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12.2

Vectors
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A quantity such as force, displacement, or 

velocity is called a vector and is represented 

by a directed line segment. 
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The arrow points in the direction of the action 

and its length gives the magnitude of the 

action in terms of a suitably chosen unit. 

For example, a velocity vector points in the 

direction of motion and its length is the speed 

of the moving object. (See Figure 12.8)
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Unit Vectors

A vector 𝒗 of length 1 is called a unit vector. 

The standard unit vectors are

𝒊 = 1,0,0 , 𝒋 = 0,1,0 , 𝒌 = 0,0,1 .

Any vector 𝒗 = 𝑣1, 𝑣2, 𝑣3 can be written as a linear 

combination of the standard unit vectors as follows:

𝒗 = 𝑣1, 𝑣2, 𝑣3
= 𝑣1, 0,0 + 0, 𝑣2, 0 + 0,0, 𝑣3
= 𝑣1 1,0,0 + 𝑣2 0,1,0 + 𝑣3 0,0,1
= 𝑣1𝒊 + 𝑣2𝒋 + 𝑣3𝒌
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
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First we find the coordinates of the vector

𝑃1𝑃2 = 3 − 1,2 − 0,0 − 1 = 2,2,−1 .

Next we find the length of the vector

𝑃1𝑃2 = (2)2+(2)2+(−1)2= 3.

The unit vector 𝒖 =
𝑃1𝑃2

𝑃1𝑃2
has the same direction as  

𝑃1𝑃2:

𝒖 =
𝑃1𝑃2

𝑃1𝑃2
=

2

3
,
2

3
, −

1

3
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12.3

The Dot Product
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When two nonzero vectors u and v are placed so their 

initial points coincide, they form an angle 𝜃 of 

measure 0 ≤ 𝜃 ≤ 𝜋.
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𝒖 ∙ 𝒗 = 𝒖 𝒗 𝑐𝑜𝑠𝜃

This leads to the formula:
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EXAMPLE 4 To determine if two vectors are orthogonal, 

calculate their dot product.

(a) u = 3i - 2j + k and   v = 2j + 4k are orthogonal 

because 

𝑢 ∙ 𝑣 = 3 × 0 + −2 × 2 + 1 × 4 = 0.

(b) u = i - 2j + 3k and   v = 4i + j - k are not

orthogonal because 

𝑢 ∙ 𝑣 = 1 × 4 + −2 × 1 + 3 × −1 = −1 ≠ 0.
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The vector projection of 𝒖 = 𝑃𝑄 onto a nonzero vector 

𝒗 = 𝑃𝑆 (Figure 12.23) is the vector 𝑃𝑅 determined by 

dropping a perpendicular from Q to the line PS. The 

notation for this vector is 𝑝𝑟𝑜𝑗𝒗𝒖.
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The vector projection of u onto v is the vector

𝑝𝑟𝑜𝑗𝒗𝒖 =
𝒖 ∙ 𝒗

𝒗 𝟐
𝒗

The scalar component of u in the direction of v is the 

scalar 𝒖 𝑐𝑜𝑠𝜃 which can be computed also using 

that

𝒖 𝑐𝑜𝑠𝜃 =
𝒖 ∙ 𝒗

𝒗
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12.4

The Cross Product
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Let u and v be two nonzero vectors in space. If u and 

v are not parallel, they determine a plane. We select a 

unit vector n perpendicular to the plane by the right-

hand rule. This means that we choose n to be the unit 

(normal) vector that points the way your right thumb 

points when your fingers curl through the angle 𝜃
from u to v (Figure 12.27).
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Because n is a unit vector, the magnitude of 𝒖 × 𝒗 is
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Area of the parallelogram determined by u and v
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The area of the parallelogram determined by u and v is

Area = 𝒖 × 𝒗 .

This area can be computed using that

𝒖 × 𝒗 = 𝒖 𝒗 𝑠𝑖𝑛𝜃
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To find the area of the parallelogram determined by 

𝒖 = 2, 1,1 and 𝒗 = −4,3,1 we use that

Area = 𝒖 × 𝒗 .

We found in Example 1 that 𝒖 × 𝒗 = 2𝒊 + 6𝒋 − 10𝒌.

Then,

Area = 𝒖 × 𝒗 = (2)2+(6)2+(−10)2= 140.
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EXAMPLE 3 Find the area of the triangle with 

vertices P(1, -1, 0), Q(2, 1, -1), and R(-1, 1, 2).

Solution 𝑃𝑄 = 1,2, −1 ,   𝑃𝑅 = −2,2,2 ,

𝑃𝑄 × 𝑃𝑅 =
𝒊 𝒋 𝒌
1 2 −1
−2 2 2

= 6𝒊 + 6𝒌.

The area of the parallelogram determined by P, Q, 

and R is

𝑃𝑄 × 𝑃𝑅 = (6)2+(0)2+(6)2= 72.

