

Civilittee

اللجنة الأكاديمية لقسم الهندسة المدنية

www.Civilittee-HU.com

دفتر سويل (كامل المادة) إعداد : قصي الهاشمية

www.civilittee-hu.com

Civilittee Hashemite

Civilittee HU | لجنة المدني

Soil:

هو خليفات او باراكلوز قدرة حماقة
مسخنة بحسب العوامل الجوية وكمير ملائمة
بعضها وفيها فراغات خروجي ليحوي على
الماء او الاد لو كلهموا

* نجني عن الماء Soil

1- فراغات

2- فراغات

* هناك نوعين العوامل الجوية مبنية على Soil

اللجنة الأكاديمية لقسم الهندسة المدنية

Sands ← فراغات ← رصيف حج الوضع
Gravel } .

كبياش ← تخير التركيب الكيميائي للعمر
Clay ←

Origin of clay minerals

نتيجة تفاعل H_2O مع العصر تكون الكلس
رسواد على المطر أو قرية منه المطر

٢- يطأ على المطر H_2O من صهار CO_2
 HCO_3^- المطر وحلاك وينتج حامض الستربونيك
ورث تبادل مع العصر

كوارتز وفلسبار
شكلوا العالبة

www.Civilitee.com

باقي الفلسبار فهو K بنوليد ياتي معاشرة

(يامن تحول إلى حصر جريرا $\text{NaAlSi}_3\text{O}_8$)

لها ذاته <<<

Basic Silica Tet.

1:1 Kaolinite

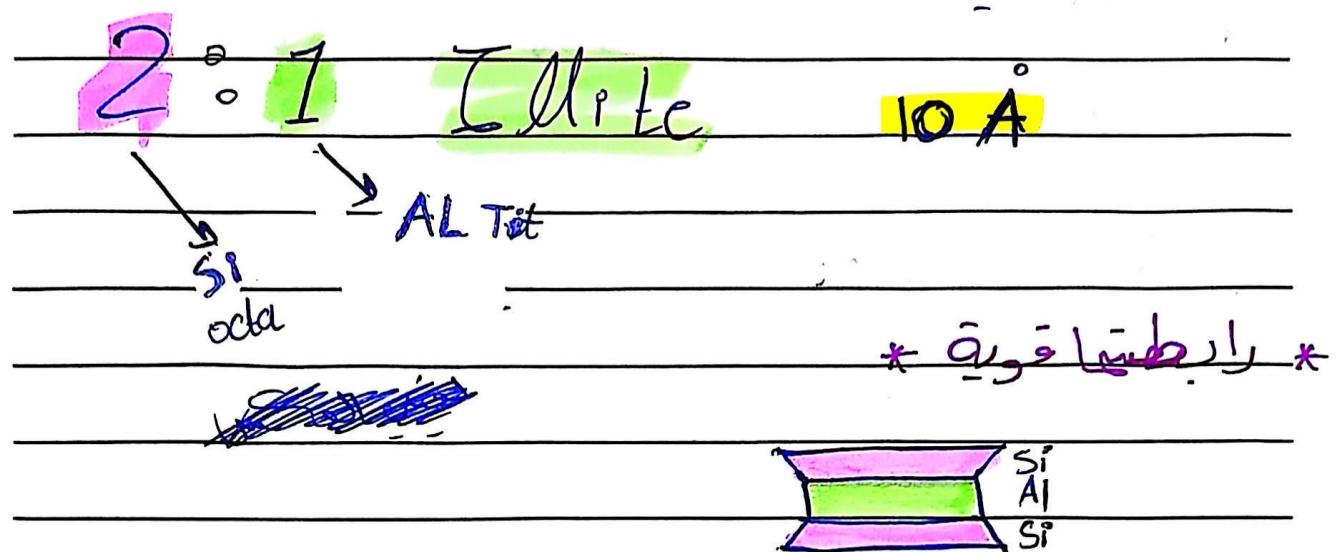
Al octa - Silica tet

0.72 nm \rightarrow Sheet والآخر

تو الروابط بين كل ستة وسبعين

Van der waals - 1

عوبار \leftarrow Hydrogen bond - 2


(-) days من حين تشكيله كل يوم

(days)

clay) تكسر بعد اطرافه (broken edge) oil *

وتشكل تشكيلات سالية (النطاف) على سطح

النوع الثاني

* ذاكر ده ال clay سايد لأنة (Si) فتتسرب وبح
او سبب ظاهرة "حل صفر محل صفر اخر"

* أكثر الاسس مسؤول عن معاشرة المائية
Water لأنة متحمل المائية

* يتجه اكتر على الماء لاتحاول تحرر الماء عن بعضهم
متلافي R ((الماء نفس حجم الاهيجات اخونال كمول))
يعني كل اقدر

* والرابطة قوية لأنة عالقد وها نجاها في حن القناع
الطين والمسويل

2.1 Montmorillonite (Smectite)

نوع ترکیب
میل قبل

$$A = 9.6$$

نوع الحالات المائية وبروت

* اى ايون موجب يبعن الـ Na^+ ماء راه Na^+
فيقى ان ريجي الـ Na^+ الكبير او الصغر من حجم المول
فما يكون الزراقة قوية

* الـ Ca^{2+} ذئب في 8 اجزاء وزنه و السائل هو
مليم الى وينتفخ

* feel
* Size
* shape Soil Texture

Coarse Soil

Gravel Sand

#24

#200

0.075 mm

Fine Soil

Silt

Clay

0.002

العنوان ~~Text~~ ~~العنوان~~ ~~العنوان~~

~~وتعزيز الالتحام~~

~~poor // well graded~~

Soil

Clay

حصى

١- الباردة سالبة (clay min.)

plasticity

#200 size نحو ٢٠٠ size Spec ١١

Size

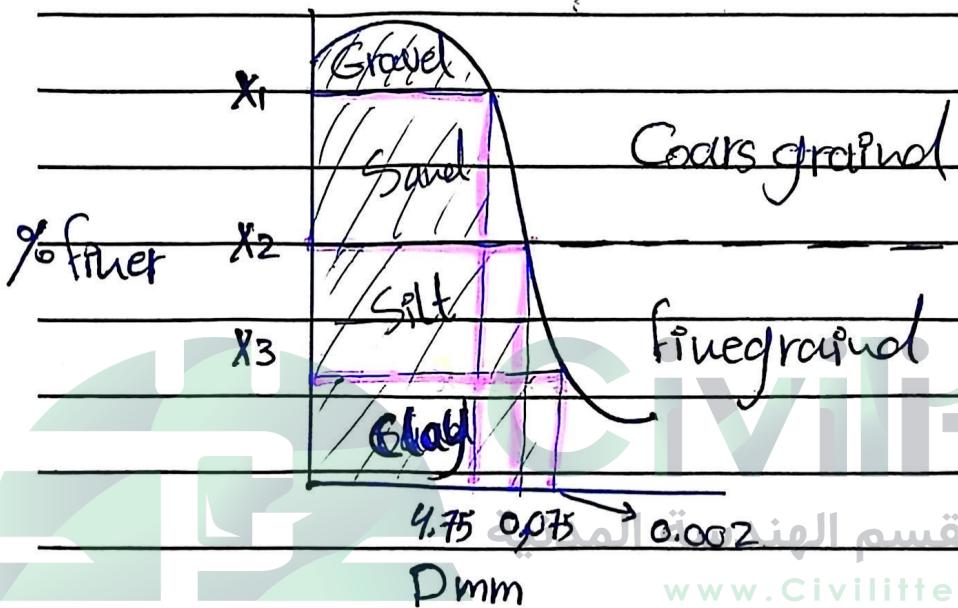
poor / Well graded

Coarse

Shape

www.Civilittee

dis


fine

Water

Grain Size

$$\% \text{ of coarsegravel} = 100\% - x_2$$

$$\% \text{ of finegravel} = x_2$$

$$\text{Gravel size} = 100\% - x_1$$

$$\text{Sand size} = x_1 - x_2$$

$$\text{Silt size} = x_2 - x_3$$

$$\text{Clay size} = x_3$$

Soil Classification

Grain Size dis \rightarrow Coarse Jol

LL, PI \rightarrow fine LL glu

* إننا نعرف أن $\#200$ يعنى بين 11 و $Coarse$, $fine$ اذا كانت $\#200$ اقل من 50 اذا كانت $\#200$ اعلى من 50 50 $Coarse$ $fine$ 11 $fine$ $Coarse$

