0.6:! Given a sormal distribution with g = 10 and o = 6, find the value of r that has

(a) 45% of the area to the loft and -

(b) 14% of the area to the right.

=0 Tug

/ 05 - 014
-— i) ¥ - :
: Zo-ys® )
: W /‘, sl Figare 6.13: Arcas for Example 6.6.
m (n) An ares of 0.45 to the left of the desired » value is shaded in Figure 6.13(a)

We require a 3 vadue that leaves an area of 0.45 to the left. From Table A3
we find P(Z < -0. 1-3_] = 0,45, so the desired = value is ~0.13. Hence,

= (6)(=0.13) + 40 = 39.22.

0 i |

Flign &_ﬁ[hj we shade an area equal to (.14 10 the rght of the desined
i ﬂﬁum::ﬂmtm lm-un.uuhlwmmme
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Figure 6.14: Area for Example 6.7.
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Example 0.5: An clectrical firm manufactures light hulbs that have a life, before bumi-out, that ) /x i
) 15 normally distributed with 1wv,'t'~.| ta 8K l-r' r= sl a standard deviation of A S = =
10 hours, Find the probability that a bulb burns between 778 and 834 hours - i <
Solution: The distribution of hght bulb life is illustrated in Figure 6.15. The = values corre- =
sponding to x; = 778 and r; = 834 an 1

—_ [ -5
M g T8 — S i 834 = 500

= L{d A e — TR L Y | g [ S l'.:'_‘:l_
il.l — i 1”
4F7 F.
/ TVE B0 604 ¥

Henee, P(?'—?g L L S?L")
P78 < X < 8} =&£|—U.aa < Z <08 .}— P(Z < 0.85) = P(Z < -0.55)
= (180723 - 03912 = G5111. a1

A e

- e .-l"-.'-— e — e _____-'-'--.___-__ﬁ-

Exnmple 6.110: E.nuj,m are nsed to rojeet all COMPOTRNES for which a certain dimension 15 not

within the specification 1.50 £ d. 1t is known that this measurement is nOrma dly > {'q,é'ﬂ-f k._ by S-f. ]

distribnited with mean 150 and standard deviation 0.2, Determine the \ru,lup id
I‘-—._.___|___..

T g __—-—--—_
such that the specifications “cover™ Q5% of the measarements
——— P{X> 1.5+d)=0.025 & P(X< 1.5+d)= 0.975
P(%< 1.5-d)= 0.025

Figure 015 Area fur Examgile 6.5

Solution: From Table A3 we know that

E 63 e i s <1000 M= 5

{1.5 ﬂ’l-ﬁ i
‘{ =00 Therefore, : MA ©:0 5 _ h =02 "5_': E.‘na

(1.50 4+ d) = 1.50

02 4= 02 =
from which we ohtain :-"a . Cf G o -.".L) 4.5

‘,%’,. (: 5+c._\,'.!r\; = (0.2)(1.96) = 0.30

ion of the specifications is shown in F‘i;un G.17.




P{e.n::r csnn

| j_,_A-&P{z-:-ﬂ.u-n.mn to .t.'lmunr'mnhﬁlh-l‘h:-
R <0 T ogmear

PLZ < —20) + P(Z > 20) = 20.0228) = 0.0456,

As nresult, it is antici pated that, on average, 4.56% of manufactured ball hoarings
will bo serapped

F

1 mab-]'f -°°4 ~ ool

l \f £ a.0 EX]

_'_,_I-'-
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L = \\ G-’-‘*’%ff&\%}a

Exummph: §.11: [ A certain nmfhmc makes eloctrical resistors having/a mmean resistanco of 40 ohimns
and o standard deviation of 2 ahims. Assaamang that fthe resistance falliows o mormnal

distribution and can be measored lné:nx degiree of ace uhu)‘ what pereomtage of Wb“"b I +
dp,\)'\ resistors will have a resistance exoeediag i3 ohms? = =2 { a

.S'n.l'uhml A percentage is found by mulllpﬂ"m;.?"ﬂﬁ refative freguency by 100%. Sinee the M l{
-— [=]

q} relative frequency for am mtorsal is ogqunl to the probability of a value falling in the
interval, we mmust find the area to the nglht of r = 43 in Figure G.18. This can be
o h.\.' tr:mnl’m’lninq a = 43 1o the l:‘n!rl-e-]nrlltljm.: = valuoe, uhl:l.iuing the aron o G- ==
the left of = from Table A3 and then subtracting this area from 1. We find
13-40 _ .
- —— ]
. 2 = . 1= Y3
i{__ Threfore, /
P(X > 43) = P(Z > 15) =1 — P(Z < 1.5) = 1 — 0.9332 = 0.0GES. <~ :
—— e
e Hence, G.65% of the resistors will have a pesastunee excooding 13 ohins, = |

N R g —
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Figgnre 6 100 Ares for Eocmaniple 612,

Example 6.13:

Solution:

R(w= o

\:\

Q Therefore, 1 hr_

- %

e

9 1y ree

The average grade for an exam s 71
the class 5 @mven As, and the grades
what is the lowest possible A and the highest possible B?

In this example, we begin with a known arca of probability. find the 2 value, and
then detenmine = from the formula £ = o2 + p. An area of 0,12, corresponding
to the fraction of students reeviving As, is shaded in Figure 6.20. We n*quin* aaz:
value that leaves 0.12 of the area to the right and, hence, an area of 0.58 to the
lt'ﬁ. From Table A.3, ,"|.P.’ < 1.18) has the closest 'L".lim' (4] [].b'-,""'. S0 lh(' i’l('ﬁil"l’.‘d =

mlue is 1.18. Henve,
:nur-.lnﬂun:(i.r(__;ﬁjj )\)‘E_{? dlﬂ"\ : PﬁLﬂ,\

lowest A is 83 and the highest Bis82. @ )%-:f sl
.

= |

aid the standard deviation 1s 7. H 12% of
are curvesd to follow a normal distribution,

T

N
5
B

a=sT




- ﬂrﬂ"" x

S——". " f "En-l?fw”‘*ﬂ*'fw*’ s

ﬁ:rn‘.:-l which yields the recursion formula

Iia) = (o —1)F{a—1).

G The continuous random variable X has a gamma distribution, with param-
eters o and 3, if its density function is given by

y A Distrilvition

G;'eb\

et

;‘1‘.. 2 = A 4

where a > 0 and 4 > 0.

a-1.—=f4
3:.;'——1{“.]‘ L .

x>
elsowhere,

sCade gurts

@u@

9= (1 =11

r 1ol
-I ‘\
o |
7 \

B \';’

Emﬂd'ma ol

scale parameter

L]
£l =

-
o =
T

Figure 6.28; Gamma distributions.

i specific number of events is the parameter a in the gamma density function

a (alpha) is known as the shape parameter, while b (beta) is referred to as the

Kyt

@, if its density funetion is given by

The continueus random vanable X has an exponential distribution. with

L LN




b .q..,.nw R b= "= w02

t X represent the number of components functioning after § years. Then nusing

e binomial dllh‘ibuhnn

I -
PX >2) = }'!-I'-r: 65,02)= 1 = El’r: 5,02y =1- D737 =], 2§27.

e- > : x=2 Sk £ & T
w -0 | ¥ p FOAp

S-E—e dt ) 02

23 . * quﬂTmEB{, E a

m"fwmﬁ fﬂ(—--}-l,“{_——%- ij AMmg

rffﬂﬂ'-q' d \[‘?._1 CF_‘_J L\ﬁ"
farct =

H.I.lﬂlllh 6. 18: Suppose that telephone calls amriving st a particular switchboan! follow a Polsson
D wocess with an average of 5 calls coming per minute. What is the probability that

,_-p P/ &Tup tan minutgl'tll elapse by the time 2 calls have come in to the switchhonrd?
nhlmn The Puisson process applies, with time until 2 Poisson events following a gamma

p distribution with 4 ~ 1/5 and o « 2. Denote by X the time in minutes that
y transpires hefore 2 calls come. The required probability s given by

“_@l"’ PiX <1) f‘? A Ay .m/n e " dy ] "1 4 5) ~ 0.96. 2

While the origin of the gamma distribution deals in time (or space) until the
vocurrence of o Poisson ovents, there are ninny instanos whore s distri-
bution works very well even though there is no clonr Poisson strocture, This s
particularly true for survival time problems in both engioeering and biomelical
applications.
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Then
P(Y > 6) = 1 — F(B) = ¢ V2 « 0.2231.

Thus, the probability that the wishing machine will require major repair after year
six is 0.223. Of conrse, it will require repair hefore year six with probability 0.777.
Thus, one might mu:lmh the machine is not really a bargain. The probability
that a major repair is necessary in the first yoear is

PY <)ml—e V| 0719 =0221.

A

e
3.31 Based on extensive testing, it is determined by
the manufacturer of a washing machine that the time

¥ {in y years) bc.ﬁm: a major reparr 1s required i1s char-
m.tt.’.'nzed by the probability density function

yry 0,
J (‘r) {){g fl:u swhere.

{l) Cnhcs would certainly consider the product a bar-
gain if it 1s unhikely to require a major repair before
%mdﬁl year. Comment on this by determining

* }
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[i=vando®= Eﬁ

Definition

6.3- [A beta function is defined by
I - -

: i AL(8
" Tl + 3)

Cfora.g >0,

where [(a) is the gamma function.

Fita Phstn

The continuous random variable X has a beta distribution with parameters

a = 0 and 3 > 0 if its density function is given by

NP 1 T L [ L I

f(z) = {f;“'“

Note that the uniform distribution on (0, 1) is a beta distribution with parameters
—_—T L
% = (n-1)) = 74

The mean and vanance of a beta distribution with parameters a and 3 are

ad

p:Lmda2= : 3
a+d fa+ d)¥a+8+1)

clsewhere.

a=1and =1L

mﬂl& —

- . §
L ) 4

-
."r

 For the uniform distribution on (0,1), the mean and varianee are
T ginad



Figure (.20 Lognormal distribations

The mean and variance of the lognormal distribution are

F;!‘””}" and 0% = ¢#* "{ -1_]_ _(

=—————— |

| s ::’il‘*l‘j )\‘J‘JL&\J ﬂm’;ﬂd Ii"4':!'2“9'?Im“-?‘l'!r:.:----n

Example 8.22:| Concentrations of pollutants produced by chemical plants historically are known to
exhibit behavior that resembles a lognormal distribution. This is important when
one considers issues regarding comphance with govermment regulations. Suppose

| it is assumed that the concentration of a certain pollutant, in parts per million,
has a lognormal distribution with parameters (i = 3. % and\og = 1] What is the
probability that the concentration exceeds 8 parts per million?

Solution: Let the random variable X be pollutant concentration, Them _é J1‘J J\S__h*’

PX > 8)=1—PX <8

L

Since In(X') has a normal distribution with mean g = 3.2 and standard deviation

Fe=1. ~ AL i,

| .
P(X <8)=d [Ml $(-1.12) =01311. —L | _5s.|3ly

- £ e R i
- E = O 9686

nl s.:a-l'l‘l:clife,lnthtnmlﬁ:ﬁmﬂm of a certain type of electronic control for locomotives

has an approximately lognormal distribution with g~ 5,149 and 0 = 0.737. Find
__sh& itk percentile bf (e tmursmmmmmmm

"Tu;hmwkmwtmlmﬁmuum;mmhy.tthelﬂe 'L__,:-‘-J'
Rin@hl}(]hasnmﬂdmﬂbmim'ﬂhm MO

a-mrﬂ.mﬁthpmﬂo of X can be caleulated as
_ hin)=s1404 mm-:mr-mm, R
] _:!_,:__‘_ , § Mﬁﬂﬁ -h.-_..! C.



e '-jgt-;ha Weibull distribution are

(1-;-%) and o2 =a~ /P {I‘ (1+§) - [I‘ (1+ :

e
. | "
] b * i

ge "y

o f %
L

05 1.0

Figure 6.30: Weilwll distributions (o = 1),

.L. "

'
d

ol WOl The cumulative distribution function for the Weibull distribution is
~ . Distribution  given by |

L. 5 I.- %
"-'J.. ~ fora>0and 3> 0,

Sl




ain city, the daily consumption of
bwer in millions of kilowatt-hours, is a

| nm  variable X having a(g_mmaHEt‘n‘tmTiUnj

i h E_jand variance/o? = 12.\

(a) Find the values of a and B.

(b) Find the probability that on any given day the
daily power consumption will exceed 12
million kilowatthours. 0 (5¢>12)

| B= (&)

.;T;If- * Answer:

' () p=ap=6 [ B=T] @
a2=ap?=12 Wr . \1'\- &

So, B =2 and then a = 3.

s




‘:nenttal dlStrlbutIEJj with
“minutes. What is the probability

2L I. 1l -. |
a fperson is served in less than 3 mlnute-._-; |

at{least 4 of the next 6 days? ) ginowi

__-—qﬂ

P(X <) = %J;.lzﬂ =/ dy —f.*""‘“1u 1—e

3/4 . (),5276.

P(Y > 1) = 3 b(y;6,1 — e ¥/%) = (§)(0.5276)'(0.4724)* + (5)(0.5276)°(0-4724)
x=H
1+ (£)(0.5276)" = 0.3968.

P(f),{-isj f' 'f/q o y —X/y 5 3/4
:::= ﬁr b ] o
=0 b23z{
LX) - i-€@<¢u)
H? |- O §EE; o2 ia

H’LAJJQJ

End of Chapter 6
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Probability and Statistics

Chapter 5

Chapter 5

Some Discrete Probability
Distributions




XN

J(x:d)= ;I 2 = 0, GIL, 75, 10, [’Jﬁ ‘?.
Wusedp ™ "{J Ve Lj.f" {
of sumple 5¢at._ foind

L}
_':filﬂiﬂl-' 5.2: When a fair die is sossed, cach clement of the sample space g’ 11.2.3.4.5.6]
occurs with probability 1/6. Therefore, we linve n(l.mifum distribution, with

f.ri6) = ill r= 1,204,506 k|

C'SJ'; fwh}

II:E. : ;stl?“u-él "a_igm' (_} Figure 5. Hum-yrnl-n for the 1.:.,..:5 ofa d|.:.

—_—

%E:Tliﬂernuuﬂi Process )

HEI'I:‘T].\' hpl.'.Lklll,r_{

» the Bernonlli process must possess the following propertics:

- ; . . A 5
l. The Cxperiment consists of repeatod trinls—— % e lal / Y
SUC g . : e = Ao 2an
Cs e & Each trial results in an outeorne that may be clussificd as n A

2w
suceess or a failure. — C‘it"'ﬂ-l
3. The probahility of suceess, denoted : !}

I

\-&:}L
<
) 4

¥ P, remains constant from trial to trial.

ol fuli I . — B
A, als 1. The repeated trials are ind; Pendent. & ﬁ
5'. ’7—*!' g =

i Consider the sot of Bémiculli trials where three items are sclected at ‘r;uﬂ[;m————_.___. |
from a manufucturing process, mspected, and elassified as defective or nondefective,
A defective item is designated a success, The mumber of successes is a random
variable X assuming integral values from ) through 3. The eight possible outcomes
and the corresponding valies of are L¥ly 3 o
T,Z’SE/ e g F— I . uf\ “*vﬁa
°  Outcome | NNNYNDN|NND DN N\NDD DND

e DDN DDD {P P,
-y T Yl - U%J I ™~ y Vg

Bma \ . Since tl:.ﬂ' iLerms ar ﬁf:']l't' edindependently anid we assume that the process Pmdub%ﬂ L, -
g—> éiw W 25% defeclives. we have 3
3 I
P(NDN) = P(N)P(D)P(N) = (I) G) G) = ai—*. L
i e s @
x the other possible outeomes. The

#pull
Similar calenilations yield the probabilities fi

probability distribution of X is therefore




sucesses

failures /

Probability of successes Probability of failures
n=x -
PpP.p  =p (1-p)... (1-p) =(1-p) ¢ i
x times (n-x) times |
.———-'_"—-_. R =
5
Qutcome | Probability
NNNe (3 3 3_27
2 — — N — T —
Y + 4 9 od The probabaliry distnbution
NND 3 _ 3 ) | Ly 9 of \is
I I I—E“ ; | .iTxFF_E}Lﬁl_'
NDN [3 1.3 -
4 4 _l_ _ 1 | i+i+i—£
x 64 64 64 64
LE9 L R R
e e ; 6 61 64 6t
ey E i
4 4 4
— e W —
4 4 4
b .3
— — N — T
| 4 -4‘ 4'_




me'tyﬂ’ o 1'—13 Then the pmbahﬂlty dmtnhutmn of the binon

variable X, the numbnr of successes in n independent trials, is
Iﬂ.ﬂﬁ b{r —— T ———

y b ﬁi*if B )= () -{ & =0,1,%....0

{rebal;

Note that uhon n=3and p=1/4, the probahility distribution of X. the number
of defectives, may be written as

B - )= @) a-us

rather than i the tabular form on page 144.