The triangle's area is half of this, or 72/2.
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The product (𝒖 × 𝒗) ∙ 𝒘 is called the triple scalar product

of u, v, and w (in that order).

As you can see from the formula

(𝒖 × 𝒗) ∙ 𝒘 = 𝒖 × 𝒗 𝒘 𝑐𝑜𝑠𝜃 ,

the absolute value of this product is the volume of the 

parallelepiped determined by u, v, and w (Figure 12.34). 

The number 𝒖 × 𝒗 is the area of the base parallelogram. 

The number 𝒘 𝑐𝑜𝑠𝜃 is the parallelepiped’s height.
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12.5

Lines and Planes in Space
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Suppose that L is a line in space passing through a point 

𝑃0(𝑥0, 𝑦0, 𝑧0) parallel to a vector 𝒗 = 𝑣1𝒊 + 𝑣2𝒋 + 𝑣3𝒌. 

Then L is the set of all points 𝑃(𝑥, 𝑦, 𝑧) for which 𝑃0𝑃 is

parallel to v (Figure 12.35). Thus, 𝑃0𝑃 = 𝑡𝒗 for some 

scalar parameter t. The value of t depends on the location 

of the point P along the line, and the domain of t is 

−∞,∞ .

Lines in Space
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An Equation for a Plane in Space
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An Equation for a Plane in Space

A plane in space is determined by knowing a point 

on the plane and a vector that is perpendicular or 

normal to the plane.

Suppose that plane M passes through a point 

𝑃0(𝑥0, 𝑦0, 𝑧0) and is normal to the vector 𝒏 = 𝐴𝒊
+ 𝐵𝒋 + 𝐶𝒌. Then M is the set of all points P(x, y, z) 

for which 𝑃0𝑃 is orthogonal to n (Figure 12.39). 

Thus, the dot product 

𝐧 ∙ 𝑃0𝑃 = 0. 
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This equation is equivalent to

𝐧 ∙ 𝑃0𝑃 = 0
𝐴𝒊 + 𝐵𝒋 + 𝐶𝒌 ∙ 𝑥 − 𝑥0 𝒊 + 𝑦 − 𝑦0 𝒋 + 𝑧 − 𝑧0 𝒌 = 0

or

A 𝑥 − 𝑥0 + 𝐵 𝑦 − 𝑦0 + 𝐶 𝑧 − 𝑧0 = 0
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Example 6 Find an equation for the plane through 

𝑃0(−3,0,7) perpendicular to 𝒏 = 5𝒊 + 2𝒋 − 𝒌.

Solution The component equation is 

A 𝑥 − 𝑥0 + 𝐵 𝑦 − 𝑦0 + 𝐶 𝑧 − 𝑧0 = 0

5 𝑥 − (−3) + 2 𝑦 − 0 + −1 𝑧 − 7 = 0

Simplifying, we obtain

5x + 2𝑦 − 𝑧 = −22.
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EXAMPLE 7 Find an equation for the plane 

through A(0, 0,1), B(2, 0, 0), and C(0, 3, 0).

Solution To write an equation for the plane, we find 

a vector normal to the plane and use it with one of 

the points. As a point we choose A(0, 0,1) and the 

vector 𝐴𝐵 × 𝐴𝐶 is normal to the plane

𝐴𝐵 × 𝐴𝐶 =
𝒊 𝒋 𝒌
2 0 −1
0 3 −1

= 3𝒊 + 2𝒋 + 6𝒌.

The component equation for the plane is

3(x - 0) + 2(y - 0) + 6(z - 1) = 0
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EXAMPLE 8 Find parametric equations for the line 

in which the planes intersect

3x - 6y - 2z = 15 and 2x + y - 2z = 5.

Solution  It is known from geometry that 𝒏𝟏 × 𝒏𝟐 is 

a vector parallel to the planes’ line of intersection. In 

our case,

𝒏𝟏 × 𝒏𝟐 =
𝒊 𝒋 𝒌
3 −6 −2
2 1 −2

= 14𝒊 + 2𝒋 + 15𝒌.
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To find a point on the line, we can take any point 

common to the two planes. Substituting z = 0 in the 

plane equations and solving for x and y 

simultaneously 

3x - 6y = 15 

2x + y = 5 

identifies one of these points as (3, -1, 0).

The line is

x = 3 + 14t,    y = -1 + 2t,    z = 15t.
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EXAMPLE 10 Find the point where the line 

x = 8/3 + 2t,     y = -2t,     z = 1 + t

intersects the plane 3x + 2y + 6z = 6.

Solution The point (8/3 + 2t, -2t, 1 + t) lies in the 

plane if its coordinates satisfy the equation of the 

plane, that is, if

3(8/3 + 2t) + 2(-2t) + 6(1 + t) = 6

t = -1

The point of intersection (x,y,z) is

(8/3 + 2(-1), -2(-1), 1 + (-1)) = (2/3, 2, 0).
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The Distance from a Point to a Plane

If P is a point on a plane with normal n, then the 

distance from any point S to the plane is the length of 

the vector projection of 𝑃𝑆 onto n. That is, the 

distance from S to the plane is

𝑑 = 𝑃𝑆 ∙
𝒏

𝒏
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EXAMPLE 11 Find the distance from S(1, 1, 3) to 

the plane 3x + 2y + 6z = 6.