#200 < 50%

#200 > 50%

بِ الْحَمْدِ

بـ تـ هـ

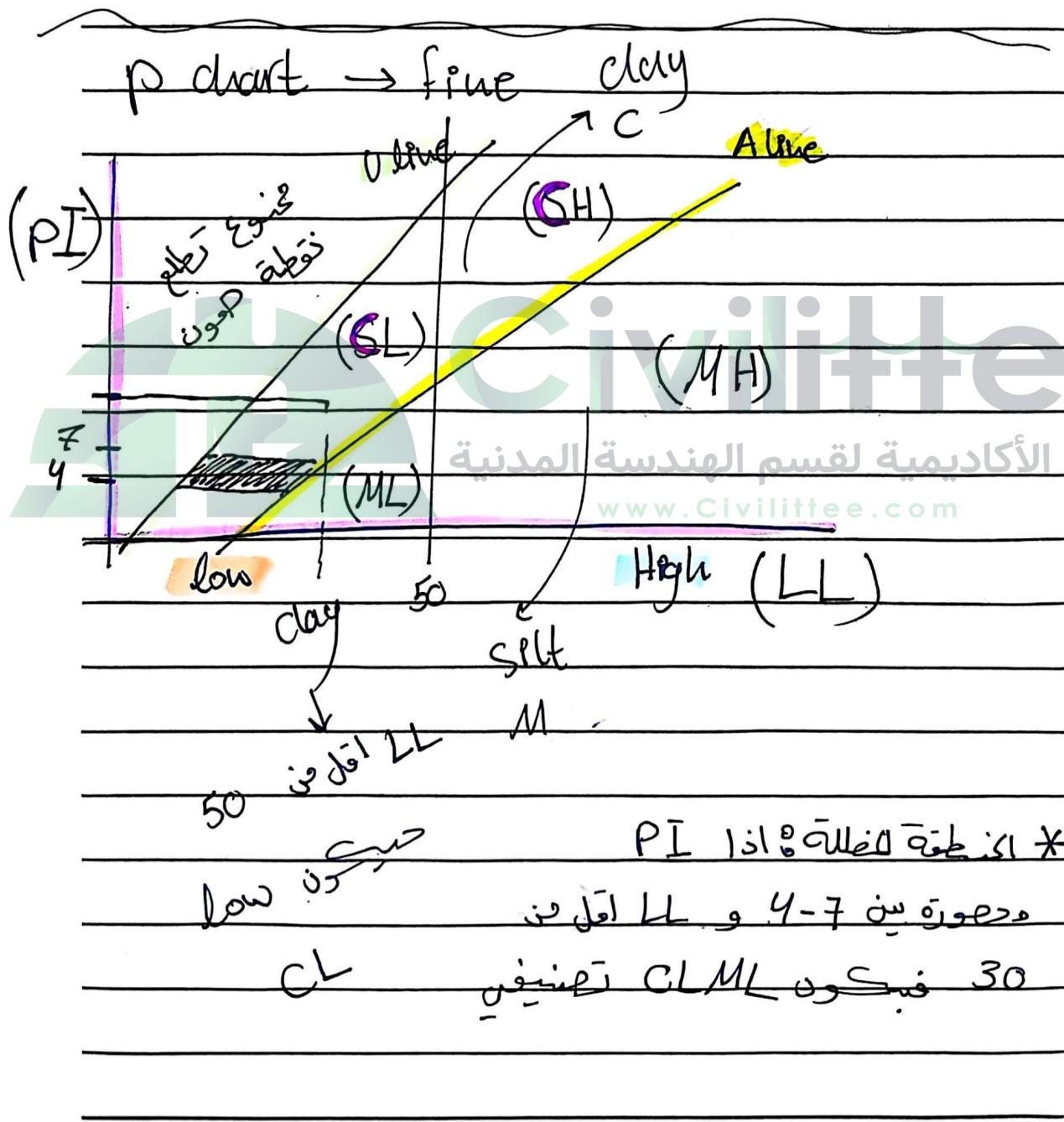
Cu

PL/LL

and graded

Cc

Plasticity chart


Coarse

fine

Liquid limit (LL)

High LL ≥ 50

Low LL < 50


١) دائياً ينروح اول شيء على #200 Coarse fine وال

fine بنشوف نسبة المقرن اذا اكبر من 50% بكون
Coarse بنشوف نسبة المقرن اذا اقل من 50% بكون

Coarse اذا طبع

fine اذا طبع ②

#4 بمرجع على

كتنان اعرف حمل مقرن

Gravel or Sand

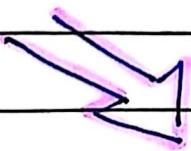
plasticity بمرجع على
chart

بنشوف الرغز

بكون مطابق

#4 < 50

#9 > 50


PL/PI/LL

دعيني ما هي حمدا

دعيني ما هي حمدا

مع مراعاة اتجاه

اتجاه

بمرجع على #200

تبعد

بنشوف كم نسبة

المقرن

200

میلے مر > 5%

مليون > 12%

5 - 12

pure Coarse

Coarse Grains

يُستغل حركة حاملة (١)
 صورة حاملة (٢)

SorG

fine وحسن

112

poor or well?