()

7 WD

Exnmple 5.1 The probability that a certain kind of component will survive a shock I.ml' -... 1.7

C " Find the probability that exactly 2 of the next 4 i components lestod sur L

Solution: Assuming thal the tests are independent and 7 = 3/4 for cach of the 4 Huts, we
obtain

emf’;—l—”{-’w b(‘«*ﬂﬁ) | (4) G)?G‘)? c (1#2"‘!') G;)'% " .

5
(

3
.'- lj _q




.;l__...“- e '. " "'.

IS
=  aml
= 0.90050 - 0.0271 = 0.8779 -

5 4
(¢) PIX =5) = W5:15.04) = Zb{.r: 15.04) - zun 15.0.4)
rafl

L

. > > i) - F(_.an.iﬁg —_— *"_1

S ek
el
Lod o>

Al Sl o e
|

o _ A
Jf@l"'“ﬂ"#‘}m Y

m Fouy Dolmml] clissrenss ws 0. 18 15 prsopule

I . : I b prrastaad bl s thal & palenl PFuuATTs Irs snun
mtw kpmmw o have cosstractaos] this duseses w hint bl poreddsndsilisy it (al =t L oast
10 ssgwwdnee, (Ds) Do 300 i awl (0] eanctly B sarviveT
Seadoalparin i |.a1 X b the purnlsa ol e 51- e lpis =R N iV Mo n.p) (:)rl‘ﬂ ]

3 L] P’[HllﬂhPI!-‘],I]-*P{!-‘L}I#P[X-I]] 'Pﬂ-lii-#ﬂ.-u] P
1%) (0.4 E.6) +(}}) (@A @67 + (1) AP o8 +(*2) paps pop

im) ™ X

(22) @ap= o ;1) 04 .87 (

B) MI< X <5 P{X= 3!1?[1:4}+F[I:5]1F[1=ﬁ} +P{X=T)+P{X=8)

(%%) 0.4y 061 () (0411061 | 15) (0.4)* (0.6)" +(*%) (0.4 &)+ (7)) 04) 0.6+ () (04F (06

(C) (P X=5)= () (04)* (0.6)* = 0.1859

RRfDee) = - Y(xLl) i

= | reqbk2 | | |
o

|
}54 >

HLE -




“PX 2 1) =1 —P(X =0) = 1 — 4(0:20,003)
' = 1 — (0.03)°(1 — 0.03)?0~° = 0.4562. |

g I:;! (b) In this case, each shipment can either contain at least onc dcfocﬁ_\m llmnnr .JL.
b not. Hence, testing of each shipment can be viewed as a Bernoulli trmlmth " / I.
y p = 0.4562 from part (a). Assnming independence from shipment to shipment . |
“2 and denoting by ¥ the nmumber of shipments containing at least one defective TER |
. item, ¥ follows another binomial distribution b(y: 10,0.1562). Therefore, _

St R L R 1=

P(Y =38) = | 5 )04862°(1 —0.4862)" = 0.1602. &

o

%: 3 (597‘;: }., f:?h% 'L.:!'ﬂ
X ' ?ELJQ:;SJ rLI-t“i.
Do GaBn S higrmd = i T 3D
11 Cosfoed

Probal, 1;]‘-:1 o

e - p

i+ Tt is conjectured that an impurity exists in 3022 of all drinking wells in a certain
rural commumity. In order to gain some insight into the true extent of the praoblem,
it is determined that some testing s necessary. It s too cxpensive to test all of the
wells in the area, so 10 are randomly sclected for testing.
(a) Using the hinomial distribution, what is the probability that exactly 3 wells ” = 1
have the impurity, assuming that the conjecture is carrect ? s ==

l ho ™ 1||r||l- L.

() What is the probability that more than 3 wells are impure?

Solulion: (a) We require - " G Wi
\ B(3:10,0.3) = > b(r:10,0.3) - S b1 10,0.3) = 0.6196 — 0.3828 = 0.2668.

n= 1o - P(x=y 2 > F6)-Fed)= ,

(b} In this éase, (XN >3) =1 - 0.6196 = 0.3504,

Ty 4 I
@ (%) (0.3p(0.7)=0.2668

P(x>3)=1-Pxs<y) | = |+ 0;6—# )

=1- E b(x:10,0.3)

=t

1-{0.0282+0.1211+0.2335+ 02668}




distribution b(xr;
= npand o° = npq.

|
shwt"!

13

Exauple 5.5: Find the menn and yvarianee of the hinomial random variable of F.xmnple 5;‘2,&“&
then use Chel |_1;:-;]:f-\".-= Lheorerm (on page 137) Lo itlll'l']“’l't the mterwval j!l'.:':'id‘.
Salution : Since Example 5.2 was a binomial experiment with n = 15 and p = 0.4, by Theorem
LY - = ) [

5.1. we have
n e . (ﬂ - P)
= (15)(0.4) = 6 and o = (15)(0.4)(0.6) = 3.6.

Tuking the square root of 3.6, we find that & = 1.897. Henee, the required interval is
G4 (2)(1.897). or from 2.206 to 9.791. Chelwshev's theorem states that the namber
of recoveries among 15 patients who contracted the disease has a pnﬁmh'iﬁtyﬁ! at
least 3/4 of falling between 2206 ind 9.791 or, bheeause the data are diserete,
between 2 and 10 inclusive, A

There are solutions in which the computation of binomial probabilities may
allow us to draw a scientific inference about population after data are collected. ‘
An illustration is given in the next example. S '




i |'-----f _I'. I'-'-""-' mmmmh-m, O w v -~ "-.:.-...
ity ( *ﬁu ' u : : L ] this imply
!"'?i;‘ e andomly selected and 6 are found to contain the impurity. w__hﬂ“ fes
' : . Eﬁ_l._l‘! the conjecture? U ; lity statement.
°5‘P Solution - ! Use a probability ent. S
G on: We must first ask: “If the conjecture is correct, is 1t likely that we would find
More impure wells?”” 51 15le
R o e : P 0.0473
9 Py P(X >86) =Y b(:10,0.3) = 3 b(x:10.0.3) = 1 - 0.9527 = 0.0473.
& - . « U - . L
,:1_406 EIo Uk o ; ;
:’m a result, it is very unlikely (4.7% chance) that 6 or more wells would be [“';1""!
Impure il D[l]}' 3{.]‘./; of H]I are illli“ll'l‘.h This casis [‘[)ll,‘\i(][‘rﬂi‘][' doubt on the COlljee-
ture and suggests that the impurity problem is much more severe. .
As the reader should realize by now, in many applications there are more than
l“lf’ possible outcomes. To horrow an example from the field of genetics, the c« .llll.ir uf
ginea pigs produced as offspring may be red, black, or white. Often the “defective
or "not defective” dichotomy is truly an oversimplification in engineering situations.
Indeed, there are often more than two categories that charactenze items or parts

‘:"Jlllill;i_[ nfr A th.‘tl'lil]r]_'l,‘ line.

Suppose a large urn contains 400 red
marbles and 600 blue marbles.

A random sample of 10 marbles is
drawn wathont replacement. What is
the probability exactly 3 are red?

18




10 components o} ol e caoapiahie m
. wmhwfarmpﬂn;ahtiﬂtuaﬂmtﬁ
and to reject the lot if a defective is found. Wlmtmtwm
defoctive 18 found in the sample if there are 3 dofectives in the eutim'-[nt..
.‘%Mxha‘n-

Using the hypergeometric distribution with n = 5§, N=40, k=3 andr =1, we

find the probability of obtaining 1 defective to he ; ': '
y. 3 it
% h{1;40,5,2) = {”ﬁ_ﬂﬁﬂll
3 G
Onee again, this plan is not desirable since it detects a bad lot (3 defectives) only
about 30% of thn 'Ii:m , A
N=40 cempon //‘.“\\
3 a7
defective /<<——® 1:” I[_.,:l]
-:: =%
H-K=37 ‘ ‘\//
7 non-gdeleclives | -1
| 53

Exercise 5. 31

from a box containing > 1 , 5 ':cahp bulbs and 4
daffodil bulbs. What is s the probability that he

- ﬁIMffodﬂ bulbs and 4 tulip bulbs?

4\ (5
2)\4
6

Jrr'_

MZQﬁ@
"it




twa mfss%i est

t?ajhﬁiou) 1/6 ¥

>
s (b) Eﬂ;;(_r 10,4,3) = 2 (3: ::.:13;

— =2

Y, [ (2 X i

L o R G . B +(,§J@)
¥ fiy il

/ ("')(.,)=lfﬁ

Theorem 5.2: [ The mean and variance of the hypergeomet ric distribution h(z: N, n. k) are

/- h:%'.".ltdf": - T-n-_—iT(l-- JL) ‘|

N : ﬂ:.‘_.__.,_-}__—_ T

Example 5.10; !th 1S DOW reinvestigate Example 3.4 on P

to illustrate the notion of a random variable and the
In the example, we have a lot of 100 ite 0 items
probability that in a sample of 10} 3 are are de

\2 g8 &
Solution: Using the liypergeome

age 83. The purpose of this exsample was

corresponding sample space,

of which 12 are defoctive. What is the
foctive?

tric probability function, we have

[QB- \‘1] () 9
3, LS 1] P J 2 —male o S S LT 1N, — or
N 0 h(3:100, 10 12) {III::I} 0.0 A_-’ t - I — ' 9_

T oo
nple 3.4‘ Statisticians use samplin

g plans to either accept or reject batches or lots of
_ matenial. Suppose one of these sampling plans involves sampling independently 10
e iems from a lot of 100 items in which 12 are defective,

Let X b the random variable defined as the number of items found defec-

- tve in the sample of 10. In ths case, the random varable takes on the \mlun
gl aliid-in l‘u-

&

Sl




(50 (3) (- )-omm

Taking the square root of 0.3113, we find that ¢ = 0.538. Hence, the r
interval is 0.375 = (2)(0.558), or from —0.741 to 1.491. Chebyshev’s il
states that the number of defectives obtained when 3 components are salectﬂfaﬁ v
random from a lot of 40 components of which 3 are defoctive has a prahubﬂ:tyﬁf '
at least 3/4 of falling between —0.741 and 1.491. That is, at least threefourths of
the time, the 5 components include fewer than 2 defectives. o |

Example 5.9: Lots of g0 colmpotwents cach are decmied Ilti.\:(‘l‘lﬂﬂlrk' il they cantain 3 or misre
defectives. The procedure for sampling n lot §s 1o select 5 cutnpomts al

und 1o reject the ot if a defeetive i found. Wit is the probalality that ety 1

defective is found in the sammple il thre are 3 defeetives in the entine Jot? ‘ ﬂ . '{
Sﬂlll-fr-ﬂﬂ: I-"Ill.!:_ th II}FH"! BT tnwe distnbmtion with n =560, A = N t=23 andd 7 = 1, we }q 3 ;
fnd the probability of oltaining 1 defictive 1o by J

21 hi1; 40,5,3) —”--—i 0.304 I)
; [y’

— e —

If repeated independent lt'l.'l.-l-\ can result noa success with probability p and @nw%fﬁ -E_HI
a failure with probability ¢ = | — p. then the probability distribution of the RIS .

random variable X, I|||1.* number of the trial on which the kth success ocours, is G&_ﬁﬁ; ; .
the proba , the k'th success o= |

occurs on the xth trial. Experfmw_nnrtﬁ 3} kf:“} L (: ~ I)Pl'q"’ i g A S QMMﬂS%w
this kind are called negative bino ” k=1 -

experiments. : 7 W_:‘iw't‘ {':2_

f =

—

Example 5.11: In an NBA (National Basketball Association) championship series, the team that

.115' ~>> of— wins four games out of seven is the winner. Suppose that teams A and B face each o

] other in the championship games and that team A has probability 0.55 of winning Ci;és%}\gﬂ
=Y a game over team [,

-
' VR S BN
p[\“"‘ {a) What is the probability that team A will win the series in 6 games? é‘tld
=3

(b) What is the probability that team A will win the series?

(¢) If teams A and B were facing each other in a regional playolf series. which is M“%
decided by winning three out of five games, what is the i:m‘fmhilit:.' that team 'f’ﬁ:v'

e eg—

3.:.1 \/s

A would win the series”
R R e B e P g
Solution: (&) b*(6:1,0.35) = (,)0.55%(1 - 0.55)% * = 0.1853
(h) Plteam A wins the championship series) 1s
b*(4:4,0.55) + b°(5:4,0.56) + b*(G; 4, 0.55) + b*(7: 4,0.55
e — —_—
Fi = 00015 4 01647 + 01853 + 01668 = 0.6083.

(€] P{team A wins the playofl) is 4

b*(3:3,0.65) + b*(4:3.0.55) + b*(5:3,0.55)
= 01664 + 02246 + 02021 = 05031,




nmm-e item found? 5 e c&h (38 Lj cm

m Using the geometric distribution with r = 5 and p = 0.01, we

—o0006. Lo\ &E#C;JJI

9(5:;0.01) = (0.01)(0.99)*

Example 5.16:] At a “Insy time,”

: ity ors have
a telephone exchange is very near capacity, so callers

. y atteinpts
difficulty r:-lnung their calls. It may be of interest to know the number Hlijnhlw 1[!u~
NCCESSATY in unlvr to make a connection. Suppose that we lef p

" ] wing the
‘ﬁmhﬂfrlhh of a connection during a busy time, We are ¢ rested i an LI!U' g

-b'\ e 2,2 Sut) o
Ao imed v probability that & .sili_\jni}tiurn necessary for a suc ﬁ‘x-ﬁﬂ call, ~—— DE‘J 5ok
5) f/ Fﬂl“ha“ Using the geometric distribution with + = 5 .I!‘ll[}r} = 0.05 yields \) ;)1-‘
et & -
P{X =) = g(5:0.05) = (0. !J?‘.{{! 95)* = 0.041.

Quite often, in applications dealing with the gcometric distribution, the mean
ad varance are unportant, For L"“unph in Example 5.16, the erpeeted number
of calls necessary to make a connection is guite important. The following theorem
states without proof the mean and variance of the geometric distribution.

23

Theorem 5.3:

The mean and variance of a ra andom variable following the geomaetrie distribution

are
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Chapter 3

Random Variables and Probability
Distributions
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R = 'y g .5 X ¥ L

we are concerned with the number of

defectives that occur? Y > LN

e 'Lt = 3 "f

+ ]'3) : QH}J‘ £ yxro lﬁ 0; 1:2: or 3 : x> W\MCS‘,},
' - E= {DEN,DIIJD,NEDD} o

g
W andom U‘J«% — i

Mk 4 2221 1) Z>rorkrofbig

Definition 3.1

A random variable is a function that associates a real
in the sample space,

munber with cach clement {

Example 3.1: Two balls are drawn in suceession without replacement from an
red balls and 3 ]'.ilig.:_]{ balls. The ]Jl_:l:i:-iih}l:‘ outeomes and the values
variable Y, where Y is the number of red balls. are
—————e

urn containing 4
y of the random
e

&)Lﬁjb (N o Lss 4 S“mpgnspnm g gy " Wosbev ol _.[ '
$- *?ﬁ 1 ' RB 1 A\s? Yed bﬁj;
- LY/ RB[E%/ g3 BR ye s 4
P\ e Z( 4 Y= 0,02 BB 0 £ |

& . |
: Example 4.2:/ A stockroom elerk returns three safety helinets at random to three steol millam

ployces who had previously checked them. If Smith, Jones, and Brown{ in that
QF@ reccive one of the three hats, list the sample points for the passible orders
of ret

urning the helmets, and find the ﬂg@uf the random variable A that

represents the number of correct matches. Snafl
Solution: If S, J, and B stand for Smith’s, Jones's, and Brown’s helmets, respeetively, then

the possible arrangements in which the helmets may be returned and the number
of correct matches are X |
vl = é' 4 :-l: iy 3

0 T
v .?£1I.'l':

Sample Space

- K m

W sl Ll 1T 4_(5.1}3 3
== 1
1

1

0

SBJ
BJs
~ JSB
AT A T

.,

-




-‘ ¥ iy
| 15 1o either accept c
R pling plans involv
items from a lot of 100 items in which 12 are defective.
Let X be the random variable defined as the number of iter

o N tive in the sample of 10. In this case, the random variable takes on the

| B0 . 0,10, -
- "Jr_ﬁ—-' amptle )N U:T?#FI\S‘} L .
w $'Exﬂmplﬂ 3.5 Slll'_lpﬂﬁl‘ a 53]“]'}1"11:{ ]'}lﬁl'l involves Sampling items from a process until a defective
e is observed. The evaluation of the process will depend on how many consecutive
items are observed. In that regard, let X be a random variable defined by the

i number of items ohserved before a defective is found, With N a nundefecﬁm.-gnd

L D a defective, sample spaces are S = {D} given X = 1, IE = {ND} given X =2,

1 Lo S — {J\TF{D} gi\'ﬂn _Y - :1 ;J,'|||;|_ S0 D11, ﬂ‘ \J: -.l

. N @:.u.vﬁ—l
sededioe +3=1 T
5 I Tem o ‘I’SLVK Ejf)g.ﬂ
L o 4 Sfedtiue e
T . Sl i+ | =K
pEbabilifg I Ois b gaSe G\s an, | ghalis
agsh e tes Ji = e o
| Mo 1]z a—di Lot
fex | ) l / e o |
S P
5““-“4{ e A a3 1
Q ¥ "'-'lf - . . o N
i wj 'J -
- | o033 SWY
Example 3.0: Interest centers around the proportion of people who respond to a certain mail il
order solicitation. Let X be that propertion. X is a random variable that takes
on all values z for which 0 < z < 1. 1

Definition 3.2: |If a sample space contains a finite pumber of 13'5'5»*11’1_111}*“5 or an unending sequence
with as many elements as there are whole numbers, it is called a discrete sample

SEEFE ;

If a sample space contains an infinite number of possibilities equal to the number
of points on a line segment, it is called a continuous sample space.
P




| pairs (2, [(x)) is & probability function, probability m |

sbability distribution of the diserete random variable X if, fo
outeome r,

L Py

2.3 flxy=1,
= L"'fﬁl'“’ﬂhd
3. PlX = =1)= f(a).

;
A 3 2el i e
Example 3.8 A shipment of 8 similar microcomputers to 3 retail
___outlet contains 3 3 that are defective. If 3 school makes a random

g s € purchase of 2 of these co

mputers, find the probability
drstnbutlon fnr the number of defectives?

Ry A IV ES
10hd, 3 % 2 HIA

: J0) =pPx =0) =
fe) :

—

—
—

o3|

0 n=(g)=5 |

g i

= |8y=28 |
") 1 =PX="= 1/ 11 j‘ N (‘ - |
% i ( : 7:)_ 28 24 r|..."|,'f
J2)=P(X=2)= -'-).(i %. bén.uquf 'jc:...; il
Thus the probability distribution of X is ‘;{fi 'ryi’ d*i 82 } LA




-udimxmmﬁdﬂﬂtbmmmh[‘}mm
2,3, or 4. Thus, the probsbility distribution f(z) = P(X =) is

(1) forxr=10,1.23.4.

There are many problems where we may wish to compute the probability that
the observed value of a random variable X will be less than or equal to some real
mumber r. Writing F(z) = P(X < r) for every real number r, we define F(2) to
be the cumulative distribution function of the randam variable X.

k¥4 Yy il
f('xm:j ':.ﬂ. = lr”-} =0 e - e ‘
16 -] ay g

[
= (==t e Sl 2
B tLt=0= (J) f(x=2)= '

Bl s s D
¢ AREE *aj
¥ '
||. e
i1/
F
| Definition 3.5: (The cumulative distribution function F(r)of a diserete random variable X
" with probability distribution f(r) is
-:ll ‘} —
b £ g ...CFJ Firl=PiX <z2)= E:fl_f'l. for —oc < < og.
. .IL} - _l;:'}l Frlf =x
For the random variable AT, the munher of eorreet matehes in Example 3.2, we
have PO
P =P <) =f(0)+ (1) ==+ ===
4 2 ]

The cumulative distribution funetion of M s

— YO P e e e
: ”{' 8. oo G Sample Space
=S SIB

m
. 3
for0<m< 1™ de SBJ 1
for1<m<3. 239 BJs 1
for m > 3. JSB : B
JBS 0 .
-L .

BSJ




e = J0)+ f(1) +1(2) = {5
RO = 1O+ 1)+ @)+ 1) = 3.
F(4) = J(0) + (1) + £(2) + f(3) + f(4) = 1.

for > < 0,

|+ for0<r <1 — \S
; y - + )=
L SRS e Y e

F[J,‘) = ”'
_ 1w for2<sz <y _JEE)— )= Flz|
C.dl"'""""‘-: iz fmﬂi’-r{-l,”w e '::Ff; _FLn__ __.1!
-f-Q_-?-jr}JJ;'_;‘ (1 for » > 4. _]? .l? t‘-*
Now d’g:g{] k&-"" : o2
_ =Py 2 pa) = = S
1, —r 16 16 S _I
Plr-d= g B SRR
| SUATT ’
i X Lasilify dis  statistic
fix) fix)
6/16 - r 5-"1!:",-1|- = cLhS
516 18- |
4/16 e - 4161 — L
18- 16 ' | . -
| |
2/16 |- ; 218} ‘
V16 & : . 116 - | _—
0 1 2 3 T 0 1 ) 3 J g | x
I-, Figure 3.1; Probability mass function plot. Figure 3.2: Probability histogram. |

Fix)
1

M
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0, for r < (),
Suration of 041, for0<z<l.
fRkbil 1y _ 0.78. for 1< r <2,
F(r) = ¢ ,
094, for2< s < 3.
0,99, for3<r < 4.
. for x > 4.
13
E.;ng
r el P
Tlo|l | | 2 = YN 8
fag | m g ﬂh 8
N &
;

* 3.2 An overseas shipment of 5 foreign
automobiles contains 2 that have slight paint
blemishes. If an agency receives(3 of these
automobiles at random, list the elements of the

~ sample space S using the letters B and N for

- blemished and nonblemished, respectively; then ™ a8
~ to each sample point assign a value x of the

andom variable X representi ng the numbe
s purchased by the agency
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15

833 let W be om variable giving the
{_number of heads minus the number of tailsjin
three tosses of a coin. List the elements of the
sample space S for the three tosses of the coin
and to each sample point assign a value w of W.

H{p' uJ.'.-HHH:'B-ﬁ
H< W = HH-?T:.Q_-_-J=I"




L 3

HNT 20| 1~
HTH 2-1| 1~
THH 21| 17 —>@=N
HTT1-2 | <17 3\

THT 4=-2| -1~
TTH -2 | <1—
TTT 2| =3~

(320 Ly DL >3 b o pw)

4
. o £ U &

Continuons Probability Distributions]
4 |

(b) (e} (d)

Figure 3.4: mem@
Pla<X <by= [ [x)dr.




._?:, ":”"' ; ;
=, -—1-?-‘.'=H:2-
ﬁ’r}! EL clsewhere,

Verify that f{x) is a density function.
cli} Find P(0 < X < 1).
Wu use Definition 3.6.
(a) Obviously. f f(z) > 0. To verify condition 2 in Definition 3.6, we have

. P 5 :
f f[ir:ld.‘l' f _dﬂ-__iﬂ -:§+l:ti""-\-—' GG’];\'
g Ak s iﬁhlﬂl

e r-.s.rﬁ,“h.s‘- .
(b) Using formula 3 in Definition 3.6, we obtain [ gl—'s"
wun ef) évg
el | 31
19 P[ﬂ{.'i-fl'}zf‘r—lﬁ'zl— —l.
b = —— ) 3 9 (1] 9
Definition 3.7: | The cumulative distribution function F fx) of a continiious random varahle
X with density Tanction J (1) & T
: F[r]:PL‘fEx}:] fit)dt, for —xw<2<x
b |
As an immediate consequence of Definition 3.7, one can write the two results
J
Pla < X < b) = F(b) - Fla) and f{z) = ﬂ”
if the derivative exists. i ]
muple 3.12: |R‘:rthl: density fanetion of Example 3.11, find F[:}I and use it to evaluate i | :
Pih<X<1). 2 )

Solution: For -1 <2< 2. ;E‘Q:E: =3 — | it J

Fla)= f ft) dt = j :T“._ /

k3 2

) |
Therefore, ?——_-‘-‘._
SR
0, 1<~
, =1<2 <),
133




Thus,

To determine the probability that the winning bid is less than the preliminary bid
estimate b, we have

II'

3.6 The shelf life, mm days. for bottles of a certain
prescribed medicine 1s a random variable having the

L denslty function

i .

4 20,000 > Uﬁ‘h o

bl | f(z) = ¢ (=+100)7 ° :
elsewhere.

~ Find the probability that a bottle of this medicine will
ave a shell life of =
(a) gt 1&351’ 200 days: X 2 Leo —> Sq coon Cwﬂ@ .

' where ﬁnm 80 to 120 days. o0 s




¥ NE -
‘I -..-':“--,':I -&[: "I-.—
_d - l x, 15x<2
e R elsewhere.

,_,k

_ 'prolubﬂny tluu over a period of one year a
amuily runs their vacuum cleaner

e | than- Wm‘k.& ]'Za g k’dﬂt-"gl':' da

n<l<l \ung b = losha
YW o= '
X= |2

‘ﬂlL) I;envuu 50 and 100 hours. 5‘ B (a)dr =
ﬁ*,:lz-:.lul
(a) 0.68
« (b) =0.375
23 b) j‘ X da = 142 ’
| oG
rfk‘l Dy Cl«{S
ebie T

Definition 3.8: | The function f(r.y) is ldgml probability distributionior firobability mass

L4 | A ClisCeLe I Tl I .E!Jh‘" F 'y i 4 |
function of the discrete random van Yand ¥ I I.Lm
1. fir.u) 20 Torall (r, y) G (o

2. gg fir.p) =1, dimension
8. P(X =2.Y =y) = [(z.¥).

For any region A in the xy plane, P{(X.Y)e A=Y ¥ f(r.9).
A

hnmplr#l-lITmlmltpmnlpﬁtsmﬁrluﬁdmmmkxnfrmnahcﬂﬂulmmiﬂmm RQ‘”
2 red. pens, and 3 green pens. 1T X mlmnmulgdbhmwmukﬂdmdr

the number of red pens selected, find

s *83

a] the joint probability fumm
(b) P(X.Y) € Al, where A is the region {(r.y)ir + ¥ < 1}.

om; The passible pairs of values (r.y) are (0.0), (0.1). {1.0), (1.1}, (0.2), and (2.0). y

~ (n) Now, f{0.1), for example, represents the probability that a red and a gr
Seads mmmmwnMdmﬂmeﬂ Jecting
mmsu(g) mihm:ufmutm red



1 .t ];I

PIX.Y) € Al = P(X +Y < 1) = /(0

0+ 0.+

= P e
B BT Ty
Table 3.1: Joint Probability Distribution for Example 3.14
e : | Row

fir.y) [0 1T 2| Totals

0 : =l = 2 hod
L] 1 ErE AT 0 v
2 = 0 0] &
% Cg@\ Column Totals | = 2 & 1

When X and Y are continuous random variables, the joint density function
flr.u) 3 a surface lving above the ry plane, and P[(X.Y) € A, where A is any
region in the ry plane, is equal to the volwne of the right evlinder bounded by the
base A and the surface,

25

- -I“"I 35
i J'h
Co nfinois B
1%
Definition 3.9: [The function f(r.y) is aljoint density function|of 1ho/{\'mtinumm random J L
variables X and ¥ il — b
— y
1. fix.y) 20, for all (r.y) .
3. PYX.Y)€E A= [ [, flx.y) dz dy. for any region A in the ry plane. I
>
i
Example .‘I.l-'r:[ A privately owned business operates both a drive-in facility and a walk-in facility. '

On a randomly selected day, Jet X and Y, respectively, be the proportions of the
time that the drive-in and the walk-in facilities are in use, and suppose that the Y
joint density function of these random variables is '

Noind 2ar 4+ 3y), 0<r<l0<y<l,
o Loy {g[ elsewhere.

o



iy 3 i- ‘: t |..‘. o y ..' i ;.- :-'-.- :..
) 11.! I ; I_:. I “:_;1 J'E' hﬁ.f’ th 1:} & i
e =| = J i y

] "r".n- e l " e
‘”W’ﬂ!ﬂl-f’(ﬂix{-q(f{-}j)
- “f k fae e

< f G )= [ (e %)
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‘:""r‘:'“"'! - | f...:ﬂ;—‘l

‘gqu\s’ f’(J twr <+ "5u~v+ pf}>ﬂ£» iy &I Hiv bution

X and Y, the probability distribution gir) of X alone is obtained by summing
j‘{.r ) over the values of Y. Similarly, the probability distribution hiy) of Y alone
ainexd by summing f(r, v) over the values of X. We define gix) and Af{y) to
‘(marginal distributions)ofl X' and Y, respectively. When X and Y are
continuous random variables, sumimations are replaced by integrals. We can now
make the following general definition.

e S e
Definition 3.10: ﬁ;im :‘n.n.rginal distributions of X alone and of ¥ alone un-'}

g(x) =) fir,y) and h(y)= Y fix.y) Camf
. ¥ —— T

for the discrete case, and

g(r) = I[r@m:{ﬁﬁi f{:.yjd:rj
(Lso= o]k s [ e

for the continuous case.

The term marginal is used here because, mthuﬁtmm.th
mﬂh{yjmjtﬁthewﬂtunhufmmuﬁm

y mfuff{!.ﬂmdilpllandm a rectangular table.

Given the joint probability distribution f(r, ) of the discrete random variables




S B
: ﬂﬂ=mm+f&l}+fﬂ,ﬂ&ﬁ_
which are just the column totals of Table 3.1. In a s

that the values of h(y) are given hythnmmak,lnhbﬁmm. :
distributions may be written as follows: '

2.8 1% O O
e i

Table 3.1: Joint Probability Distribution for Example 3.14

| {'% 3§ (£ (] L - x THn:_
I, N 1 3 Dlals
Wg{wj Gy (Zoe > R P g
y A 2 | _!
! e (o | 1} % : ;L_-bhgu <+ h(y) 2
3 A Column Totals | & &2 & ] i |IlI ‘
Sqmw_; .jl'. O 14 ™ 05 : : e .‘
20 X 9oy —* j.ijs;u Soint \5\2 el 30 S
96 (xu:-lgum:qjcomd,

Pt {}Fﬂ—% PAS e

: II p L] L)

: )1-/’ disfur bufiav Hors M), 0<r<i0CyLl,

) Example 3.17: Find gi7') and A(y) for the joint density function of Example 3.15. Jza)= 0l m =
Solution: Dy definition, . :

1 ) iry ﬂl,r: pel ir+3
j)£ J_]_)Q"i-— '.FIJ'J— _f:y :fr;—f [2r+ 3y) dy = (-—I+—m)\ S — u’l" +- 1 =iy -
4 . ' B = 5 '; tj
for 0 < r < 1, and g(x) = 0 elsewhere. Simlarly, M T 9a03
oYl

=0

o i 2 A1 + By
%)"l A2 hiw) -/ fizr.y) dr { T,:-_'r « Sul it r | \
W
for 0 <y <1, nnd hiy) = 0 clsewhere ~

The fact that the marginal distributions g(z) and hiy) are indeed the proba.
- hility distributions of the in fividun] varinhles X and Y alone can be verified by
' showing that the conditions of Definition 3.4 ur Definition 3.6 are satisfied. For

exnmple, in the continuons case =) -

= = .=
{ ] glx) d:-f / fiz.y)dyde =1, ]
\ - - L o e ———

e —— -
s ———— s '
Ll

Phli."-':bl Ple< X <b-2<Y <o) i

f[ fix.y) dy dr = [Iy[r]ir ' ¥ ﬁ
e

I Section 3.1, we stated that the value 7 of the random variable X represents
'ﬁhn:ﬂhﬂ dthnnﬂuqnu Il we use the definition of conditional




the mud-d-i stri .'

mm-mn Hlm } 5

= of dsribution of the ru)/9lx
‘dﬂnnpudlltrp- e Tk ‘&
mh.biﬁurdinrlhut thahnn-lduunlﬁu

@-Iud Y be two random variables, discrete or continuous. The conditional
dlln'lbut-hnufunmndnm variable Y given that X = ris

fﬁj LV oovided i) > 0.

g(r)
Similarly, the conditional distribution of X given that Y = y is
Iz,
. flxiy) = u,-_}

31

IFwe wish Lo find e probability that the disonete rasdom syanable X Talls belwisn
a and b whet 1t is known that the diserete varable ¥V = g we evaluste

Pla<X<bh|Y=y EJ"H-

w gLk

where the summuation extonmds over all wmboes of X botwesn g and 5 When X and

'qu‘] Il"'"'j\ Y are cuntinaos, we evaluate
' WS s e sl

__ CAJW" I"m-‘..\'-ab'l'vu!-iIirh-ir- Wt ! .
A - e f("r’/}/{ -._*"..Z_

I_* ' Exampie 5.15| Referring 1o Example 3 14, find the conditional distribistion of X . given that ¥ = | J_,l |
; and e it o determine PlY =0 (Y =11 -
(5 T i

" &ﬁﬁ Solution: We noed to find f(ry) where y = 1. First, we find that T*’fhhll’mﬂmilnhhbm

| Tk
li"
.".

g 3 3
b{l;:g_ﬁ:_lp e : ﬁ”}

fix) = .,E,‘H (]_ﬂ'rll F=0,1,2 .l
g

mu.&)(ﬁ) -3 mm: !;!min-&ﬂu}_;__

. ! -ﬁ'_ h J’!l-tlﬂ ﬁ I.'ﬂl-ll.