More

(1) (2)
SW - SC

~~C₁₀ G₈ C₆₀ طبع~~

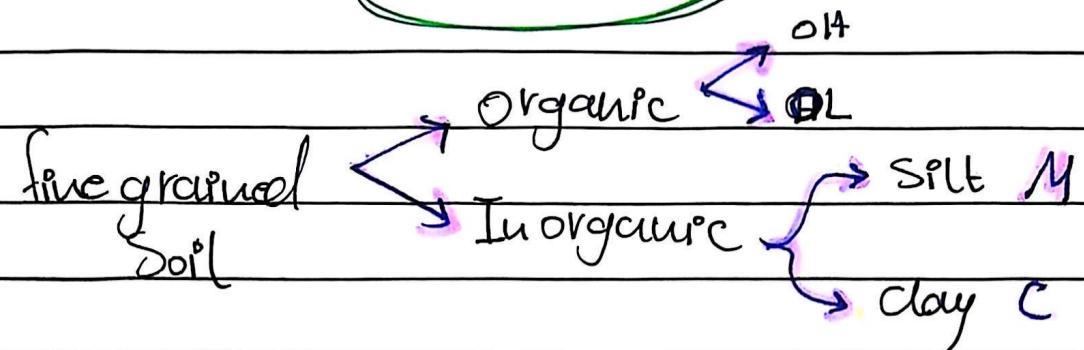
للزم اروح لا PC

Cc Cc لا يطلع

su sc

العنوان العنوان العنوان

GM GS


Well جیسا کہ

www.Civilittee.com

SP GP SW Gw

ال الموضوع :
التاريخ : ٢٠١١/١/١

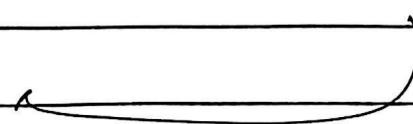
نوع الركيزة

الحالة السازة CLML وال حالات المئذنة

اسيد PI (الطبول) \leftrightarrow PL / LL محيطية

$$25 < LL < 30$$

$$9 < PI < 7$$


اللجنة الأكاديمية لقسم الهندسة المدنية

www.civilittee.com

الحالة السازة

org احتمال / طيف كثاء / ريشة كفن \leftrightarrow لونه أحمر

بعد Test المتأخر

التاريخ / /

الموضوع :

even
LL dry

< 0.75

LL air dry

organic و سرف Organic

جفون كيفية تحريف؟ أليس بجفون

Coarse grain soil

Coarse

#200 $< 50\%$

اللجنة الأكاديمية لقسم الهندسة المدنية

www.Civilitee.com

gravel or sand

\downarrow

#4

\downarrow

#200

5 >

12 <

5 - 12

٢٠٢٢

٥<

١٢>

pure Coarse

الخطيب

fine

chart

W/B

W/M

Cc/Cu

S/G + من اول

5-12

لوكلان

S + C M L

دسيم

(1) دعائى مرأة

حرة (2)

SC - SM

فرخاً

SP - SC

ولو طفعته ارحاله انتازه

دسيم

SP - SC - SM

SP - SC

دائماً يحيى كل M لانه اخضر

التاريخ / / ٢٠١

الطباطبائي

0.075 ~~as 22~~

لوگان اسٹری گل نیمی Org

100

1

○

25 "Kia es ist auch ein Hirsch" und schreibt

01

لواجن * #200 بارج 50 س

تجربة صرة Coarse و ﻓine

اللحنة الأكاديمية لقسم الهندسة المدنية

The Nature of Soil

Soil \rightarrow uncemented
poorly / weakly cemented

وهي فراغات محيطة بجزيئات التربة

Volume to Volume

The Void ratio = $\frac{V_v}{V_s} \rightarrow$ Voids
 \rightarrow Solid

اللجنة الأكاديمية لقسم الهندسة المدنية
وكلية الدراسات الجامعية
O, something about
www.Civilittee.com

The porosity $n = \frac{V_v}{V_t} \rightarrow$ Voids
 \rightarrow Total = $V_s + V_v$

The degree of saturation
النسبة المئوية

0-1 \rightarrow والباقي $S_r = \frac{V_w}{V_v} \rightarrow$ Water
 \rightarrow 100%

\rightarrow Voids

٢٠٢١ / / التاريخ

الموضوع :

Air Content or air Voids (A)

$$A = \frac{V_a}{V} \quad \begin{matrix} \text{Volume air} \\ \text{Total} \end{matrix}$$

Civilittee

اللجنة الأكاديمية لقسم الهندسة المدنية

www.Civilittee.com

phase relation

٢٠٢١ / ١ / التاريخ

الموضوع :

نحو الكلور

Soil \rightarrow un cemented + voids

water + air

~~Tot mass = mass water + mass Solid~~

~~+ mass air~~

$\rightarrow 0$

M_s = Solid mass oven dry

As Volume

اللجنة الأكاديمية لقسم الهندسة المدنية

www.Civilitee.com

$V_{Tot} = \text{Volume Voids} + \text{Volume Solid}$

$V_V = V_w + V_d$

$\downarrow \rightarrow$

$\frac{V_w}{V_d}$

$\frac{V_d}{V_d}$

oven dry

Volume - Volume Relation

$$* \text{Void ratio} = \frac{\text{Mass Void}}{\text{Mass Solid}}$$

$$(e)$$

$$* \text{Porosity} = \frac{V_U}{V_{\text{Tot}}}$$

$$(n)$$

$$n = \frac{e}{e+1}$$

$$* \text{degree of Saturation} = \frac{V_{\text{water}}}{V_{\text{void}}} * 100\%$$

$$(S_r)$$

$$\text{Saturated} = 100\% \rightarrow V_{\text{water}} = V_{\text{void}}$$

$$\text{oven dry} = 0\% \rightarrow \text{No water}$$

$$* \text{air Content} = \frac{V_a}{V_f} * 100\%$$

$$(A)$$

$$\text{specific gravity} = \frac{M_s}{V_s \rho_w} = \frac{\rho_s}{\rho_w}$$

Mass - Mass

* $W_c = \frac{M_w}{M_s} * 100\%$ Water Content

* $\rho = \frac{M_t}{V_t} \rightarrow M_w + M_s$ $M_w = M_t - M_s$

$V_t = V_v + V_s$ Bulk / moist

$V_a + V_w$ Normal / Total

Natural

$S_t = \frac{W G_s}{e}$ Dry

If Fully Sat

$$\rho_{sat} = \frac{M_t}{V_t} \rightarrow \frac{M_w + M_s}{V_w + V_s + V_v}$$

$e = W G_s$

$$\rho_{dry} = \frac{M_t}{V_t} = \frac{M_s}{V_t}$$

Air Content

$$A = \frac{e - w G_s}{1 + e}$$

$$A = n(1 - s_t)$$

if oven dry
= 0

$$\rho_{solid} = \frac{M_s}{V_s}$$

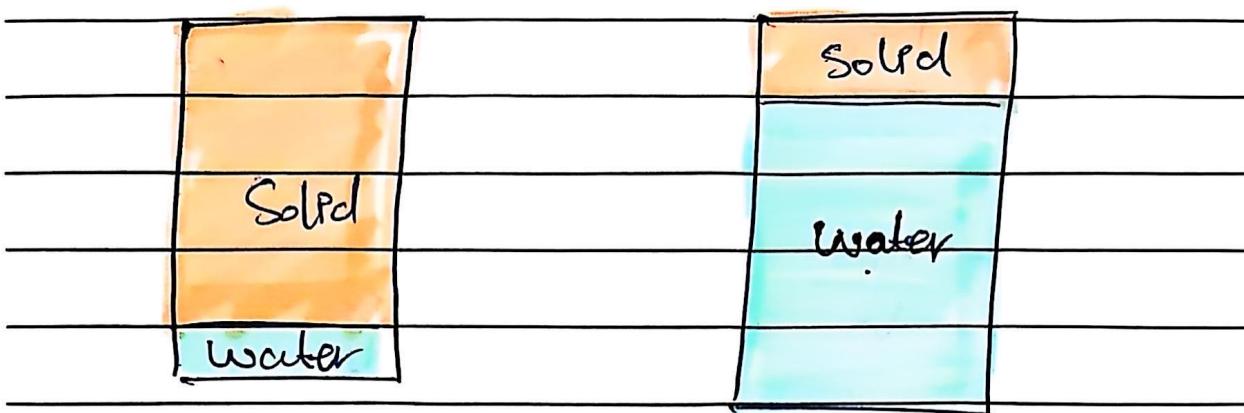
$$A = n$$

porosity

raw Saturated

$$\rho_{sat} = \frac{G_s + \epsilon \rho_w}{1 + e}$$

dry Soil ($s_t = 0$)