)
H
b
it




- X ajovec— g(n) = f{L y) dy = f 10xy® dy

lﬂ i E:_’_’\
aa IH—EI{I-I’].Uc::{I.

o ¥ :
hiy) = f f(r.y) dr = f 10xy® dr = Erzyz'i:: = 5_#‘.} D<y<l. E ’
e i = 2 a 1'F'--* s

Now { 7] - 5.
; ‘ 3 SH El ﬂ-&&j,{i}
Caﬁ&_rhaml J\Lﬂi (‘ flulr) = fey) _ , it S g . 0<r<y<L g==lh |

glr) 2x(1-1%) 1-2°
(b} Therefore,
e 3 ! 32 s
P(} >3 | X = ) f ;m|r_ur,ydu_fml_._ﬁdpa.

K =0 y :
£ Y als\ 2y 29"
@ b pial 15

:Illl-i, Example 3.20: | Given the joint density function
i3 Mﬁ’—-— D<cr<?2 0<y<l,
e 8 =
elsewhere,

find gix), Alg). fixly). and evaluate P(3 < X - % ¥ '!J" o
Solution: By definition of the marginal density. for 0 < r < 2,
o2 £ P

o L '! ke 'J =3
glx) f flz.y) dy [ udu
— — 0 "

r i\ [

1 1

= MR =0 e —

H-:ndfofﬂcy-r: i
——

g Mm:f Wil e f* ru:aﬂﬁ

T %

r -
ion, for0<r<2,




sinice h(y) is the probability density function of Y. Therefore,

glr) = firly) and then\ fir.u) = glr)h(n).

ANB= RA)«P(R)

Ln. Delinition 3.12: [Let X and ¥V be two random varinbles, discrete or continuons, with joint profm-
hility distribation flr, ») amnd marginad distributions gl r) and Afy), respoctiveby
The random variables X oand Y oare said o be statistically independent if and
anly if

R (T —sianin) | Trdoferdent

7 NE . S

l : for all (x,y) within their range.

Ae R en]

Exampls 3.21: |5hu.- that the random yariables of Exampls 3.14 are pot st ntmstically u:umlum Tabke 1.3 Joime thhm“. Distritaition ke wlu
i ! Proof: Let us consider the point (0,13, From Talde 3. 1 we find 1.]u. three probabilities —

f10,1), g(0), and h(1) to be = ——— ? Row

. flrd 10 1 2] Tokas

@5{_{:&‘ 10,1) = 77 I P
WS : 1330r
S -~ o IR Y il <113 2Rt

gl0) = Z)"Lﬂy]-—*—-'rﬁr-—-—i W H

4 B U g {

-~ 3 ! (g VU &

iy i 3
gt 7 f%!

J(0,1) £ g(0)h(1),
thn&nk' and ¥ are not statistically independent.

case of n random varinbles, Let fir.oa.. .. l‘-lhl'ihﬂﬂl‘-wﬁhﬂ-hﬂit!
the random variables Xy X3, X Thnmﬂml distmbution of Xy,

.
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23 Tn screte case),
!:n-nfm.ﬂ-‘l‘h’m....r.] d:l!a dﬂ?‘-..&’. {m a'L ‘
We conld consider numerous conditional distributions. For example, the j R
df‘_'“iﬂﬂl'dlltnbuﬂon of X1, X2, and X3, given that X4 = r4. Xs =ﬂ%:=f Ny
rmﬁ“’ﬂllﬂl‘l

o s x ol
(i=seTed e sk

Jiry, a3, 73 | 24, 75...., r..]:”r"ri-----ﬂ‘ﬂ:&—
P Tg  T5eeney Tn) o~

w_ht-m glry. T5. ..., r,.) is the joint marginal distribution of the random variables

.‘1 i -\-5 ------ \ e
A generalization of Definition 3.12 leads to the following definition for the mu-

tual statistical independence of the variables X, Xa, ... .- Xn-

37

Definition 3.13: |Let Xy, X2...... Y, be n random varinbles, discrete or continuous, with
juint probability distabution  f(ry.Ta,..-- r,) and marginal disiribution
filx1), falx2), .- o falTa). respectively. The random variables X;, Xa..... Xqn are
said to be mutually statistically independent if and only il

flxy.Taes- - Tn) = fi(31 )} falZa) - fnlTa)
e —— e

for all (71, T2.....Ty) within their range.

certain perishable food product packaged
hle whose probability density function is

[
.

Examploe 3.22:| Suppose that the shelf life, in years, of a
: in cardboard containers is a random varia

given by }(

gF z>0
flx)y= —
0, elsewhere.

Let X, X3, and X represent the shelf lives for three of these containers selected

independently and find P(X, <2.1< X2<3,X3>2).
Solution: Since the containers were selected independently, we can assume that the rundom
variahles X3, X2, and X are statistically independent, having the joint probability

density | . : »
B ) f_!f'hﬂ!--ﬁlll = fix1 Miza)fizs) = *‘15?.""—“ o g B ;: s ,I‘ ::.
 forx; >0,23>0,23> 0, and f(z1.75.25) = 0 cliewhere. Hence L

l-.'l_l LS




thich d _'-"meu Rl
ose that the tank is not resupplied dur!ng A
. _..’!:hﬁt x < y, and assume that the joint

R o<z<y<l
‘5{(:1 y] l{{: elsewhere.

(a) Determine 1f X" and Y are independent.
(b) Find P(1/4 < X' < 1/2 | ¥ = 3/4).

BB »

gle)=2[ dy=2(1—-2)for 0 <<l
h(y) =2 Jg do= 2y, for 0< y < 1.
: Since f(x.y) # g(x)h(y). X and Y are Ml{l@ﬂh

. __._____._—-_-__-'_—'_.—-"'_'_

J'[*t ]

”g: r=f(:1, y)/h(y)=1/y, for 0 < x < y.

R/ b v 1/2
P(1/4 < X<1/2|Y=3/4)=4%f/ de=1}
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4.1 MNlean of a Random Variable

In Chapter 1, we discnssed the sample wean, which is the arithmetic mean of the

data. Now consider the following. 1T two coins are tossed 16 times and X s the
munber of beads that ocenr per toss, then the vadues of X are 0, 1, and 2. Suppese

that the experiment yields o Tieads, one head anmd two heads a total ol 1,7, and 5
coins s then

times, respeetively. The average nuniber of Leads per toss of thie two

(1) + (1)T) + (2)(3)
Meah = R+ ]]-I_” A (T
I

—

This is an average value of the data and Vel i s not o possihle onteome of .{[}. 1,1}1
A possible onmteome for the experiment, For

Henee, an average is not Ill'rl'm-:tj'jl}
Iy income is not likely to e equal to any of

imstance, a salesiman's aversge montl
his monthly paychecks,

Let us now restructure our computatic
to have the following cquivalent form:

Bl
Mean= () (E) L) (-m) () (E) ™

mfor the average munber of heads so as




e "‘";*": E-"'.I—'l ]

&

/ phic RIS
/NI ~'-2_" :---"'é:- "11
.II.... I' ‘_ﬂ'

mﬁw likely, it follows that
P(X =1) = P(TH)+ P(HT) =

l-illu

.3.
qn

1
\ +P(I=E}-rp{””}—1
'.1;
3' m‘“’ element, say TH, mudicates that the hrst loss pesulte] in ;t ol
J I!}' a hiead o e s vn:ui toms, Now, Lhiese prnlmluh’w«-. are Just the relative

it-q,uom wes for the given events in the I-uu, pun. Therelore,

, : :
1..'1_‘, Pfé!J’ M{ﬁﬂ -h= E-[\.]“{U}( )--Il}(?) + [?](l) =k

Wﬂ- % ey 'lt.\c}]' lz_

Probady ), ;T}, Yardod\ }
VY adde

.I 1
Al i
y . I o " i
-y Baliition 4.1 | Lot X e oo eanslom variable il probabibiy detinbotion | i FEEH T L T
| axpected valuw, of X i .
| -
P p=ElX) E._.' :_I.
¥ YNpem ™ "'T r e
LJ i X s diserete, aiml = Cxﬁtlﬂ}fé\p fu-f.ﬂ,_.. o
ﬂ'—El.\.l—j‘rfrilfl ?r‘-‘b&&f!:ll'_"j
o l
X moonkbmwnrs, - 0 0 00000000 3

Exnmple L1 Aot containing T components is sampled by acguality inspecton the lat contains
"IET———"L oy

4 goodd componenTsd 3 defecting ¢ s A sample of % bs taken by the

3 ilhp_‘-"”llﬂ'- Fined the expected ol af the wunler of good "'Illl‘l],mlh'llln i this

sample

) m Solution: Lat X Pl Plee v wer ool guul TR TR TIEY T -"-1lllllh". The Pﬁlhlliﬁl}'
3 : distribution of X i

= ey =




: l'ﬂf | W knw t.h&l. Ih#m]mpu."m for the ty
cotmission tolals: $0, S1000, $1500, il %ﬂﬂ

ﬁ associated probabilities. By independence, we olitain .
610 4

'ﬁ‘-‘iw I,(__J-(l-n;](l—uﬁ = 018, f{??d]ﬂ}.—-{ﬁ?‘}ﬁ&ﬂ#
F(S1000) = {nnu— 4) =012 and f;&-ht:uﬂ;:(l-ﬂﬂ(w; 0

Thercfore. the expected commission for the salesperson is

.-:nf L\a.‘?' ULL 1 b' {b{.‘x‘ |= (SO)(0.18) + (SLO00J(0.12) 4+ (S1500)(0.12) + (§2500)(0.2%)
U“-'-'é {___.J_JM = S§1300). '

Cof imous

Example 1.3 Let X be Hie random viriable that denotes the life in houes ol 0 cortain clectrone

dieviee, The probahility density unction 1=

flr , slsewhere I
{ﬂr} {l. lsiew] L,...}ﬁ..‘i @S‘

Fitul tlie cxpus tes] il of thiks v of devies a"‘bsl

Solutserc: Vsing Defiuition 4.7, wi Ly

: ™. 3, 000
ji = ElXN)= o = e = f - =2,
Ll 1K) J —

e oG

Therelore, wo van expeet this bype of doviee to Inst, or average, 200 bonrs. i |

Now Tor s constder aonew random varindle gl X}, which depends on X3 that

ik, el vislioe of g(X) is de verrninesd by thie value of X. Por instoner, g{N'] osight

I.i__\! ar X = L oanid whenever X assues the value 2, mu‘-ﬁahllli‘- the value

4l2). In m‘ if X s o diserete random vanable with probability diserilation
St for r = —I 0.1,2, and ¢ GIX = X%, e

——

== PlgtX) =0 = PIX =u)= f(0).
—#Pg(X)=1]= PN = -1+ X =1=f-1)+ 1)
> PlgNy=4] = PIX =)= f(2).

mmmmﬁm mm»muﬁm ol m’.Ef’.'l oy be written
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e

. ..u‘r‘lh 3 L

- D -
R St (a1 e pmitalior of cnvs N fhak s thnagh o et

. i B0 an on any sy Pridiy bos the Sl g e e
: £ a 7 8 0

L ) T . M S8
PX=n | & B | | & ¢
Lot g{ X) = 2N = | ropresent the nmemnl o ey, (8 dollurs,

by the muanager Fid thae attondant s expes el earnings Tor

pt-rhu!. .
Solution: Ny Thearem L1, the attendant oan expeet b peceiv

A rﬁ;- @31 U\Q L;i Elai X)] = f'-'i'-’.‘t'ld 1) = i:lr.: - 1)fir) | |
S Plobady o L DY - &)+ o (&) <o () (5)

R 1—{151(')-:l?l(l):-‘l!""
i l:" LL] — J

i~

wish Detwern m :
Laility b=t pthution:

pied ter the st T
flils partionlar L

Example 1.5: Let X be o randon varialsde with density anet o

) {'l . =1 i 2
Sl )= et St
L s haeeree
Findl &l l.".l.l'll":'ll‘l.]. value ol |.|Il_"|.-| = X +3
Solution: By Theorem 41, we have
2 (hr -‘-/:‘I}%

o g
E[4X +3) =f — iy = _—f (40 = B2?) dir =8,
e 3 W

=
-

. |
We shall pow extend our coneept of mthemnticnl expectation to the case of
two random variables X oand Y wirh joimt probabilicy disteilation f(e. g).

b LA

Definition 4.2: | Let X and Y he random variables with joint probability disteibuation fie. y). The sl
muean, or expected valie, of the random viriable g( X, Y] is T Iz

Mgix.y) = Elg(X.¥)] = zgﬂl-l‘-ﬂ}ﬂr.yl :
, S —

——

i X and Y are diserete, and
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Colwun Totals

Solution: Ty Dofinition 1.2, we write

2 2
E(XY) = ZZ.J*HI (rou)

r=0 y=0)

= (O)(O) (0. 0) = (O)(1)F(0. 1)

+ (O 0) + (e Sa b+ (2)(0)f(2.0)
3 A
= flll - | 3
) —~—
' L]
Example 4.7 Find E(Y/X) for the density funcetion
T 206377\ < i< 240 y < l(
= - I = E—— ——
5{:/\1)& ’x-.j q‘-""""n{ d.n\.}-a;_l Al 1] el=ewhere
| . Solution: Woe hine :ji
‘ L2 ) + 3y by + 3y 5 ’
F (E—) :-.f f i ¥ iy =f 4 +_] .4 dy + —. 1
A o Jo | o 3 s 3

: = Note that if g(X.Y) =X in Definition 1.2, we have

Yy xfloy) = 3 gl (discrete case).

L::’:} = I.‘.u = i
_[;_1 i Ay dy dre = JI‘_T’ZQ rgle) de (continuons ense).

where glr) is the marginal distrilution of X. Therefore, in calenlating
a two-dimensional space, one iy Use either the joint probabilicy dis
A ol ¥ o the marginal distribution of X. Similarly, we define

o el . Tl r — . A
L| & g ) '_ S 1 b : __-. i - qﬁ.'.



Answer 4.23: Z ‘ P X X u" r[ -
: A A T ay” flx.y) T 1010101 \
(a)-E[g(XY )] = E(XY) = 23 , IRERE e

e o | i :
nmz*rsf = 12,3)+ 2°(5F* A2.5)+ 4°(1F* (4,1)+ 4°(3F * f43)+ 4P fas)

2)(0. %..aj + (4)( Jsjimﬁ =320 ~> i._"!{‘aﬁ"d
| r_n 5, +ﬂjﬁM3)+ SMO.1+0.15)=3 o ¢
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B = :‘ '
:Ir : y i . . 'I_ A 1 .-.u
o= E:rj{r ) by definition. aod Ef(.; = 1 for any discrete probu! Mi‘l?,f Tl

dls’lrihulitm iy follows that
gﬂ = Z ‘:'Ef{..r] - p: = ﬁ[fﬂ]

For the continuous cose the proof is step by step the same. with
replaced by integrations.

sunations

Usmmnple 4.9 Lot vhe muaxlom virdalde X represont the mumber of defective pats for o machne
Wl 3 pearts are sampled [Fow i proadetion i anul testen], Tlie folliving ds s
proibabilitny distpalvtion of X
| 1] | Q q
Jin) | gl  Oods o ool
Using Tl £2, onle idiste 7=,
Sobatwon: Fist, wo compinile

g (OS] = (1008 ) = P00y e (RO | = 11051

Nimw, N
A i l.
Rt E(X= 1= (000510 <= 01 00.38) = (10103 ={0{0.01) = ns7, *

Therde,

= (LET — {001 =407,
o? L (L J AT 3

Exmople 1100 The mukl,\ demand for o doukingewater presduct, i thowsands: of Kters. Fom.
a loeal elioin of eficiency stores is o contionons sandom varinhle X having the

problidlity depsity
- JBle=1) lgre
Jx) = {”. else I,

Find e g and sarince of X

= Et-lfl' L E\IJ-'t-r = ',i l'Lf id g-l.




Let X be o random vari Dle witlh |m.tuiu|i111. distribution _f{a The varianee ol
tlu random variable g(X) is

azixy = E1lo(X) = a2} = 3 _lnx) — pgenl* flad

Fatcf oy O

it X is cliserete, anl

gy = E{lg(X) — ngex)l’} =j lgle) = g fln) die

1if X s continnous, 3

o

"ﬁh’ﬁ"‘ g(X) b= tsell @ panclom variable with mean jrg xy as defined in Theoren ‘,".r..n,
it tallows from Definition 1.3 that i i .

ax_; = E{[9(X) ~ pae) |-

[x

ll"nlLl' l‘ -|||.l|'l‘ h““ﬂrhi'i
: |"'|T I




oax 43 = E{[(2X 2X +3) = parya)® } E[(2X +3 - 6)°]

=EAX*—12X49) = Z“-"E — 120 +9)f(x) = 4.

=0

Ex vl 4,12 Let X b a canchon variable Jowing the density Tunetion givew in E canphe 150
paage 115, Find the variance of the randon variabilely X) = 1Y =4,

Lot X b vaindom vorwhile with ‘-']I'lb-ﬂ_'l_u' (i Hions

Solution: In Example 15, we fonnd that pyyez =% Now. wsing Theoren I ] o
S e st o ={ T LSRN
A =08 +8)-Ph=EX -5 oy S““ 0. hewhrw
) rl' | .||
/ 14 - ,|T,r.::[ (167" =40 + 256 dr= — Fund the expocted valie of gl X ] = 41X + 4.
= ] by a

A ———e
Hﬂ'[.il'. Fl={X- iy 1Y - 1yl whire iy = EiX ) aml fly = LY ), Definition
4.2 vieldls an pxperted wlne calli the covariance of X and ¥, which we denots
by @y or Cav{ X, ).

T —

58 Datinition 485 | Lot X and Y be raudom sarihles with joiut probalility distebnition [l gl The
eovarianee of X and ¥ i

Ayy =E[[I ‘i"\_]llr v-_!:,-j: :_E Z[ = Y — |u=:.j'|: r
+ Y

A .L:tﬁ' qu]} anediscrete, ad
ol

& ~r V)= F f fa=pry!

“"‘l. LR

-

W-F.-H L) ol dy




— iy 3 3 S y) + sy
| ;

T

Sinee

for any joint diserete distribution, it follows that
Ty =FINY ) = lla ity — lyitx + jigfty = E(NT) =iyt

For the continmons case, the proof is identical with summmations replaced by inte-
grils. -

Exanple 4.13: Example 3.14 on page 95 descrilwes a situation nvolving the namber of blue refills
X and the number of red refills Y. Twa refills for a ballpoint pen are seleeted at
ranidom fromm o certain box, and the ollowing is the joint probability distribution:

o 2 -
ey P T 21 iy Ry
A KXY = DT fte
¢l 1 |& & o 3 e
l e X = (00170 + 001 4L0.1) j
o) [f B m| | + OO0} 4 (A1) + 2000
> Find the covarianee ol X and Y = fil ) = = NT
' Solution: From Example 1.6, we sce that £(XY) =3/11. Now 1 2D

b =
=}
s =Y rglr) = (0) (ﬁ

=l

z
“ 15 3 |
=Dy =) (&)~ (5) @ (x) =




[0 L]

elsewliere.

Mﬂ;{mhaﬁh i<yst.

[ “thwwmt ensity nmmrmuﬁ. Wer polppuie
1 1 ]
fiv=FL1N) =f g o = g il gy :f APl = W) dy = 5
i v} i -

From the julnt density funetion given above, we have

) 1 | 4

L-‘{,."s‘ij' = f f ﬂ]iy: i I'J'y = a

Ll ] -
ey = E(XY) = fajiy = 52 (‘) (i_) Tl !
) b 15 plod 17 1 1

Correlation Coefficient




Definition 4.5: [Let X and Y be random variahles wit] ..|~.,-|_i.|-||”- Tyl ‘1*'r|'_|ﬂl_l[‘-\'.|Lil|||_~.I
(i S5 11314 s respectively, The corvelation ToerTi v T AT T RN {

e Ty
Py = ——
Ty ily
— 1

El.l-l-“lﬂ lII- l--l-‘i-' I'I-JII 1II l'lrlll'l- LT lll"'H'rl il ek s ] 1'- el Y b ot 1.1 e i = 3 = 3
irpm:m: Yoe i it : ! Fhe variance of o random variable X s




[l Theorem 4.7:| | he expected value of the sum or difference of two or more hinetions ot the random
variables X and Y is the sum or dilference of the expected values of the functions.
That is,
dg\j =C§__‘5 S5/ LTEN.Y) L h(X. V)] = Elg(X, V)| £ E[H(X.Y)].
Proof: By Delinition 1.2, g |

x x
X Y ) £ (X, Y)] = / /’ gl y) = e ) f e y) de dy

/ / gloe.y)flre.y) dr fh;:tf f hia.y)fla.y) de dy

= Elg(X,Y)] + E[h(X.Y)].

,':1. Setting (X, Y) = g(X) and (X Y) = (YY), we see that

— E[g(X) £ h(Y)] = E[g(X)] £ E[h(Y)].




' 1 _ 1ty of

Lot § aml Y l-lt' Waﬂ }nﬂt‘}iumiﬂm' m'l.nr't{gl i

Sihee X oand ¥ ape ndependent, wo nisy write

Uiyl = gleihiy).

where gl #) and Iy} are e

narinal disteilationsof X e ¥, nugpecl:iﬂﬂﬁu ﬁﬂhm v

o por e =
ElXY) = f f rygleiily) dr dy = f rglr) "f-Tf ylity) oy
— of =y g _'h. . .
= E{X}E(Y),

<l

]

- = —
.

b

re —— 1 h.l
o i 4_-5;[!.#[ A and 3 betwas indvpendent random varinldes 1 i =l ' I
!' Enm Hary _ : ol e

i r"ﬁ'l

1o
d P?Wf: Tl prowl can b caarvial ant Ly nsing Thewems 14 and b= . | .

Cov(X.¥) 1= E[(X — ux )V - iy |

CovX, ¥) = E[(X = pux)(Y = py)]

= E{(X = ux )JEY — jiy)]
= (E{X] ~ ux )(E[Y] - uy)
=10




that E(XY) = E(X)EQ). as Theorem L8 suggests.
ﬁﬁﬂn;

12 200 - ; e
E(‘l!r} =/ / Ja yll + 3!}2] t.l'.nfﬁ W ;?_‘ E’:LYJ . :_I'. and h{} ] = E-
Henee,
f::{_\vjt_‘{ }J = (-:I;) (-Er:-) — E = E;[.'\-i']-

We conelude this section by proving one theorem and presenting several corol-
laries that are useful for ealenlating varianees or standard deviations.
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Ex.2.44

In how many ways can a caravan of 8 covered
wagons from Arizona be arranged in a circle?

(D] = 7!
5040

45

Ex 2.46

In how many ways can 3 oaks, 4 pines, and 2
maples be arranged along a property line if
one does not distinguish among trees of the

same kind? Crleel [
- @
F” 3.\1 C:;\
{ L ‘- - L ¢ b
% et
e G‘ ' = 'I,‘ZQE}

3 4| 2|

46

75 |



Py L

A college plays 12 football games during a
season. In how many ways can the team end
the season with 7 wins, 3 losses, and 2 ties?

2N

g |21
P =i5lel = - 7920
ej )
&y H@
\Pﬁb
Ex 2.49

How many ways are there to select 3 candidates
from 8 equally qualified recent graduates for
openings in an accounting firm

oD\ Lo D=8
nl 56 ways
1 Cn-)) o i Th

LA
"“’*w (J 3\ (8-
?tf’MH




SN 238 " |

ﬁ,\LML@_U L. = |5 _ L
b 3 5 do+E+e= T}

_:b_;-t! HLM‘IJJIJ [f_ﬁtf { N

'i'_?i@ (a) How many t_hree-_d_igi_t_mlmbers can be

formed from the digits 0, 1, 2, 3, 4, 5, and 6, if 1/
each digit can be used only once? (b) How

many of these are odd numbers? ¢y Howmany ace e,

=% ) 180 (6x6us)
o@a@H @F b)) T5 (5+543)
5.7 o
o | 3 s W%é apdal 3000

337

I\

&
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Definition 2.9: | The probability of an event A is the sum of the welghts of all sunple points in

‘}3 > F’f A. Therelore, 5 S :lr:ﬂ:jlhyl
N e
.__:.I'-., Sl = O jz- Eie

(g el J2 s = 1 -
. S'P"U"‘f Kace a Furthermore, if Ay, Ao, As. ... Isa sequence of mutnally exelusive events, then

wiesyY| ° ¥ /
r s 0= P(AYL 1, I 1=0, : N5 =
5 5 ) (o anidl (5= 1.

2 34 B4 PAIUAZ VAU ) = PA)) 4 PlAs) + PlAg) +- ..
Example 2.24:0 A coin is tossed twice, What is the probability that at Jeas F ‘curs?
Solution: The sample a}rm:'—ﬂ'pr this experiment is kv ol i
| L 2« H {‘"
S={IHHT.TH.TT). (

If the coin is halanced, each of these outcomes is equally likely 1o ocour. Therefore
we assign a probability of w to ench sample point. Then dw =1, or w = 1 /4 If l
represents the event of at least 1 hoad oceurring, then =g

A= (HHHTTH) wd Py = T4 50223
A

3 H
<"T

I.]F more than o head = |
Lj
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G P . ! : i (WICce as Ii[-:t"l_'-' 1O OCOUr as
Axample 2.95: A die is loaded In such a way that an cven number 1 ; ( o e |
odd number. If E is the event that a mumber loss than_§ oceurs on a single toss |

the die, find P(E). W U &
| even = 2odd JJ‘ i ¢ i e
o 7/ e ™

- RBESUS 98
e, (E» = PO 1
Solution: The sample space is § = {1,2,3,4,5,6}. We assign a probability of w to cach
odd number and a probability of 2w to each even number. Since the sum of the
probabilities must be 1, we have 9w = 1 or w = 1/9. Hence, probabilities of 1,9
and 2/9 are assigned to each odd and even number, respectively. Therefore,

WL S 4 U 1 4

3=0 F

= I

9
E={1,23} and P(E) = +§+

E = more Jrhc:r;- E
E=1 6% = Q. |
?’

51 2w J

41213/Y /s 163

A W W e

—— =uuh. e R A.‘:-{J’ gl‘é Pﬁ: ﬁ
Example 2.26: In Example 2.25. let A | ' Ve . i c?
w. i.,-PJ(’T]T_L_“J 1 be the event that an even number turns up and ket B he

s event that a munber divisible by 3 occurs Fi ) _ :
"~.3>\' [ Solution: For the events A= (2, 1,6} and e i:;ﬁ-t{f; -;u::!:‘::iif (AUB) and P(AN R,
(3 '/ of oo V113145 ,6 3

: L) o9 P
2 d— Q(AUBE (2346} andfin B (6). .2 B ="&%: 84

W 2w 2w

B?ﬁ‘i‘iﬂ:llingn probability of 1/9 10 each odd number and 2 /¢ Pe, = ‘f? = X
we have i todd munber and 2/9 to cach even yumber, q
\.D L : 3 "ﬁ"ij*§+r=ﬁ and I-"._.lnjg,zﬁ

A

If li:mt sample space for an experiment contains N clements. all of which are
equally likely 1o oceur, we assign a probability equal to 1/N 10 cach of lll-ru':‘
points. The probability of any event A containing n of these N Sk o 1; o
then the ratio of the number of cloments In A to the mumber of l=|-{1lm*1|t-= I:!:;' i

G iy « P(AUB) = A)+PB) - (PN g)
o %+%_? .

—

q

T

.
i




5'1\-lll+‘|r1+ 2.271! A

s L

i an expien
Xperime ~ -
if {‘-"«;;wtll\. a m; t;: can result in any one of N different equally likely outcomes, and
1 is + T 0L these outcomes correspond to event A. then the probability of event

T
P(4) = 5.

and 8 civil engineering students. If a person is randomly selected by the instruc- e
lor to answer a question, find the probability that the student chosen is (a) an M =

statistics class for engineers consists of 25 industrial, 10 mechanical, 10 electrical, 7 — > ¢

]

H!Q}_l_.ir_ia] engineering lll-"ljl-‘!_rﬂﬂi-h'.l (h) a civil engineering ar an electrical engineering £ = =

major, L

Solution: Denote by I. M, E. and C the students majoring in industrial, mechanical. electri- - €

cal, and civil engineening, respectively, The total number of students in the class A
15 53, all of whom are equally likely to be selected.

H3|

(a) Since 25 of the 53 students are majoring in industrial enginecring, the proh- (}-"u-

ability of event [, selecting an industrial engineoring major at random, 1

35
Pl = =.

(b) Since 18 of the 53 students are civil or clectrical engineering majors, it follows

that 0=y U';‘“
P{Cuf_‘;::—;.'—‘ g+lo = I8 1
) 53 53
. ?CC—J + PC_EJ - PCC n E—J =
= - & t|lo —0
Bk i [ ; '
Theorem 2.7:[1f A and 3 are two events, then ==a 11 oo s ¢ Youg

P{AuB)= P(A)+ P(B) - P(ANnB).

Figure 2.7: Additive rale of probability

Fr i




Example:

John is going to graduate from an industrial engineering
department in a university by the end o_f the seﬁmester.

Alter being interviewed at two companies he likes, he

EnN - 2% Jssesses that his probability of getting an offer from
g company A is 0.8, and the probability that he gets an
offer from company B is 0.6. If on the other hand, he

believes that the probability that he will get offers from
P(ANR) =2 both companies is 0.5, what is the probability that he

will get at least one offer from these two companies?
P(AUB)=P(A)+P(B)-P(AflB)=0.8 + 0.6 - 0.5 =0.9.

;-1}‘-'4..5‘**—_’
VM LL
55 l{)df-j/r:_:m-:n %&@;ul

or;éuu}i_‘:ull

Corollary 2.1:

Il A and B are mutually exclusive, then

P(AUB) = P(A) + P(B). Aisyons
gt

Corollary 2.1 15 an immediate result of Theorem 2.7, since if A and B are
mutually exclusive, AN 8 = 0 and then P(AN B) = P(¢) = 0. In general. we can
write Corollary 2.2,

Corollary 2.2: | I Ay, Az .., Ay are mutually exclusive, then
P(AIU Az U= U An) = P(A1) + P(Az) + -+ + P(Ay)
A colleetion of events {4, 4,,..., A, } of a sample space § is called a partition
of Sif Ay, Az, Ay are mutnally exclusive and A, U AU -0 A, = 5. Thus,
W 11:1\'t'
'il ? : 5 L ::'_.
Corollary 2.3:|1f A1, Az,

Fd
+Ap 15 a partition ol sampld spact S, theén

PlAyU Ay U=~ U A) = PCA) + PAs) 4+ + P(A,) = P(§) =1

As one might expect, Theorem 2.7 extends in an analogous fashion

Theorem 2.8: | For three events A4, B, and €7,

hﬁf“”* P(AUBUC) = P(A) + P(B) + P(C)

- PANB) = PANC) - P(BNC) « PANBAC)
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" Probability o i e — %
¥ of BELHNG & total of 7 . 1l wi “y
Ot A bo the e i - — - Wi & pair of fair dice is
5 -|'ll|.|.'| y } 2 'Il1|”..l. ) Y
of 11 tha i L
Ir= |-II:|' G !JI l!ll-' - # e Yo lh

=ample points g
f'|’}:| - ] §3 o

11 cannog buily

a6 skl W1 cornes up. Now, a total
e all -..;rm:-l.!ln l".:llh' il a4 total of 11 o urs l[ur only 2 of '1:" W\ g
Ihe « Verlilis A |||'||.I;|.':il;hlh| e eqnally likely, wy hiave % A - LG mpwd
A mnd are amtuslly exeliisiv ; T
DO i T o Ilj'.. :I:.‘:.l.:. Kelusive, sinee a wotal of 7 and

| =

2

1

MALUE) = PlAY + Py

r'l

Ihis result cottld alsa by

for 1he "ot Aup

! -'u] e obtaimesd Ty voanting the total minber of potiids
ety 8, andd writing ‘
- P(AAgy ™ -
Pl + Pl =, ('.3 L ”HI.M ﬂ@ by %

PlAUl) = — = — ;
N"%"% by a3 5
¢ - 3
— ﬂﬂ - rff _‘:?_Fjb 3
- “ li'.i ]ntuluyhi]ﬂ s I, respu “-,.l.l}l 000, 015, 0.21. .:I.'IIFI 023 1thint & |u~r:-ult Fur- PU' .15 'l;‘;

chasing a new automobile will choose the :-u.ln.ru_ white, ridd. or bliwe, what s
b | Wiite, pod, OF L -
the probability that a given buyer will purchase a new automobile that comes in

—
—

one of 1hose colors?
St:!ul‘mn: Lot G W. R and B be the ovienins that a buver sl Tl-.-ilu'rih-]:'-'- n Jlf"l"l‘l] 'lll
. the

white, red, or blue antomohile, Sinee these four events are mntually exe 1":1“' \ =1
probability is P(:’-’:;H’@ - O

PCUW U RUB) = PG+ PIW) 4 PR+ PLI3)
5 = 0.00 + 0,16 + 0.21 4+ 0.23 = U.bs, A

41rs than

Often it is more difficult to caleulate the probability that an event o be tl
™ . ; - : W i
it is to caleulate the probability that the event does not oceur Should this -

) POTeTL Sl

. B r 3 i i j i
ccs TP S sak A “llll'ﬂ'i_"" find A" first and then, u=ing I't

57 find 24} by subtraction

Theorem 2.9:|1f A and A’ are complementary events, then

) P(A) *P:.-f;.=\1.]
. _ .
Proof: Hil“'"ﬂtri the sets 1[-1 and A" are iﬁ:*-_-}llhlt;]

_P‘_—
{ = P(S)= P{Au A"y = P(A) + P(4"). ,
A -2

T = &

12: If the probabilities that an automobile mechanie will service 3, 4, 5. 6, 7, or 8 or
more cars on any given workday are, respectively, 0.12, 0.19, “.'i_lﬁ' il&i' .10, and
2 0.07. what is the probability that he will service at least 5 cars on his nu‘xl_?ln_' at
<) B :‘-|
work’ P(E)= P(5)+P(6)+P(7)+P(8) :,.;i
P(E)= 0.28+0.24+0.1+0.07 7 Jitl
P(E) = 0.69 iy ;
OR

Lot E be the event that at least 5 cars are servieed. Now, P(E) = 1 — P(E")

where E’ is the event that fewer than 5 cars are serviced. Since e PE} y
=4

P(E')=0.12 + 0.19 = 0.31.