unit weight

$$\rho_d = \frac{G_s}{1 + e} \rho_w$$

التاريخ / / ٢٠١

الموضوع:

$$f_d = e_d (1 + w_E)$$

$$S_F = 100\%$$

$$St = 100\%$$

اللجنة الأكاديمية لقسم الهندسة المعمارية

لهم اكثن رحمةك اكثن

$$\gamma = \rho * g \quad \text{unit weight}$$

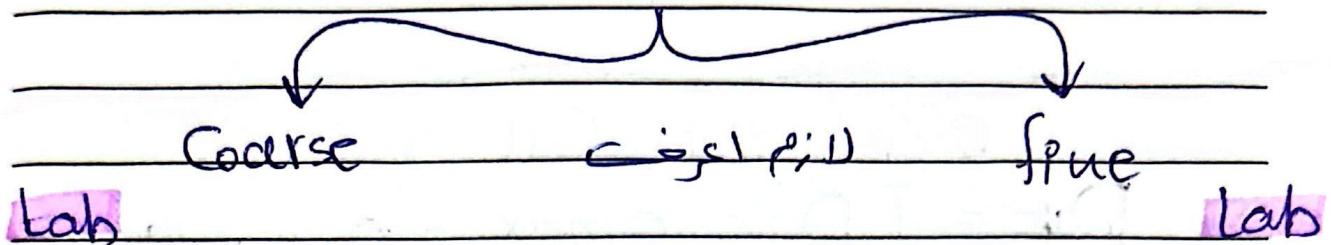
1000

Coarse grain Soil

$$Dr = ID = \frac{e_{max} - e}{e_{max} - e_{min}} * 100\%$$

GS ~~is a soil with~~ ~~more~~ ~~voids~~

⇒ Voids ratio = $\frac{V_{voids}}{V_{solid}}$


اللجنة الأكاديمية لـ ~~الجامعة~~ الهندسة المدنية

www.Civilittee.com

$$e_{max} \rightarrow V_{max} \text{ Voids}$$

$$e_{min} \rightarrow V_{min} \text{ Voids}$$

Compaction

1- Vibrating (BS)

field

1- Hand-operated

2- Motorized Vibratory

3- Rubber - Tired

4- free falling weight

1- Falling weight

2- RuedPug

3- Static loading

field

1- Hand-operated

2- Sheepfoot

3- Rubber tired

الجنة الأكاديمية لقسم الهندسة المدنية

www.Civilitee.com

نحو

* درجات مياه اسماك الـ Soil كل دليل
نعلم معاشرة المساحة المائية

proctor test :

standard

الوزان الخفيف

Modified

الوزان الائق

3 layers

2.5 blows/layer

5 layers

25 blows/layer

12 kN / 5.5 hammer

18 kN / 10 hammer

هل هنا قبض اعرف المكانة

عمرته وزن الـ Soil يقسم كل الـ Soil طبقاً

المكانة

bulk و bulk

dry

د. عصام علاء (Comp)

* Dry density / dry unit

* Water C

* Compactive

* Soil type

$$\text{Compactive effort} = \frac{w_{\text{hammer}} \times \text{height} \times N_{\text{lag}}}{E \times \text{Volume of mold}}$$

مطعماً || Mode Stand || اعلى من

اللجنة الأكاديمية لقسم الهندسة المدنية

النسبة الى قوايسن
النسبة الى بارات

#6 Water in Soil

All Soil is permeable

* كل الصخور لها قابلية التفاف "ذخاذ الماء
 خلال الفجوات"

اللجنة الأكاديمية لقسم الهندسة المدنية
www.Civiltree.com

* يستفاد من دراسة الخواص ()

- 1- Design earth dams تصميم السدود
- 2- quality of see page جودة
- 3- dewater foundation تصريف
الاسفلات

* الخط الحراري داخل الفجوات

حالات نوعان للخط

static -1

Seepage -2

* نستخدم قانون بيرنولي لحساب السرعة

"حركة الماء في الفجوات"

ثانية

اللجنة الأكادémية لقسم الهندسة المدنية

www.Civilife.com

13

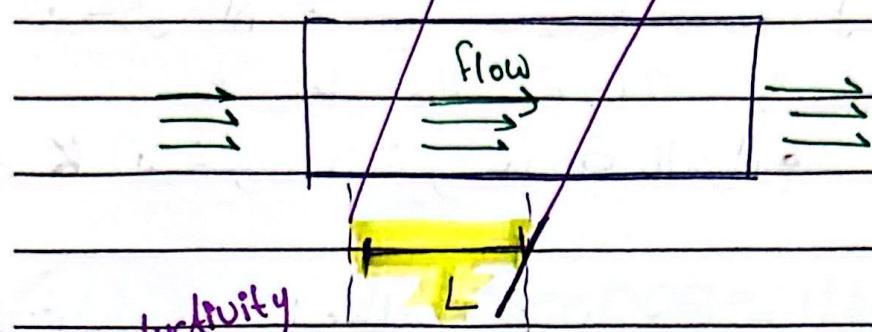
$$h = u + z$$

pore water

Where :

total head 9,8

elevation


Darcy : $v = k i$

law

23

متر

د. حسني فؤاد

conductivity

gradient

فرق الغلو

$$V = k_i \cdot$$

$$P = \frac{\Delta h}{L}$$

النسبة

Darcy

Note: A, B are perpendicular to flow direction

3

$$q = A \cdot V = A \cdot k_i \cdot$$

q : Volume

A : Cross Section area

V : darcy's law

* كل القواعد السابقة التي تدور على كل
يجب أن تخبر قيمتها بما لا يغير الم

* تخبر بغير درجة الحرارة

* في حال اعتماد R بدرجة حرارة لم تكن 20°

نطبق قانون التحقيق التالي:

$$R_{20} = \gamma_w R_{20^\circ} \rightarrow$$

↑ 9.8

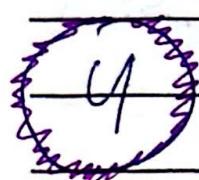
عند درجة حرارة 20°

R standard J1

اللجنة الأكادémية لقسم الهندسة المدنية

www.Civilitee.com

viscosity of water


نستخدم R_{20} لحساب المطلوب

* تخبر على درجة الحرارة و على ذرية
Soil

ال الموضوع : _____
 التاريخ : ٢٠٢١ / ١ / ١

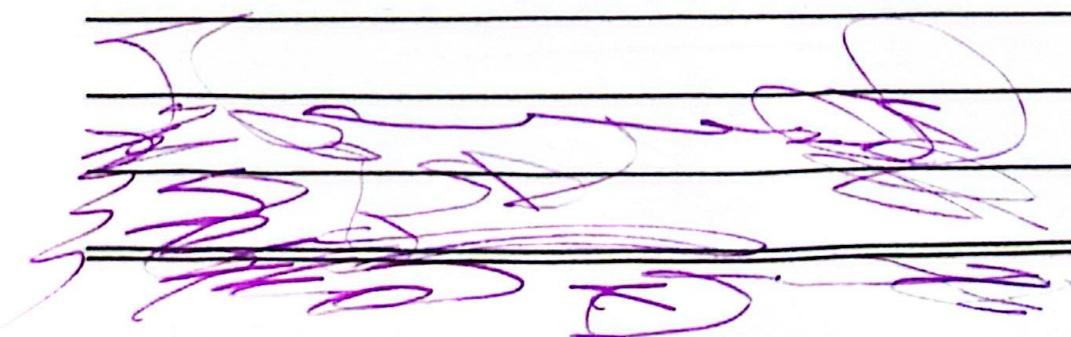
زالت السرعة كلما زادت درجة الحرارة كما *