J e

it follows from Theorem 2.9 that

,J—\

P(E)=1-=0.31 = 0.69,



P(A " )
= 4 - p(ADUBJ
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rel 15 COIICES

yC Tl If

2,88 An automobile manulactis== ur-dooil sedan

a possible recall ot 118 ]“"‘THL‘”I—”T_ g bility that a de-

there were call. there is 0.22 probabLii :
1ere Were a 1ok i el 155101

018 i the [ldn~1n

n S0Ime other
is the brakes

i

. % 1.
i the brake systell arca

:Ill.Ll () 10 1

‘hat the defect 15
abihity of deiects

fect 1s
017 in the fuel system
(a) What 1s the 11:n'-||:1[11]11}
U or the fuehng system if the |
<abpla, 4-both systems simultaneously

1il."-i:
15 L) I: 4
detects

there are No_

P (b) What is the probability that
in either,the brakes or the fueling s} stem’

e =
..:'—,—-'j e Ut _ —— o A

£

:"'“{a}= 8.27 <> P8 Y ¥~ ¥
; (b)=0.73 s
e enr) = 1- ¢CBUY)

. _:' II i !. 11 I = SN i 1 i i T |
l {q-]l- — i l'-—k.é}_ er ! M dare S L) = tl ] I's 1 o NE=ITY - W 1
11= L= | X L] [ Tii 4 g = o1l 1 = 1.|_ T i
L] il | ik [} T !
P | 1 ] » o il W gt ¢Xa - M
_-f_‘- ~ 1] s 11 ¥ ! ] r i [ | e
: s 4 i {* alh T wl A4
[1 -'.~ e probal the pr iu procodur LS ST
T o e L4 =
i 1\“ h - I!' I‘:" wa talint il il i .! g sl 1 r 1 i I| = -
i : 1
Whi = DT shalit | il i |0 1 |
..... eleTs e
Solution: Let M be the event that a cable meeis specil 1 I
b | L e s - T .__-|_|"-l} - a1 - Th 1 |
; L LE ’ h . L= - ANl L. W T Virllls
At LIN® o -}'.' 1= (o sInall alkl oo IArge. Tispax "."\.-I.'- 1i|-',
i f |.'II JRLE |]_|E ;r' by !' jr : 1y Uy 1 (A} Wi
I3 11 ] ] 1 §
Ii! 1'|, i [ _-]_ i § | 1LY =~ | ] « N i £V
J?i Vi ‘\' " M1 Al
. . =Ll = I ¥ — | )3

P(X > 1990) + P(X < 1990) =

Thus, PLX > 1990) = 1 - P(S) = 1 = 0.005 = 0.995 4
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| Conditional Probability |

| Question: |
| In a group of 100 sports car buyers, 40 bought |
alarm systems, 30 purchased bt buggt seats, and 20 AR
purchased an alarm system and bucket seats. E_gx e
car buyer chosen at random bought an alarm 3

21« System, what is the probability they also bought

ol bucket seats? e (@ flA)

Syﬂfﬂ amm Systemn
Jo)

S




A

Answer:

/P(A) = 0.2/0.4= 0.5
ght bucket

P(B|A) = P(ANB)
larm

The probability that a buyer bou :
seats, given that they purchased an

system, is 50%
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i i 2 (I _'_I_'ilu- probability :‘|!;|l. a regularly 51."_!:"]1.1]{'{1 flight departs on time is PED) = 0.83:

, F-‘);\ bks,-.yh) the probability that i artives on time is_ P{1) = 0.82; and the probability that it

o 2 departs and arrives on time is P(D 11 .4) = 0.78. Find the probability that a plane
; NS 0o

‘.'l:f"”“‘!l on time, and (b) departed on time, given

) arrives on time, given that it {11

{a : m.t .
that 1t has arrived on Lime,
~ 4 —— == —
Solution: Using Dehnition 2,10, we have the following,
titne,

(a) The probahility that a plane arrives on time, given that it departed on

s
DN TS

P{AID) = a4 LT (IS (.94,

P(D) 083 ——

(b) The probability that a plane departed on time, given that it has arrived on

time, 1s
P(DnNA) - 09X

P(DA) = i) i
(PA) = —pry— = o = 0.9

f\'iﬁidg a5t 9V |
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Litveny thist 1 hs sinp s | neth defective. &l i1H,|,|.|,-||“-.l that this siripr is lexiure
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e Eadlsin ) L phiy PN & P (&)
' 0 =
Two events A and I3 are independent if and only il
P(AY™” M
Peg)

assunming the existences of the conditional probabilities, Otherwise, A and B are

(1) P(BIA) = P(B) or P(A|B)

tll']n'zllh*llt,

'If in an expernnent the events A and B3 can both oceur, then

Theorem 2.10:; b R B
! Eff"i ANEB)=P(AP(BlA ]1 provided P(A) > 0. dﬂ_gg‘u&“t
—_— ]

| ple 20060 Suppose that we have a fuse box containing 20 fuses, of which 5 are defective. If
f._p;,l U22 L p us -2 fuses are selected at random and removed from the hox in suecession without
(._1"”'5‘]{5 replacing the first, what is the probability that both fuses are defective?
Solution: We shall let A be the event that the first fuse is defective and B the event that the
second fuse is defective: then we interpret A M B as the event that A veenrs and
D i g then I3 occurs after A has occurred. The probability of first removing a defective

/'L/CJ"?D —BJ_[:.: fuse is 1/4; then the probability of removing a second defective fuse from the

remainming 4 1s 4/19. Henee,
Rl d eperdent

hi_r_,—li ,”{.nmz( )(]—Iﬁ)-% P("’QF’(BIPD 4
P(A)= & =+
P(BIA) =

..._lt—-
]

>
:,_1: i
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Ex- 2-95 B 1 L

One overnight case contains 2 bottles of aspirin, and 3
bottles of thyroid tablets. A second tote bag contains |
3 bottles of aspirin, 2 bottles of thyroid tablets and |
bottle of laxative tablets. If 1 bottle of tablets is taken |

at random from each piece of luggage, find the \
probability that: \

(a) both bottles contain thyroid tablets:ﬁjp( L0 T
(b) neither bottle contains thyroid tablets; ¢/77, T;)
(c) the 2 bottles contain different tablets. — DU i)

Q.
n o @e(TAT) = o T) A




Answer EX. 2.95: ;
Al: aspirin tablets are selecté
A2: aspirin tablets are selecte P
L2: laxative tablets are selected 17

he O
T1: thyroid tablets are selected from th s
tablets are selected from the

_ (3/5)(2/6) = 1/5:
p(T1)P(T2) = (3/ ) 415

T2: thyroid

(a) P(T1NT2)=
' ' 2] = 4/6)
(b) P(T'1 n T'2) = P(T'1)P(T"2) (2/5) 1)p(T2)
- A2)-P(T1 NT2) = 1-P(A1)P(A2)-P( )
(c) 1-P(A1 NA2)-P( =1_(2/5"316)_(3/5)(2/5) = 3/5. |

e ————— -
——
b = e
i s — —_— i — e ————————— ——————————
I s 90 The
iMustrated in Fagure 20 T«
of the components Cor D

An chctneal system consisls o [ {our comjpaoin ts s
swstem works if components A and B work amnd either :
I'he rehnlality (probabakity of working ) of each component 1s wlso shown

e system works and (b) the

“\Irk-.
ks. Assume that the

t m Figure 2.9 llhri the lﬂ"lll!'llll‘k ||._|.[ () ||". ol
— L" L i J‘ e - Lo Wl
: s Rl OTH Pt nlf( dlow= 1pel w.;r]-.? e1vein st e entire svstemm
lowr « TR nts work |-|1'L'|“'Iilll'1l1|'l. I
cvstem. A. B. and the subsvstem C and D constitute

*'ilthrl‘lfhrll.' IH t!”-. i "“h".]"-"ll*'fl 1.I th“
a serinl cireuit svstem, whereas the subsystem C and D itsell 1s a parallel ciremt

sVELeIn
(a) Clearly the probability that the entire system works can be ealeulated as

PANBN(CLUD PAPB)PICUD) = PLAPI(B)] . PIC? 1 D)
P(AP(B)|I - P(C")P(D
= (0.9H0.9)1 — (1 —0B)1 - 0.8} = 0.7776.

The equalities above hold because of the mdependence among the four com-

[ronents
I'o caleulate the conditional probabality i this ecase, notice that

Pthe system works bt C does not work ) P(C’/S) - P(S/) CI)

. Plthe svstem works)
PlANBNnC' 0 D) 0.9)(0.9)(1 - 0.8)(0.8)
= 0.1667 1)

Plthe system works) . 0.7776 N |
e P(n nen
o (S

LV G 09 | L-I"" 08 | E-. o8 8
.ﬁ‘j,;,«/»@ i \) p: {"F{"F= AU — p(C LD} et 14D
i - A NEY o ~ p(Cnpy™

3 ITJ Figurvf‘.i:+ - BT Cﬁ,gqj\
e - o 7 -4 = 0-0[(

(b)

3
1
(a}




Ex. 2.99

A circui
& Uit system s given in Figure 2.11. Assume the
Mponents fail independently.

(@) What is the probability that the entire system
works?

(b) Given that the system works, what is the probability that

the component A is not working? [>7\
| 83—
p 2 . - |
b D
s, i # a | § |
‘ \ {L Fll-/] t - YA Yy igu | Diasiam for Exercis
- Y CCcNONFNA)
-ILN-..-H - .Jr"'& ) {f 5 — T :
| '1 A

Answer Ex. 2.99

(EI) P =1-[1-(0.1)(0.)]1 - (0.8)(0.8)(0.8)] = 0.75112
P=0.75112

(b) =
P=P(A'nCNDNE)

Psystem works

= (0.3)(0.8)(0.8)(0.8) = 0.2045
0.75112

74




I
)
L

| SYsfew
jju{”f#ﬂ

an electrical

: m of
he diagra What is the

) ose 1
2.98 5Supp \n Figure 2.10.

system is given

ility that
probability e
the components fail mdependentw
=
(s
5.5 B\L [P
i 08 3 .
e ¢ (fhg) = o8 ';ﬁ;ww
I'__ W e [_E__}—'_@] -~ G

0.95s O FU* 014

~ p(E/S) = PANEAcNEE) — ov o8 aos

R

?L” ¢ w9

» EX:2.98

76

P = (0.95)[1 — (1 -0.7)(1 — 0.8)](0.9) = 0.8037.




EX. 2.93

A - r*?ff -
town  has 2 fire _engines  operating

Ndependently. The probability that a specific
€ngine is available when needed is 0.96.
* (a) What is the probability that neither is
ava_ilable When nEEdEd? {’l/ﬁ}l [f__; - A:0oUYKO Y —4H. 04 ‘:

* (b) What is the probability that a fire engine is

78

available when needed? 120 -V s D €le
77
(a) P(A'N B') = P(A")P( B') = (0.04)(0.04) = 0.0016
(b) PIALB)=1-PANDE)=1~- 0.0016 = 0.9984.

Cipvg  =qr) +0(8d - ¢(ANB)
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‘ZlfrJJ' |
&% or correctly
EX, 2.89 The |.th:h,lhi|ilv that .1"{]:;{;; Byt
o ses a particular lliness 18 2.l s
diagnoses a p arract diagnosis, the
the doctor makes an mmrrt.t-u = ﬁllaw cuit is
.l St e ¢ ]

probability that the patie nt l S M dactor

0.9, What is the [Jf(}hrlhlllTY. Je :
makes an incorrect diagnosis 4 |
e PL)=0 1

suUes ¢

P ( f’/[;f.)' o

() = vNL)
/Y oL /1Y) f__(‘
Sl ()
P(fay) « O i Ned st il

it

Answer of EX. 2.89:

P(A” N B) = P(A')P(B | A') = (0.3)(0.9) = 0.27
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I‘| | I Sa lagle
: & Table 2.1: Categorization of the Adults in a Small Town
[‘_1. e l; B R To H
i 1 L |
12 of Unemployedare . .. 140 260) 100 L-TJ
members of the Total 600 300 500 =
Rotary Club (7, f W Lap o
e (A)=PUEN A) U (E N A)] = P(ENA)+ P(E'N A) flg_r-.;‘ Pel
ind th b le;l- f = PE)P(A|E) + P(E')P(A|E"). 5
Find the probability o I 4. L Wl
the event A that the (XA) VA
Arqde MEK&@;_{-

individual selected is a
member of the Rotary
Club?

A= ErAaU R 4

2:

Figure 2.12: Venn diagram for the events A, E. and E*.
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12 of Unemployed are

- members of the
Rotary Club
_ll.i.
1 o 13 | 1
i I P A
1% .4 “ |/ 1 b ™A
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i > |
[
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Frygume 2.14 Partitmsing the sain] AT TR

The event A is seen to be the union of the mutually exclusive events



TRy AT Ve Yo diagram of Fi 1
igure 2 ' !
: the mntually exelysive events gure 214 The event A is sovn to be the union of
. A BinaAa, ... B nA;

that is,

A=(BinAu(Bnd)u.-u(lnA)

Using Corollary 2.2 of Theorem 2.7 and Theorem 2.10. we have

PlA) = PlIBnA)yu(BynA)yu U (M A)
=PBinA)+ Pl A) 4+ PtllnA)

| H" A D‘/'\

‘M-

1l
k
ok » 3 4
—gnn,m-uu,}. -
85
Example 2,410 In a cortain assembly plant, three machines, By, By, and By, make 30%, 5%, andd & 2 o
9%, respectively, of the products It is known from past experience that 2%, 3%, § 3 e
and 2% of the products made by cach machine, Pospectiviy, are Fhetive. Now, ko= oUb
supposo that a fiished product 1s randomly selected. What is the probahihity that Gl A 2%,
it is defoctive” acifisy r B
Solution: Consider the followmg cvents T ™ o 5
A the prosduct is defective, () } s .| 8.1 :
3 | :
B,: the product is made hy machine B, & . o |0US| 0@ *L
'/PB;)+ 348 PA(B, 2034 —
B;: the product is made by machine B, ‘ﬁ - el LY RY QJ‘_ B
By: the product is made by machine B;. *r',,}_ | .:,.mif' &-oliy “ \
: : . : . y \ 6.
Applving the rule of elimination, we cau wnte | %r—————-t e 0oy

PiA = P(B ,'IPH{H:] + P B, rFq,-iﬂ:} + P‘.ﬂafpl:rilﬂﬂ. B L1 T e B
Referring to the trev diagram of Figire 215, we find that the three beanches give

the probabthtses ?(Q_) =P D +?CO1>+PC
P PAB,) = (03)(0.02) = 0006, el 4
FT.H:'LP .LH-_- = (0.43)003) = 0.0135, .D e
(418:) = 10.45)(0.03) = 0.013 e G;‘O\CG‘J“

PiBs ) A By) = (0.25)0.02) = 0005,
& ¥F

anil heneo
TR o
PLAS = 0.006 4+ 00135 + 0,005 = 0.0245, L i =4 oo b + 00|36 o

b’?ﬂ‘{ﬂlmﬂgﬁ = G'GEuL
% s S W S R
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hwwr ; I
p p} 11 e I ] By '
Ehppceen 214 EE::E: -t.illhl‘:.-l JH AR AL for 1= 1.3
dhiat FHA) A D
P, nA Pl ALY
—— et L ey
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 ppnAl L PEIPAR)
i=i pid

e —

Proof: Iy the definition ol comulitional probability

¥ A
PR A= f—;i;—r'T'-'

. a Wi I|,"I'b
sined Alsen vasing [ twssremn 2 13 in vhe ihirpm rinnh it e . !

Um e o < i PLB ) PLALB.)

[ I
Y PLBnA) T PLBOPIAB

! . |
whic b romipletos the prrisol

. fonnd 1o
2 42| With referonce to Example 2.41, il & product Wis clursaen Tll“uli-lttl]‘."fdllll L
be defoctive. what is the probalality that 1t was mude Ty maclane B
Solution : Using Bayes" rule 1o wnite

P8y PLALBY) .
PiByA)
(Bs|A) = Brp=prATh < P B2) PA| B2) = PLBa (A

and then substituting the probabilites caleulated in Example 2 il

. W have
~ T e I = = fs

() (5 0,005 1 o gl
PB4 A) = LI . e lj'?_l.]“‘ L,fn:un-l-lrjﬂ'l.
000G + 00135 + 0005 00245 i e ——

% tot

F“ view of the fact that a defective product was s Jected, this result suggests that

a7 it probably was not made by machine 5.

K

A manufacturing finn employs three analytical plans for the design and
opment of a particular product

times. In fact, plans 1,
T*"'ih!.'Tn't'l}'

devel-
For cost reasons, all three are o] at "-‘i-l.r}"-lnﬂ

2. and 3 are used for 309, 209, and 0% of the products,

The defect rate is different for the three procedures as follows:

P{D|P;) =001,

f"i P"L ?s
\ - @ : PLDIP,) =003, PID|P;) =002, -+
) W\ 3:;5"-\.3},_5._._:' . | - ; 3y | W b
W where P(D|P;) is the probability of a defective product, given plan j. If a random 4,
= product was observed and found to be defective, which plan was most hikely usec 2 0.a3 | o ""[
and thus responsible™ ———

7
Solution : From the statement of the problem P (P / D’J

Pl = 0.30), .lnip.sl = 0.20,

n'\-"“-?l E‘hﬂig

I [=—H
iﬂl‘i .”|f'-|.| = ). 500, E A e B i‘.:} lq

we mmst find P(P,|D) for j = 1.2.3. Bayes’ rule (Theorem 2.11) shows

THELRY ] -
jll'h(illf]}= : 1'..1'1 Ilf_)”:]
gl .”|Jrl..“1|r} f'}| .y | "]-"In.’]if_-': 1 pll“\ D l”-“
.30)(0.01)

= _hous - 0158
= T03)001) = (0.20)(0.03) + (0.50)/(0.02) BRTITT T V]
Siilarly.
03)(0.2 s 0.02)10 ?
0.03)(0.240) 1021 0.54)

pipD = —m— =1 M6 and PP D) = ——— =1 M. I}
: D010 010 s

| n
The conditional probability of a defect given plan 3 is the largest of the three; thus

a defective for a random product is most 1

ikely the result of the use of plan 3. A
Using Bayes' rule

& statistical methodolog) calk
attracted a lot of attention i applications. An

will be discussed 1n Chapter 18

J the Bayesian approach has
imtreduction to the Bavesian met hod



,;s%

T -2 .
3+ 001111222333444 15 —s AVH = =l
e ® 5567778800 i6 | | i
i 1= 11234 . 5 ( M&q?' ;'3_‘ |

£

e,

i

‘&-_@ ~ qr) 2"!‘ —(e-H )
%@Y’) q; 4@*°f) 2° ._>(51°ri
—Ioible S Fmo=as

sl 320 %
— | i b”* r ’T
3) Histogram )y
s |-5Ht7/7_ lgrc}- \ " Mean of Histogram
i idpoi i : '
Table 1.7: Relative anu(-h’g,\' Distribution of Battery Lik Mean= L A;:ldpomtxf oo R-ﬂ %
pn Class Class /Hi equency, Relative — /
Aew> Interval MAlidpoint f Frequency .
‘/1 5 1.0 iy 3 X[/, 0.050 _(\_1.7 X _?,){-Q.Z X\+--+47x3
\’;\/‘: 20-24 2.3 24 1 \/4e-0.025 - 751 .t
"‘_)3) o P 2529 87 % 4 4/as-0.100 i
A e g e by =3.4125
9 A \, 303 3.2 15 0.375 A )
\-‘ ;( 3.6-3.8 3.7 10 (0.250 \\“) 1) 56“'- y
< G 1044 4.2 s B 0.125 )\ 4 st
FV 45 4.9 L7 i 0.075 Yol AL E’ 28 .

&N
:




E.t:] ;

&

s been put into increasing order.

ﬁuartile, denated by Qi , is the median of the lower half of the data se

'S that 25% of the numbers in the data set lie below Q and about 75%
~ = The third quartile, denoted by Qs , is the median of the upper half of the data set. This
means that about 75% of the numbers in the data set lie below Qs and about 25% lie
above Q; .

; "
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Find the fi flrst and third quartlles of the data set {3, 7, 8, 5,12, 14, 21, 13 " 16 18¥
B gy
(m increasing order: 3, 5 R 12 1214, 16, 18, 21. (./»;J)j
CE T e R fo, -
Location of Q1: (10+1)*0 25=2.75 .25
Interpolation  ""¥ !
Q1=value of location 2+0.75*( value of location 3- value of location 2)
Q1-5+0 75*(7 S = A e ol
" Location hof Q2: (10+1)*0.5=5.5 \
\ Q2= (12+13)/2=125 Q|
ocation of Q3: (10+1)%0.75=8.25 r\:L%)f\) 36 2_) 5
Q3=value of location 8+O.25*(value of location 9- value of location 8)
Q3=16+0.25*(18-16)=16.5 TS e
Inter quartile range (IQR)= 2
Q3-Q1 |
il
',.?*@C UL—\16‘ 5+L5*10) =31.5, Q3 L \3:)_7(
.5 (1.5%10)=-85 =2 5-8:25
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- T——
o 5(0,.:.:31?1

IQR=2.015-1.6325=0.3825
UL= 2.015+(1.5*0.3825) = 2.58875
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'Flnd 29% percentile of Table 1.8 n=yo
Location of 29% percentile is (40+1)*0.29=11.89
29% percentile=Value of location 11+0.89*(Value of location 12-Value of
location 11)=1.64+0.29*(1.64—1.64)=1.64
GUIA

s CP wﬁ) e Cé)
i ;\@n\f
5 .

| L) ()7







Chapter 2
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» Statisticians use the word experiment to
. describe any process that generate a set of




Definition 2.1- | The set of all possible outcomes of a statistieal experiment is called the sample
by L] ——
space and is represented by the symbol S.

Ench outeome in & sample space is called an clement or & member of th
sample space, or mmply & sample point. If the sample space has & finite number
of cloments, we may st the members separated by commas and enclosed In braces.
Thus, the sample space S. of possible outcomes when & coin is Hipped, may be

writen e
: ~> S
Cllan —> g o7, ¥
o /P c—/ -~
where H and T correspond 10 heads and tails, respectively l-ﬂ-‘yl-ﬂ:ﬁt)'w N

b Ssbedl Sui@dt b e Mo
_S ) (S»p‘s\ o lo
le - N <))o
Example 2 1:| Consider the experiment of tossing a die. If we wre interested in thcgmgnbcr ltgat
shows on the top face, the sample space is

\you < [, {1‘2.3.4.5.6}]

—

i g ::1 ;ﬁ: imterested only i whether the sumber 15 even or odd. the sample spuece

29,2 (g S = {even odd), 1

' than one sample space can be used to describe the outcomes @
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T2
T3
74
T5
76
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Figure 2.1: Troe disgram for Exsmple 22, 5 _f—'

P("’Faﬁﬂt&t (Y sy =L sploy it

Sanple SFbl/cp__

Paruple 2.3 Suppose that throee items arc scleeted at mandom from a fnmm}'muu;ing PrOCCsS.

Each item is inspoctod and classified defective, .,.Q*- or nondefective, N, To list the

clements of the sample space providing the most information, we construct the trec

S \)",,.9 V= disgram of Figure 2.2. Now, the wnous paths along the branches of the tree give

3 (_3 ; : ) the distinet sample points. Starting with the first path, we get the sample point
NG

DDD. indenting the passibility that all three items imspected are defoctive, As we
nrocoed along the other paths, wo sco that the samplc space is

S {DDD. DDN. DND. DNN. NDD. NDN, NND, NNNY.
b
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S={x [ X

X is a city with a. population over 1 million},

.t- L _-' b & 4

oeriment are

such Fhot T 6L

which reads "S is the set of all x such that x is a city

with a population over 1 million.

—
i
|

S A Gty Witho

L T g VT el ¢ A s L P

WA Lol (A1 e e

T T ———

\ L 5

‘the set of cities in the worl
~ a. population over 1 million:
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* Event B

defectlvej_gg greatefihan 1> o

e e
Ba = BN YN D, NDD., DD
‘H{@B‘f cshe-adﬂl\ilgkg 3 s o) L A L—H“C?S
22 5
9
atleast  « €= DN/ WDW/ WD JPINY
& two Al
= NI 0\:;*\ e\l
3 Vide
(J\M LJ):LE- A_/_-\-u—ax_‘\) (_\T MJ'&'
Example 2.4 | Given the sample spacefS = {t | ¢ : \}3 where £ 18 the hfe in years of a certain
electronic component, then hr‘ﬁ?ﬁt—h 1at the component fails before the end of
r'— s 1{1_(‘ fifth year I*- i!u »u!m*t A={t]10<t <5} I 2\ Lmo b i 7

l 257 Jeprsd S)‘\f‘-ﬁk‘l m

The complonwnt of an event 1 with respect to § is the subset of all elements %
of S that are not in A. We denote the complement of A by the svmbel A’ ' i

Definition 2.3

- e

Example 2.6: Consider the sample space
S = {book, cell phone, mp3, paper, stationery, laptop}.

Let A = {book, stationery, laptop, paper}. Then the complement of A is A7 =
{cell phone, mp3}. 3

" s th*‘w
number greater than 3 3 in a tossing of a die




ts it is by no means -
Aand I; t:lt::ﬁgnnoﬁ ho:gen occur simuitancously. The events Ail ag:} !ann a;;
ﬂiﬂ lm:l mutually exclusive. Stated more formally, we have the

| ' &nnta A and B are mutually exclusive. or disjoint, if AN B = ¢, that
l’! if _A gnd B hm'e o elcments in common. ‘L g L

e 5ol &‘ \..)
ition 2.6: [ The union of the two events A and B, denoted by the symbol AU B, is the event
contaiming all the elements that belong to A or B or both. :
EIRHI]‘II(‘ 2.19:' Let A = {ﬂ., b, C} and B = {b, C. d,(}; then AUupB = {a'b, c. d, ('}. . |

ADR=) 0,3
Z"’&G—feﬂgg/é Us(pl=s disdaiet ey

15 11 :
ey d\_:s-fal d‘,_“}:
1 R R "(\W(Q NN v“uq_
Example 2.12:] If U [.r; £« 9} and N = {y| 5 < y < 12}, then

| .Uii.\':{: 3<z <12}, ; M‘/)N:Z_j)gj\uq_g

\

v
-

M

9

B3

e o~ i
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- graphically by means of Venn diagr:

The relationship between events and the corresponding sample space can be
illustrated graphically by means of Venn diagrams. In a Venn diagram we let
the sample space be a rectangle and represent events by cireles drawn inside the

rectangle. Thus, in Figure 2.3, we sce that

AN = regions 1 and 2,

BNOC =

regions 1 and 3.

@ Vet

e |
5]

<
L

Figure 2.3: Events represented by various regions,

Ast 4UC = regions1,2,3,4,5, and 7,

s\




= A,

fnl mmordm
ng events occur:

dockofsaphﬁns"

o the ctrd is the jack, queen. or king of diamonds,
C: thie card is an ace.

'.ﬁ-" / 3#‘4,5!“& Clearly. the event A1 C consists of ouly the two red aces. . ¥
Several results that follow from the foregoing definitions, which may easily be
.2 ’q / C_S verified by means of Venn diagrams, are as follows:

; I. Ano = é. 6. ¢'=S. 5]
2. ." L Q= ."l. )
;8 & Y = -‘1--
3‘ fl M ;'l’ =z ;:l_ l -l ) //
-\,l;l p . AuAd’'= 8, ‘1.'—\31' ‘up

G
b. §'= 0. ¢ L . (AuBY=A'NAE".
: - 74 [

> 8;{3‘

* Exercise 2.7: [

Four students are selected at random from a
chemistry class and classified as male or
female. List the elements of the sample space
5, using the letter M for "male" and F forar""::.i'f

”female Define a second sample space




Saml sl
B = face, S >MeFefshn £
Si W @ o s S'?-‘\:;(““ {5
Femal e S s
™M :
il7/ : ;
e Exercise 2.14:

={0,1,2,3,4,5,6,7,8,9} and i
={0,2,4,6,8}, B={1,3,5,7,9}, C={2,3,4,5}, and
1.6 17}

4U C={0,2,3,4,5,6,8}.

L
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buyamachaimaf'

colonial, and tradit:&ml #ﬁminr sty]mg in _WI twWo-S1OTY.
lans. " In hmv many diffcrent ways can a buyer order one of these homes

and spht-level

Since ny =4 and ny = 3, buyer must choose from

mn, = (4)(3) = 12 possible homes.

’
—
ke

Example 2.15:/ If a 22-member club needs o nl{g_t_:_; chair and a treasurer, how many different

ways can these two to be elected? i - ;

2_2 Solution: For the chair position, there are 22 total possibilities. For each of those 29 pos- =
F\L’_\ sibilities, there are 21 possibilities to elect the treasurer. U sing the multiplication
rule, we obtain 1) x n» =922 x 21 = 462 different ways. N

O\q v~ The multiplication rule, Rule 2.1 may be extended to cover any numl f
x 7‘\/ 3 Yoy ) 3 y number of

Oppmtmnu _PIppose, Tor instance, that a customer wishes Lo buy a new cell phone

29_ 2, @ . _and can choose frmu/![ =5 I:ramin Mo = 5 sets of capability, and 3 = 4 colors. | c@d\‘ l\_}.\

M heso three classifications result in mngng = (5)(5)(4d) = 100 different wavs for
a customer to order one of these phiones. The generale'_o_dEn-’ultiplication rule)
covering k operations is stated in the following.

Rule 2.2: | If an operation can be performed in n; ways, and if for cach of these a_second

@' 3 operation can be performed in 72 ways, and for each of the first two "a third __
aporanon can be performed in ng wm‘s. and so forth, then the sequence of k
operations can be performed in nyny, - - n; ways,

Example 2.16:/Sam is going to assemble a computer by himself. He has the choice of chips &am
' two brands, a.hard drive from 1 four, memory from three, and an accessorv bu
from five Jocal stores. How many difforent Ways can Sam order the pa.r(s"

ﬁalum Since n; = 2, n, = 4, 13 =3, and ny = 5, there are

M xny XNy xng=2xdx3x6=120 ' S P o,



~* Answer ( Ex. 22)

n,n,= 8*3=24 classificati




Answer ( Ex. 27)

n,n, n;n,=4*3%*2*2=48 d




Answer ( Ex. 33)

n,n, = 9*8=72 registrations to be ch




P 301 30 49 AN e

ol (S0 =« 2)1 481 481
(b) Since A will serve only if he is president, we have two situations her
selected as the president, which yields 49 possible outcomes for the
treasurer’s position, or officers are selected from the remaining 49 people

without A, which has the number of choices 4P, = 49 x 48 = 2352. Therefore,
the total number of choices is 49 + 2352 = 2401.

(c) The number of selections when B and C serve together is 2. The number of
selections when both B and C are not chosen is 43P, = 2256. Therefore, the

fotal number of choices in this situation is 2 + 2256 = 2258.

Example

« A president and a treasurer are to be chosen
from a student club consisting of 50 people.

How many different choices of officers are
possible if

— (c¢) B and C will serve together or not at all:

By b peesed. - TeaaswaA
)

» \ 0 . R \veuy —)

~ 2, 5 1% A

e -

{ o(\",

\._‘ J




Example: 1

How many (even three ligit) numbers can be

performed from the digits 1,2,5,6 and 9 if each :
digit can be used only once? ;e

__ e - 3
s 0O WER et |
i e i 3

n,n,n, = (4)(3)(2)= 24

5




Si Ennensn& Q@) NE) = LLEN
Ince the above two cases are mutually exclusive of each other, the totﬁl number

of even four-digit numbers can be calculated by 60 +96 =156 _

Definition 2.7: | A permutation is an arrangement of all or part of a set of objects.
i

: ﬁ \Sm \)) )\A‘\ Cousider the three letiers a, b, and ¢. The possible pcrmuta.r.-i-;.ms are abe, ach,
B?’ bac, bea, cab, and cha :

. Thus, we see that there are 6 distinct arrangements. Using

\ Rule 2.2, we could arrive at the answer 6 without actually listing the different
O,)"D orders by the following Arguments: There are ny = 3 choices for the first position.
No matter which letter is chosen, there are always ny = 2 choices for the second

position. No matter which two letters are chosen for the first two positions, thereg ))\‘ Lt. CJ

_ P is only ny = 1 choice for the last position, giving a total of ; \U l .. ;
‘ nynang = (3)(2)(1) = 6 permutations ! CS‘-J C)‘ J E kY
C_‘l (Cafar by Rule 2.2, In general, n distinet objects can be arranged in \ ( |

Lﬂ“D' Iine_qv’“ nin—1)(n—2)---(3)(2)(1) ways.