"سرعة تحرّك الماء في الفجوات"

Seepage Velocity

$$V = \frac{q}{A_v} \xrightarrow{\text{Volume Law}} k \phi$$

$\rightarrow A_v$ porosity


Average area of
Vorps

al-janah academy Civilittee

www.Civilittee.com

Where: * كما تعلمنا في قبل أن المساحة هي :

$$h = \frac{A_v}{A_t} \xrightarrow{\text{حجم الفجوات}} \frac{\text{حجم المكعب}}{\text{حجم المكعب}}$$

نماذج قياس على في الماء :

• 2 Methods

① Constant head

نستخدم لقياس K الخامات بالـ

② falling head

نستخدم لقياس K الخامات بالـ

ذischen لوريل في كمية حساب K \rightarrow clay

اللجنة الأكاديمية لقسم الهندسة المدنية

طريقة الـ falling head

"fine"

head

نظام الماء (K) بوضوح قانون Hazen

$$K = 10^{-2} D_{10}^2 \text{ mis}$$

Where:

D_{10} : حجم قذف المطر

متر مربع المطرة من السيف

١٥ "نسبة المطر"

$R_z = R_x \text{ and } (R_z = R_x + R_z)$ في حال عدم

$$R_z = \sqrt{R_x R_z} \rightarrow$$

نسبة المطر

في

نسبة

$$R_z = H_1 + H_2$$

$$\left(\frac{H_1}{R_1} \right) + \left(\frac{H_2}{R_2} \right)$$

$$R_x = \frac{H_1 R_1 + H_2 R_2}{H_1 + H_2}$$

Seepage

* بتات نتوفع حقه اهار الـ ~~flow~~

نعرف انه الـ ~~Soil~~ متجاذب

وينتخدم قانون دارسي

flow rate // seepage

$$S q = K \Delta H \frac{N_f}{N_D} \quad i = \frac{\Delta h}{L}$$

$$\Delta h = \frac{\Delta H}{N_D}$$

صاعده L^0 اول كانت لغير

عدد N_D

تحت الـ ~~lower~~ lower

ابحث N_f

$$U_j = \Delta H - N_D \Delta h - u_z$$

عدد الـ N_D

قبل النقطه

عـ u_z النقطه

عن W_t

$$i_{cr} = \frac{G_s - 1}{1 + e}$$

$$\frac{i_{cr}}{P} > 1 \quad SF$$

$$= \frac{\gamma_{sd} - \gamma_w}{\gamma_{sd}}$$

التاريخ / / / ٢٠٢١

الموضوع :

"Consolidation"

هي عملية تم فيها تقليل دفع التربة / التربة
الماء / بمحارمه ودعاقتها قليلة جداً
من الماء / ويتحول الماء فيها في الفجوات

(Consolidation) هي عملية (Swelling) *

نوعان في
دفع التربة

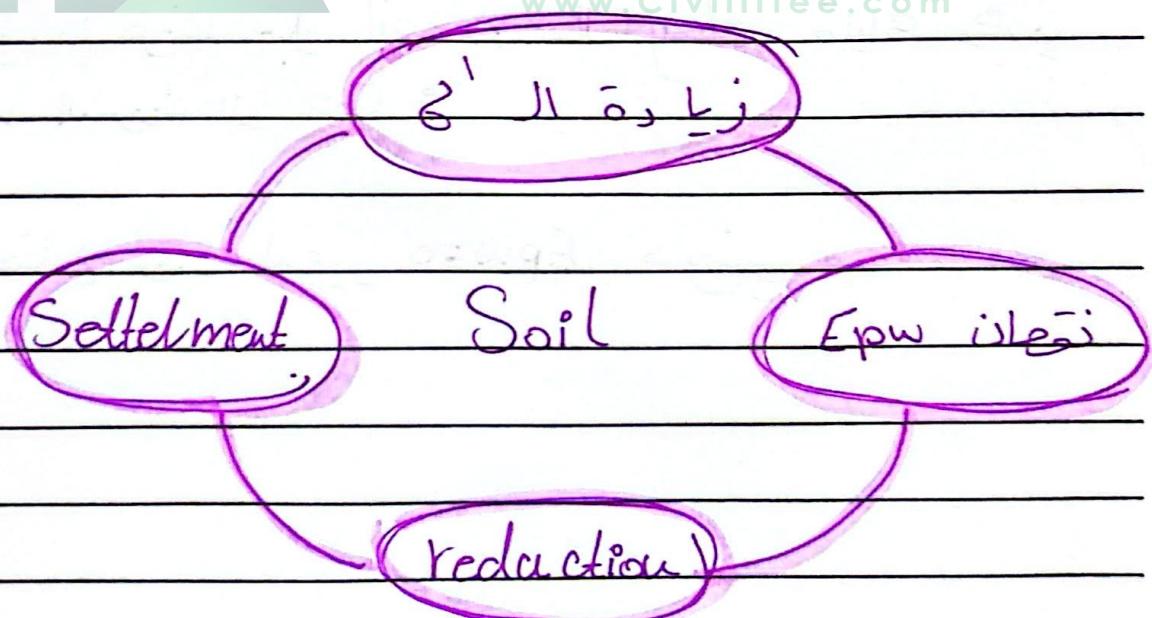
زيادة في دفع
التربة

زي ما عقنا قبل ان clay K لا تكون قليلة وهي
اصل التربة لا تكون : Coh

تحتاج وقت لغير $Epw = 0$ ديني

* يدخل سطح خارجي التربة فالي تبدأ تحرك في
ال pores

* عند دعى ان E_{pw} حار يقل و ϵ يزيد


* ϵ هو عقار التربة الاحول حل الماء بعدن
water

كان ϵ يتضخط الى E_{pw} و يتطلع منه الماء في غير عنان ϵ
Soil

* اى حار يسر بذلة
عومن بوقف كل س

اللجنة الأكاديمية لقسم الهندسة المدنية

www.Civilittee.com

~~Soil~~ ~~جذب اهون~~ ~~ادا~~

*كيف اعرف اذا ادا soil حل لور قبل ولا لا

دنهارقة اس اس *
OCR

$$OCR = \frac{c'c}{G}$$

عالي
مُعطر

OCR

I

تحفظ حال

load عن قبل

تحفظ ايه soil
برinciple of soil mechanics
وقross ما عروه حل

Load

*كيف دقبر اهون مسدار البوت

$$S_c = \frac{e_0 - e_1}{1 + e_0} H$$

الموضوع:

٢٠١١ / / التاريخ

سمك الطبقة على حارث المبوط H:

دفون دينت كر نسروط المبوط وهي:

مصاحبة عليه

حركة فيه

تفايل بع التربة

منبعه بعاء

وكون دينه day

فأنا ادن بدري سمك

الـ day وليس الـ depth كاملاً

اللجنة الأكاديمية لقسم الهندسة المدنية

www.Civilitee.com

الفرق بين الـ Consolidation و Compaction

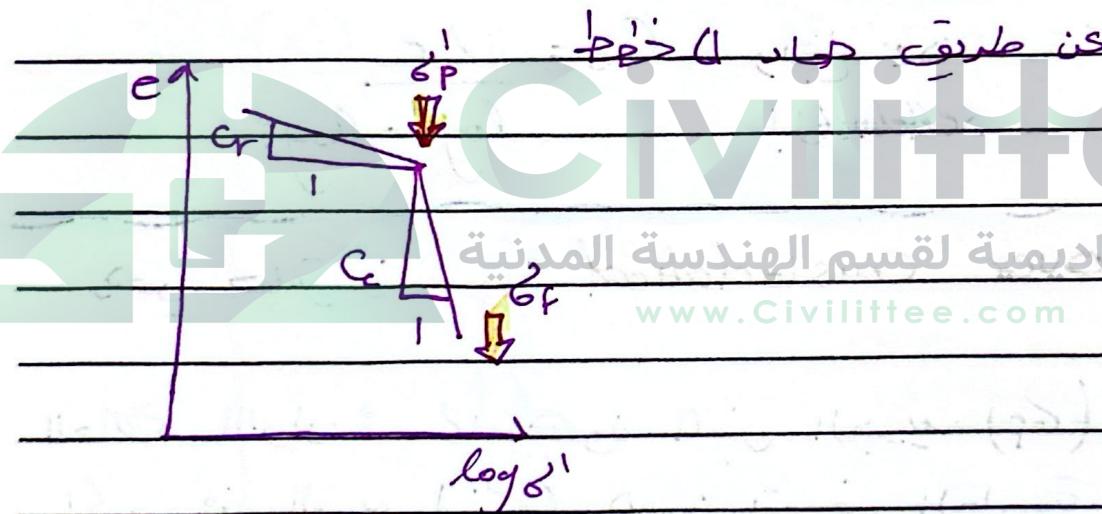
فيها فيه

الفراغات

فقط سكر

فيها حوا

كامل


كلياً أو جزئياً

رسالة ملخص قانون (الملامح)

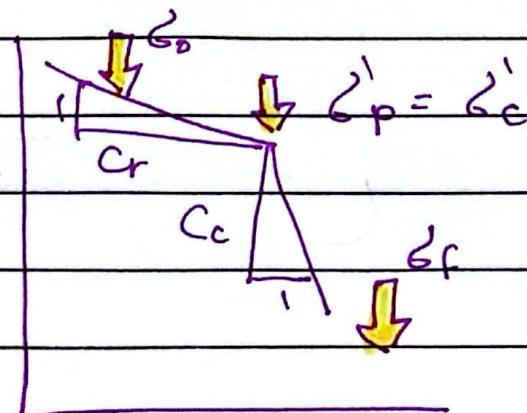
$$S_c = \frac{\Delta e}{1+e_0} H$$

رسالة ملخص قانون (الملامح)

رسالة ملخص قانون (الملامح)

في حالة الرمال $c' = 0$ جرفاً = جرفاً $c' = 0$ *Normally*

$$c'_c = c'_o \Rightarrow c'_p$$


لذلك فإن السهم هو مثلث c'_p حيث c'_p هو مموجون حالياً

يُطلق على c'_c slope لخط الميل

لتحقيق الاستقرار، $c'_c = \frac{\Delta c}{\log f - \log i}$

Over Consolidated

الحالة الأولى: كافية لاستقرار الجريء (c'_p)
أكبر من الميل (c'_c) دون تغير الميل

دون بُعد اطلع الفرق المُمكِن يعني مرتبة

2 Slopes

$$C_c = \frac{\Delta e}{\log f - \log i}$$

$$C_r = \frac{\Delta e}{\log F - \log i}$$

settlement

settlement

الحالة الثانية لو اخذ الجري (C_r) اصغر من

(C_c) القائم

g_o g_f

g_p

$$g_p = g_c$$

www.Civilittee.com
over

$$g_o < g_c$$

دون كلام يعني على واحد Slope

$$C_r = \frac{\Delta e}{\log f - \log i}$$

Degree of Consolidation (U_z)

$$U_z = \frac{e_0 - e}{e_0 - e_i}$$

e^0 : تجربة في وقت
معين e_i : هو طالع

C_v :係數 على عاید
Consolidation

Coff of Consolidation

اللجنة الأكاديمية لقسم الهندسة المدنية

(C_v)

$$C_v = \frac{R}{m_v \gamma_w}$$

$$\text{total Comp} = m_v R \Delta P$$

$$m_v = \frac{1}{1+e_0} \left(\frac{e_0 - e_i}{\gamma_f' - \gamma'_0} \right)$$

R :係數 يُعرف
 m_v : Coff of
Volume Comp

Time factor (T_V)

$$T_V = \frac{C_V \cdot t}{d^2}$$

ت = الزمن المطلوب لحدوث تحسين
Consolidation time
d = طول

Consolidation factor : C_V

d = المسافة التي تصل عرض المدحفر

Single dredge (lab) double dredge

في حال كان هناك في حال كان هناك

طبيعة مختلفة واحدة طبيعة مختلفة واحدة

لذلك

$$d = H$$

$$d = \frac{H}{2}$$

.. day H = مسافة طبقة الـ

٢٠٢١ / / التاريخ

الموضوع :

كيف أمالع الـ T_U ؟

إذا حاصلت على نسبة الـ T_U بخطأ ٥٠٪ = Consolidation إذا حصلت على نسبة T_U بخطأ ٥٪

$$U < 0.60 \quad T_U = \frac{\pi}{4} U^2$$

وإذا خطأ ٧٠٪

$$U > 0.60 \quad T_U = -0.933 \log (1-U) - 0.085$$

اللجنة الأكاديمية لقسم الهندسة المدنية

www.Civilittee.com

Soil shear parameters

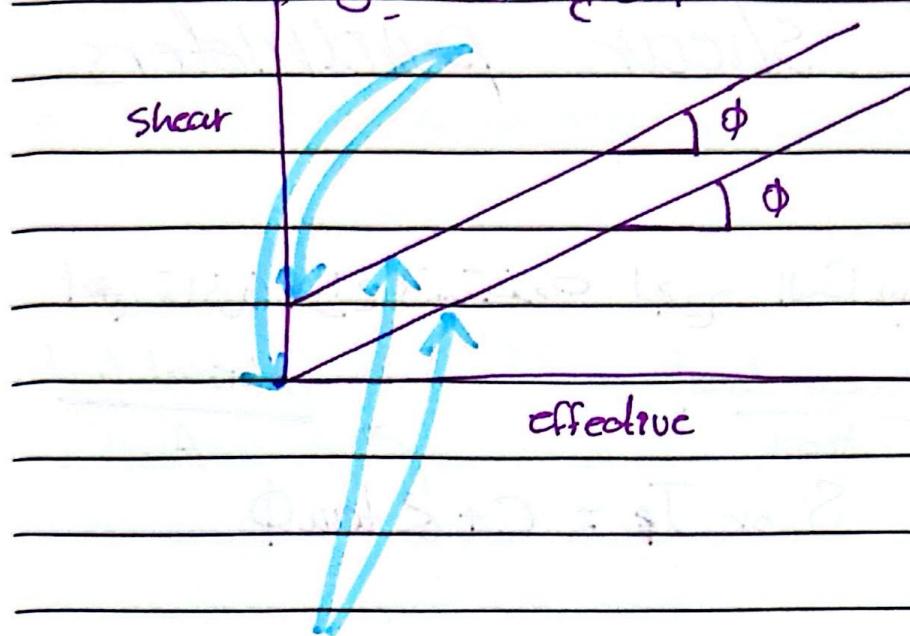
أهم ماذن راح يستخدم لجع الماء

$$\frac{\text{Shear load}}{\text{Area}} \uparrow \quad \frac{\text{Normal load}}{\text{Area}}$$

Shear stress S or $T_f = C + \sigma \tan \phi$

Effective كان وانا

يمية لقسم
 $C_1 + (z-a) \ln \sin \phi$ www.Civilitee.com


٣٠ قوّة التّحاسُّع

النحو والمعنى

σ : normal stress

U: pore water prusser

التعاطف صلابة مُغْيَل (C)

معنى الخطوط

ترسم من خلال اجراء

عدة تجارب ورسم

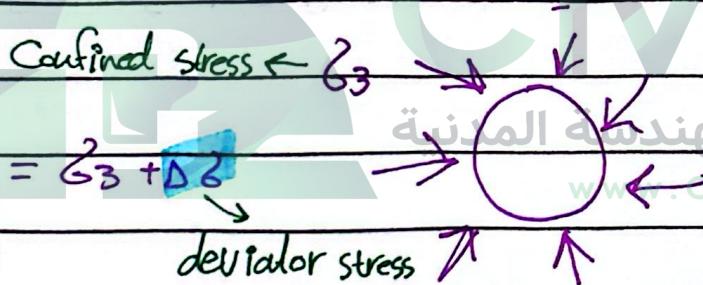
النقط

www.Civilittee.com

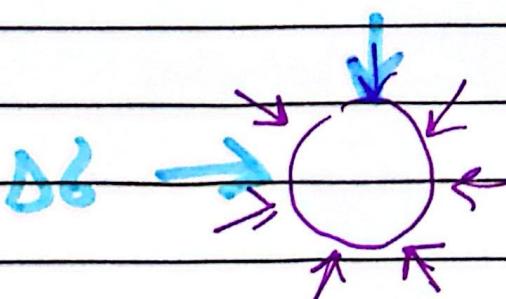
* تعاطف الخط مع y axis ما معه الا قيمة (C)

* هنا اخبرنا بالسؤال ان العينة

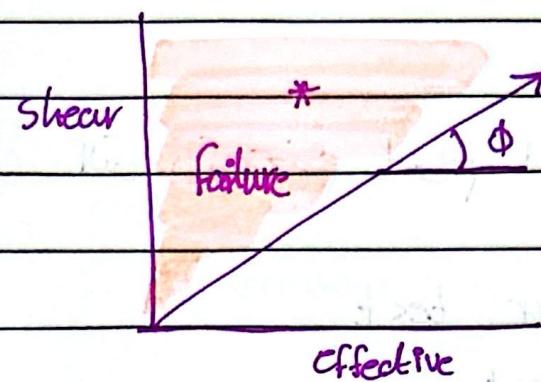
(C) تكونت في


Zero

* إذا أخبرنا بأن العينة Oc أو Os تكون $dense$ هناك قيمة درجة (C)


* من المُرئيَّات التي تستخدم لرسم المُنحني المُطابق هي:

1) Direct shear test


2) Triaxial test

* ومن بعدها نضع الأجهاد الأساسية التي تزيد دراستها والهروب من الخطوة الأولى \rightarrow حين تُنْهَى المُنحني لظروف مُناسبة للطُّرُوف \rightarrow الحقيقة

في المبحث السابق لو كانت النقطة التي نريد دراستها على دعوى الكلمة:

كون النقطة فوق الميزة فهذا يدلنا على خط العزل failure

اللجنة الأكاديمية لقسم الهندسة المدنية

www.Civilitee.com

٦: direct shear test من اجل

١- رخيض و سريع و سهل خاتمة الرجال

٢- يظهر الفشل في العينة بينما يظهر ظهور الفشل في الواقع الاستثنائي

عيوب

١- صعب او مكلل التحريك بالتجربة

٢- ظهور الفشل يمكن ان يكون المبلغ الغير منعطف

اللجنة الأكاديمية لقسم المراقبة المدنية

www.Civilitee.com

٣- ضروف ابهاه غير منتهية في العينة

٤- يحترق دواران لا يحترق التردد فيه اثناء

Shear

٥- لا يتحقق في اس ال principal's stress

القوانين من

Angle of friction

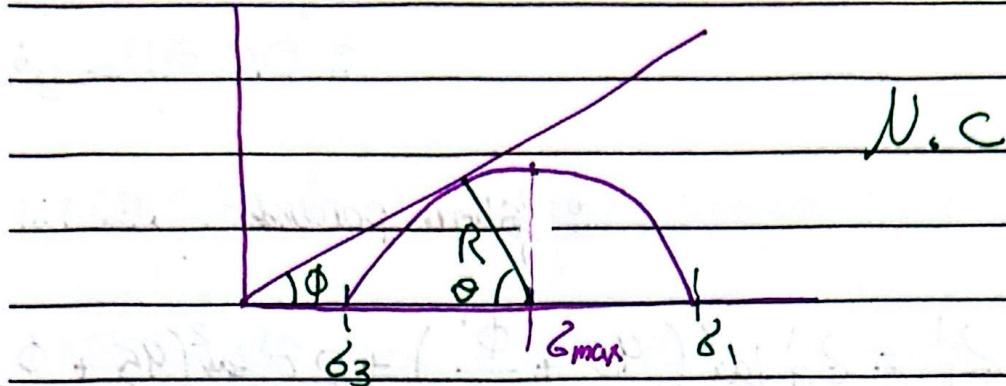
: N.C $\tan \phi$ بحال

$$\phi = \sin^{-1} \left(\frac{\sigma_1 - \sigma_3}{\sigma_1 + \sigma_3} \right)$$

: Shear stress failure - ملحوظ

$$T_f = R \sin \theta$$

اللجنة الأكاديمية لقسم الهندسة المدنية


www.Civilitee.com

حيث θ

$$R = \frac{\sigma_1 - \sigma_3}{2}$$

$$\theta = 45 + \phi$$

Angle of failure

$$\sin \phi = \frac{R}{\sigma_3 + R} \quad R = \frac{\sigma_1 - \sigma_3}{2}$$

failure \Rightarrow Normal stress σ and shear stress τ

www.Civilittee.com

$$\sigma_f = \frac{\sigma_1 + \sigma_3}{2} + \frac{\sigma_1 - \sigma_3}{2} \cos 2\phi$$

stress max

τ_{max}

$\Rightarrow \sigma_{max}$ and

$$= \frac{\sigma_1 - \sigma_3}{2}$$

$$\sigma_{max} = \frac{\sigma_1 + \sigma_3}{2} = R$$

stress max

في حالات D.C

أو Shear parander - الثبات

$$\gamma' = \gamma'_3 \tan^2 \left(45 + \frac{\phi'}{2} \right) + 2 c' \tan \left(45 + \frac{\phi'}{2} \right)$$

حالات مستوية

$$\gamma_{bulk} = \gamma_{dry} (1 + \text{Water Content})$$

$$\gamma_{tot} = \gamma_1 h_1 + \gamma_2 h_2$$

بعون طبع الـ U

$$\gamma' = \gamma_u - \gamma_{wh} \dots$$

وذلك

٢٠٢١ / ١ / ١ التاريخ

الموضوع :