There 1s a notation for such a number.

Dﬂ @bde—"{.‘ﬁ\.a&:'sa n ( .._.i}_‘,":":, Al e
Z) ) &‘bdec’{: M‘l&“’/’:‘ Ly e, 99
3 : ni D Vil i
e . o TR @
che ~ d iFfevent ohje cl-

1 Theorem 2.1:]|The number of permutations of i objects 1s n!,

)
I
w

2

——
B 1
-

The number of permutations of the four letters a, b, ¢. and 4 will be 4! = 24,
Now consider the number of permutations thar are possible by raking two letters
at a time from four. These would be ab. ac. ad ba be, bd ca, cb, cd da, db, and
de. Using Theorem 2.1 again, we have two positions to fill with 2, = 4 choices for
the first and then n>= 3 choices for the second for a rotal of

miniz = (4) (3) = 12
permutations. In general. n disrincrt objects taken 7 ar a time can be arranged in
nr- 1)(n— 2)- cr{n—r+ 1)

ways. We represent this product by the symbol

(n = )

As a resulr we have rthe theorem thar follows.

1 dy =




iaby 2q 4230
>3]

B, e ) P

xample 2,19:' A president and a Lecasurer are to be chosen from a student club consisting of 50 5 o
people. How many different choices of officers are possible 1f

| (a) there are no restrictions: Y AR A Bl ”\}l
*[ S S = “Pfd
g_ (b) A will serve only if he is president; > Prerd ey P ik
| 3
| \ < (¢) B and C will serve together or not at al): Sc:
o () i Bt o ot o 4
: (d) D and E will not serve together? e

-—-\-_ - ] . . " - 3 g
Solution: (a) Ihe total number of choices of officers. without any restrictions, s

r o0!
] . - ,",{]P;; = Ei- = []”l{ 19] = 213”

e

1) Since A will serve only if he is

president, we have two situations here: (1) A s : 5
selectod as the president, which vields 49 possible outcomes for the tre

asuror’s o [
: . - >l —
S (200 position, or (i) officers are sclected from the remaining 49 people without Apyssr %y ' ¥ qq -+
ez U.g’i which has the number of choices 19l = (49)(48) = 3352. Therefore. the tm:tL:DP L i ks (’-g = (fq
2 1 number of choices is 40 + 2352 = 2401, Poo=i
D> "'|‘ P (¢) The number of selections when B and C sorve together is 2. The number of

Start again with the 2450 permutations If B
selections when both B and C are ot chosen is ] h =, '

2256. Therefore, the
| ‘t@“ U:? total number of choices in this situation is 2 + 2256 = 2258 yg -

——

(d) The mumber of selections when D sorves & an officer Bt ot E s (2387

—

= also eliminate the 96 outcomes in which C w
86, where 2 is the mumber of positions D can take and 48 is the wnber of 9450 _ g6 96 = 2258 2 Whmh Cw
selections of the other officer from the remaming people in the club except

o The number of selections when £ serves as an officer but not D is also 'F' <_\- — Do
(2)(48) = 96, The number of selections when both D and E are not chosen NS 1%

. Therefore, the total mimber of
' has another short sol

.". Si_nm Dalld E can 0nl3.- )‘@ L Lo HL: '

other than C who might be treasurer And ﬁ a4

other than C who might be president Wemi L




utations.

Example 2.21"}:1 In a college foothall training session, the defensive coordinator needs to have 10
players standing in a row. Among these 10 plavers. there are 1 freshman. 2 sopho-
mores, 4 juniors, and 3 seniors. How !Ilé'imlﬂ. ways can they be arranged in
a row if only their class level will be distinguished?

Solution: Directly using Theorem 2.4, we find that the total number of arrangements is

I« <qpat lo
T T TR R
S
©> 2

_—-‘-..______ *\‘\-“

r_ a - . - . _\hh
The number of ways of partitioning a set of n objects into r cells with n elements
in the first cell. ns elements in the second, and so forth, is

My Moy B nyiny!..on!

b |

n n!
!

| wh TC Ny + Ma 4+ + Ny = 1N,

-

ming a conference?
er of possible partitions would be

ny ways can 7 graduate students be assigned to 1 triple and 2 double




e

ssawy po I

— d.;\g

—

In many problems, we are interested in the number of ways of selecting r objects
from n without regard to order. These selections are called combinations. A

g combination is actually a partition with two cells, the one cell contamming the r
A) objects selected and the other coll containing the (n — r) objects that are left. The

L] r Vv
; L\/H D . e
W 9. C_O""b!' Vlﬂ.ﬁ ansnum}wr of such combinations, denoted by
n

n :
. is usnally shortened to :
ron—r r

since the number of elements in the second cell must be n — r.

i
mmhinnlivnf})_f n distinct objects taken r at a time 1s

sefedt "'{:fjn_ n!
ezﬂbfﬁ r] rin-r)V

Theorem 2.6: | The number of

b

Pxample 2.22:1 A young boy asks his motherfto get]5 Game-Bov '™ cartridges from his collecti
P ; 2 A e 1on
of 10 arcade and 5 sports games. How many ways are there that his mother can

2

get 3 arcade and 2 sports games? R
Solution: The mumber of ways of selecting 3 cartridges from 10 1s \o qrj‘ﬁ-{ b SP
3

10 101
(3) I

The number of ways of selecting 2 cartridges from 5 is

(-7

— = 10.
rule (Rule 2.1) with n, = 1

2! 31




permutation of n

objects where n1

repeated items,n2
repeated items

Permutations and Combinations

Number of permutations : Numberof éénmbi_aations
(order matters) of n things (order does not matter) of n
taken r at a time: things taken r at a time:
n! n'

)= (n-r)! CRTAR (n—r)tr!

Number of different permutations of n
objects where there are n,repeated items,
n, repeated items, ... n, repeated items

n!

.

bl o




B 2.32: ,
a)How many distinct permutations can be made from the

b SO ’p :
letters of the word columns?, - AN
\ D>
040 :

How many of these permutations start with the Jet-
| e
P 1 ¢




Ex. 2.40

In how many ways can 5 starting positions on a

basketball team be filled with 8 men who can

_play any of the positions?
dIf fevent

- 6720




| 1 Overview: Statistical Inference, Samples,
Populations, and Experimental Design

-Use of Scientific Data
-Variability in Scientific Data '\L
-The Role of Probability

3 g c/ 2 G
oy <o rﬁg_._*,l éc\)g' b Yz g
3 c*;_))“-,_wf 250> L_;EA Y 3. [

P Mgl curm p qslpy

Example 1.2
Often the nature of the scientific study will dictate the role that probability and
deductive reasoning play in statistical inference. Exercise 9.40 on page 297
provides data associated with a study conducted at the V 1rg1na Polytechnic
Institute and State University on the development, of a relationship between the
- & roots of trees and the action of a fungus. Minerals are transferred from the fungus
i {o the trees and sugars from the trees to the fungus. Two samples of 10 northern
O);A red oak seedlings are planted in a greenhouse, one containing seedlings treated
with nitrogen and one containing no nitrogen. All other environmental conditions
are held constant. All seedlings contain the fungus Pisolithus tinctorus. More
details are supplied in Chapter 9. The stem weights in grams were recorded after

the end of 140 days. The data are given in Table 1.1.




Arpose of this experiment :

L)-ﬁ'bhf_,\:-ﬁbt“m) Uﬂﬁ‘/‘
th f ni | g
€ use ot nitrogen has an influence on t

A }JM,
he growth of the roots.

Table 1.1: Data Set for Example 12

: Y3 — 5 N C,.J\AP‘
No Nitrogen Nitrogen
| \W 't \ W Ay {)3: = " "g_ | \PJ)\]L}LU C))_Qf‘)\_)-"-l;
P oo\ 0.26 — 5\ PSS B 5y,
& @ N ) ©*1-0.53 0.43 Cﬂ_d\ d’s‘” U*@)\%
' \'f’\ m\_} 'V\.:JA.I g‘ Js "'PO:S 0.47 -._1- /Pj"h! \)gﬂ (=<9
- ACAYC M e 0.37 0.49 o M/\A/j
Lﬁz & " - . . . , —0- 0
by.,0 Jore (ft(fcs( — o}k 0.47 0.52 (C 2% -0 86
_ ..,."\Ndp\?)\ K)pi 0_13 0.75
0.36 0.79
| 042 0.86 —&«
(L B8s 05Y) o 0.62
0.43 0.46 :
’ X % Nl
t ! F‘ i 3 i X X I Y X : Ak L J»* - \ Air : _|[_ {
0.25 ! Qo0 035 040 045 0.50 ] 085 060 065 0./0  OFG 080 0.85 W
| Yos32
Figure 1.1: A dot plot of stemm weight data. 0:) 3\ 0"!{’_();[\:'3“;*‘
- o g+
Gl @) Oy st A\m 5
PesePhiue stalictes g Gopnfisiice | S LaLy

w ey
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A s G s 5 730035 Ol e Tolp YL &

* On average, the use of nitrogen increases the
stem Welght. ol SEW G)s G w7 gy @slp |

o N?trogen is effective but ,how can this be
quantified. ¢
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1.3 Sampling Procedures; Collection of Data
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Example 1.3:1 A corrosion study E«/as made in order to determine whetﬁer
corrosion of an aluminum metal coated with a corrosion retardati o
Coated araation substance \_C.xk)\i 39

reduced the amount of corrosion. The coating is a protectant that is advertised to

minimize fatigue damage in this type of material. Also of interest is the influence of % JU‘?M
’ w «humidity on the amount of corrosion. A corrosion measurement can be expressed i l})’“ =
5.1);}’)5\ in tho.usands of EYEI?S to failure. Two levels of coating, no coating and chemical ) _Le <
corrqsnon co:fiting, were used. Ip addition, the two relative humidity levels are 20% \}5 <Ol
relative humidity and_TB_(I’/i relative humidity. ; e v L, ¢ d{‘}\h
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Data Analysis S aag i
Measures | 3

Tl (oo

Measures of center of LOC§IOH (Central Tendency) Measures of variability (Dispersion)

(where the data c sample)

(z;«‘-\""J LSA\_)" ‘U’!’ a¥4 «~NMean
depy ' | . Median 2
\S, Q\T,o(MOdengl )

Other methods of quantifying the center of f”“
location: \ D\

[Trimmed mean 2 ds By,

“trimming away” a certain percent of both the
largest and smallest set of values)

measures of spread” = =
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1 4 Measures of Location: The Sample Mean ang

Median
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Definition 1.1: | Suppose that the observations in a sample are &y, r2.. ..
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Detinition 1.2: | Given that the observations in a sample are ry, 2. .. .- v, . arranged in 44

order of magnitude, the sample median 1s
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As an example. suppose the data set is the following: L7, 2.2, 3.9, 3.11, and

-
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14.7. The sample mean and median are, respectively.
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Clearlv. the mean is influenced considerably by the presence of the extreme obser-
vation. 14.7. whereas the median places emphasis on the true “center” of the data
set. In the case of the two-sample data set of Example 1.2, the two measures of
central tendency for the individual samples are

AV~ T (no nitrogen) = 0.399 gram,
: , 0.38 + 0.42
wme oy T (no nitrogen) = : = 0.400 gram,
i (nitrogen) = 0.565 gram, =
it 0.49 + 0.52 |
MeaV) & (nitrogen) = 5 = 0.505 gram.
V“’/U"%C\ A < X = 0.565

0256 B0 035 040 0456 050 055 060 065 0.70 075 G890 Q8BS 090
Figure 1.4: Sample mean as a centroid of the with-mtrogen stem weight.
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Other Measures of Locations Jod de 8Bl @
sirmimed Mearr: == G

e.g., in computing 10% trimmed mean, we cancel
the highest 10% and the lowers 10% of our data
-Benefit: 7 %o

1)Having a mean close to median doio: A 3@\1 (j;l;
2) Reduce the effect of very high and very low = s, -4

value

size 1s 10 tor each sample. So for the without-nitrogen group the 10%¢ trimmed
mean is given by

< 032+ 03740474+ 0.43 +0.36 + 0.42 + 0.38 + 0.43 et
Ltre10) = 2 = 039750

and for the 109 trimmed mean for the with-nitrogen group we have

———

¢ 0.43 4+ 0474049+ 0.52+0.75+ 0.79 + 0.62+ 0.46
14°tr(10) = = ).56625.
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** Trimmed Mean for No-Nitrogen

No-Nitrogen Nitrogen
0.28 0.26
e 0.32 0.43
Tiyi10y = 0.32+0.36+0.37+0.38+0.42+0.43+0.43+0.47
0.36 0.46
0.37 0.47 8
0.38 0.49 = 0.3975
0.42 0.52
0.43 0.62
o 90 ** Trimmed Mean for Nitrogen
T 0.47 0.79
e 06 Tir(10) = 0.43+0.46+0.47+0.49+0.52+0.62+0.75+0.79
8
m \ e e o = 0.56625
Q?—j.“;zj 3 meard) | G0 2 145D Ninndumen) ) 028 & 0.56
cAr

The trimmed means are close to both thelmean and median for the individual samples

—

ar® eliminated apart from the middle one or two observations.

(Trimmed mean is more insem@othan the sample mean but not as (nsensiti\@

as the median. ass s\ (o vt

6T The sample median is a special case of the trimmed mean in which all of the sam

ple data

wear

Measures of Variability
-Range
- Variance and Standard deviation

Range = Xmax — . et

The sample variance. denoted by s2, 1s given by P olu (af | OU
i) i
{ Y\ | . 1 -
o B . |.I’, pove .I']l (5" - i( /X - ”X )
= ' e e S = o

Sfr.t

The sample standard deviation. denoted by s. 1s the positive square root of
p) p

s*. that 1s,

S e F Sqm(LQ
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Apie 1ol In an example discussed extensively in Chapter 10,
testing the “biac” ; an engineer is interested in
¢sting the "bias” mn a pH meter. Data are collec ted on

the meter by measuring
the pH of a neutral substance | (pH = 7.0).

\ ‘\dll]]}]t Of n]/( 10 1S 1 ake . with results

given by
107 7.00 7.10 6.97 7.00 7.03 7.01 7.01 G.98 708
The sample mean ris given by ( I-.( gJ RS ;'f / \J i "‘H O\ &
_ | o pe
(O7T +7.00 4+ 7.10 4 5+ 4. 7.08 O3 oo\ J U
o= = 7.0)250, (&L
10 o - -8 d j <

. N 5
The sample variance s? is piven bv

) I y 1
ST = Al U7 — [])F}l" —+ (.‘.”“— ;,“:_"‘.-J)" - (._]f] — .r,“‘);',)“
\5_7 -"" & }

+ -+ + (7.08 — 7.025)%] = 0.001939.

As a result, the sample standard deviation is given by

S | P

s = v0.001939 = 0.044.

50 the sample standard deviation is 0.0440 with n — 1 = 9|degrees of freedom. |
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Statistical Modeling, Scientific Inspectlon and
Graphical Diagnostics of L .,\,p.\
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1) Scatter Plot - HAatstics

At times the model postulated may take on a somewhat complicated form. Consider,
for example, a textile manufacturer who designs an experiment where cloth specimen
that contain various percentages of cotton are produced. Consider the data in Table

1.3
Table 1.3: Tensile Strength (-)\_Qp Q:_M '\Va_s DJ\‘».D Z:..Ag__) Z:»/L&ﬂ

Cotton Percentage Tensile Strength

15 % 7 9.8 10
20) 19, 20. 21 9029
25 21, 2117, 1890
30 8 7 8.9 10
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2) Stem-and-Leaf Plot (}/) 1> uh—?) \

e.g., To illustrate the construction of a stem-and-leaf plot, consider the data of Table
1.4, which specifies the “life” of 40 similar car batteries recorded to the nearest tenth

of a year. 5)M%)Lb\| SWLEN
Table 14: Car Battery Life 75
- aiin il
P BE s 32 3.7 8.0 2F
% v . BedslS) »3.00 3.3 308031 ‘4 Ay
Lo BEEd® 54 36 29 33 &,
(& b 2B, 4 6. 29 33, .38 My o 7
fff'eL'_w[\”?\ A 37 44 32 41 s 2 R4
PN E9EB822 .26 39 3.0..42 9%

155 | L )
M‘f\ ) *E“" % kl‘nblc 1.5:] Stem-and-Leaf Plot Jof Battery Life
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