* اذا ما اعطاكي اي معلومة تدل على N.C اذن حسبي O.C

UnConfined Compressive Strength or Q_u

لحوادث اذاع اختبار ال (UU) وهذا حسبي (رسم)

$$G_3 = 0$$
$$G_1 = 18$$

اللجنة الأكاديمية لقسم الهندسة المدنية
Civilittee

www.Civilittee.com

اذا رأيتها في السؤال

Very slow : effective خانة ال

Very fast : total خانة ال

بالكلام في الاختبارات:

drained:

effective مفہوم

undrained:

total ۱۱ ۶۱

فـ > الـ effective

effective length ℓ_3, ℓ_1 is the ~~sum~~ $\ell_3 + \ell_1$

تم نظر المراقبة او اي مطلوبه اخر

ویکی‌میکات خاک-خواهی

اللجنة الأكاديمية لقسم الهندسة المدنية

www.Civilittee.com

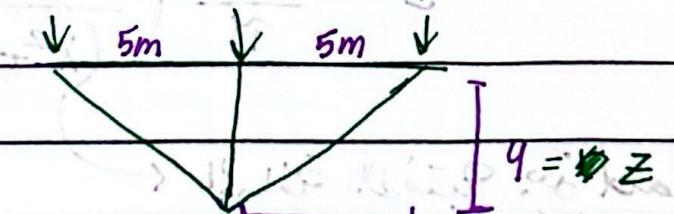
total 11 less

النطرون

وَكَمْ نَكُونُ فِي مُؤْمِنَاتٍ

$$G_1^1 = G_3^1 \tan^2 \left(45^\circ + \frac{\phi}{2} \right)$$

Stress increment from elastic Solution


هذا نوع لن يتم شرحها ولكن مع المثال يفتح
أكمل سلسلة

① point load and point line

$$6 - \frac{Q \cdot I_p}{z^2} \quad \text{Where } I_p = \left(\frac{r}{z} \right)$$

$$\begin{array}{c} ① \\ 1000 \end{array} \quad \begin{array}{c} ② \\ 7500 \end{array} \quad \begin{array}{c} ③ \\ 900 \end{array}$$

Ex:

$$I_p = \frac{r}{z} = \left(\frac{4}{5} \right)$$

$$I_p = 1.25 \quad \text{من الجدول}$$

① ③ $\frac{1}{1}$ مطابق

$$I_{p②} = \frac{0}{5} = 0 \quad I_p = 0.475 \quad \text{وهي من الجدول}$$

الموضوع:

٢٠١١ / / التاريخ

نطء العاكس

$$c = \epsilon \left(\frac{Q}{z^2} I_b \right)$$

$$\frac{1000}{y^2} (1.25) + \frac{7500}{y^2} (0.475)$$

$$+ \frac{900}{y^2} (1.25) = \text{---} \text{KN/m}^2$$

نفس (١) حال تغيره لـ line load

اللجنة الأكاديمية لقسم الهندسة المدنية

$$c_z = \frac{2Q}{\pi} \left(\frac{z^3}{(x^2+z^2)^2} \right)$$

النطء الأفقي بين load

ونقطة

بعد الحل

كالتالي

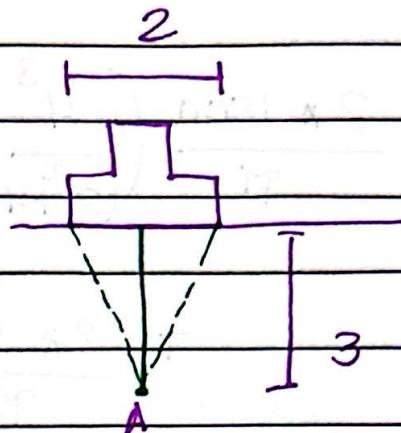
$$\frac{2 \times 1000}{\gamma} \left(\frac{4^3}{(5^2 + 4^2)^2} \right) + \frac{2 \times 7500}{\gamma} \left(\frac{4^3}{(0^2 + 4^2)^2} \right)$$

$$+ \frac{2 \times 900}{\gamma} \left(\frac{4^3}{(5^2 + 4^2)^2} \right)$$

$$= \dots \approx 12 \text{ N/m}^2$$

load انتقال كثافة

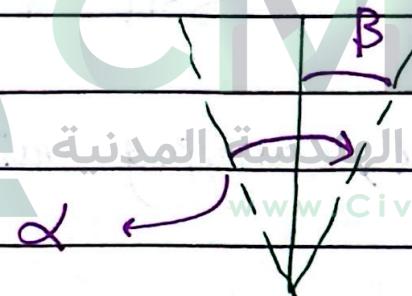
Soil الارض


② Strip area, Carrying uniform pressure

live الارض

dead العارضة

surcharge المفروض


Ex)

$$\text{load} = 500 \text{ kN/m}$$

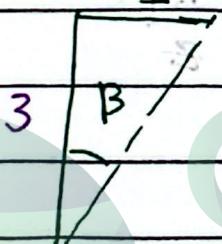
أول خطوة نرسم خط من أول المثلث وخط من آخره
وخط عمودي ينتمي المثلث (التقطة)

يَبْرُكُ هُنَّ الْمُهَاجِرُونَ لِلْحَسِينِ كَامِلُ الْحَمَافَةِ :

و B هي دائرة بين الخطين المتقاطعين
وآخر خط

وهي مسماة في هذه الحالة تغافل

$$\alpha = \frac{\beta}{2}$$


(-) β ~~والانسجام خارج~~

$$q = \frac{500}{2\pi} = 250$$

rad degree

$$= \frac{250}{\pi} (0.64 + \sin 36.8 \cos (36 + \alpha) (-18.9))$$

مع خارب الماء

$$\tan^{-1}\left(\frac{1}{3}\right) = \beta$$

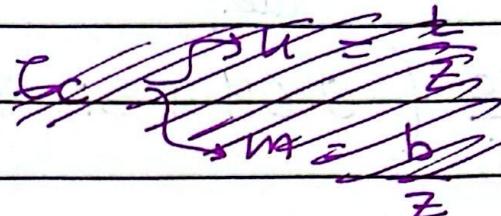
اللجنة الأكاديمية لجامعة المدنية

www.Civilitee.com

$$\alpha = 36.8^\circ$$

$$\alpha = 0.64 \text{ rad}$$

$$\sigma_x = 99.8 \text{ MN/m}^2$$


③ Circular footing carrying uniform pressure

$$= q I_c$$

من الجدول

جذر

$$q = \frac{Q}{\frac{\pi}{4} d^2}$$

$$I_c = \frac{D^3}{32}$$

④ rectangular area

$$= q I_r$$

$$I_r = \frac{m^3}{32} \quad m = \frac{b}{z}$$

ونخرجها من الجدول

(Effective stressess)

$$\sigma_T = \gamma h \rightarrow \text{سماك layer}$$

$$\sigma' = \sigma_T - u$$

$$u = \gamma_w h$$

بعد الماء γ_w في
Water

table لـ γ_w مدنية

www.Civilittee.com

إذا تزييى عىنها افخـط الـ Soil وينزـح عـلـيـهـ

وينزـح الماء

$$\gamma_{dry} = \frac{G_s \gamma_w}{1+e}$$

$$\gamma_{sat} = \frac{(G_s + e) \gamma_w}{1+e}$$