Solution We find a point P in the plane and 

calculate the length of the vector projection of 𝑃𝑆
onto a vector n normal to the plane (Figure 12.41). 

From the equation of the plane we obtain that 

n = 3i + 2j + 6k. 

To find a point P in the plane we set x = 0 and z = 0 

in the equation of the plane to get P(0, 3, 0). 
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𝑃𝑆 = (1 − 0)i + (1 − 3)j + (3 − 0)k

= 𝒊 − 2𝒋 + 3𝒌

𝒏 = (3)2+(2)2+(6)2= 7

The distance from S to the plane is

𝑑 = 𝑃𝑆 ∙
𝒏

𝒏
= (𝒊 − 2𝒋 + 3𝒌) ∙ (

3

7
i +

2

7
j +

6

7
k)

=
3

7
−
4

7
+
18

7
=
17

7
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EXAMPLE 12 Find the angle between the planes 

3x - 6y - 2z = 15 and  2x + y - 2z = 5.

Solution The vectors

𝒏1 = 3𝒊 − 6𝒋 − 2𝒌,    𝒏2 = 2𝒊 + 𝒋 − 2𝒌

are normals to the planes. The angle between them is

𝜃 = 𝑐𝑜𝑠−1
𝒏1 ∙ 𝒏2

𝒏1 𝒏2
= 𝑐𝑜𝑠−1

4

21

≈ 1.38 radians
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12.6

Cylinders and Quadric Surfaces
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Table 12.1 Graphs of Quadric Surfaces
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Table 12.1 Graphs of Quadric Surfaces (cont)
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Table 12.1 Graphs of Quadric Surfaces (cont)
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Table 12.1 Graphs of Quadric Surfaces (cont)
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Table 12.1 Graphs of Quadric Surfaces (cont)
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Table 12.1 Graphs of Quadric Surfaces (cont)
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13.1 Vector Functions and Space Curves
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Vector Functions and Space Curves

In general, a function is a rule that assigns to each element 

in the domain an element in the range.

A vector-valued function, or vector function, is simply a 

function whose domain is a set of real numbers and whose 

range is a set of vectors.

We are most interested in vector functions r whose values 

are three-dimensional vectors.

This means that for every number t in the domain of r there 

is a unique vector in V3 denoted by r(t).
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Vector Functions and Space Curves

If f(t), g(t), and h(t) are the components of the vector r(t),

then f, g, and h are real-valued functions called the 

component functions of r and we can write

r(t) = f(t), g(t), h(t) = f(t)i + g(t)j + h(t)k

We use the letter t to denote the independent variable 

because it represents time in most applications of vector 

functions.
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Example 1 – Domain of a vector function

Find the domain of the vector function

𝒓 𝑡 = 𝑒−3𝑡 , 4 − 𝑡2, ln(𝑡 + 1)

Solution: The component functions are

f(t) = 𝑒−3𝑡 g(t) = 4 − 𝑡2 h(t) =ln(𝑡 + 1)

By our usual convention, the domain of r consists of all 

values of t for which the expression for r(t) is defined.

𝑒−3𝑡 is defined for all 𝑡 ∈ ℝ, 4 − 𝑡2 is defined when           

4 − 𝑡2  0 or −2 ≤ 𝑡 ≤ 2, and ln(𝑡 + 1) is defined when 

t + 1 > 0 or t > -1.

Therefore the domain of r is the interval (-1, 2].
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Example 2 – Domain of a vector function

Find the domain of the vector function

𝒓 𝑡 = 𝑡3, ln 3 − 𝑡 , 𝑡

Solution: The component functions are

f(t) = t3 g(t) = ln(3 – t)  h(t) = 𝑡

By our usual convention, the domain of r consists of all 

values of t for which the expression for r(t) is defined.

t3 is defined for all 𝑡 ∈ ℝ, ln(3 – t) is defined when 3 – t > 0 

or t < 3, and 𝑡 is defined when t  0.

Therefore the domain of r is the interval [0, 3).
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Vector Functions and Space Curves

The limit of a vector function r is defined by taking the 

limits of its component functions as follows.

Limits of vector functions obey the same rules as limits of 

real-valued functions.
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Example 3 – Limit of a vector function

EXAMPLE  1 If 𝒓 𝑡 = 𝑡3,
𝑡

𝑡2−𝑡
, 3

𝑠𝑖𝑛𝑡

𝑡
, then 

lim
𝑡→0

𝒓 𝑡 = lim
𝑡→0

𝑡3 , lim
𝑡→0

𝑡

𝑡2 − 𝑡
, lim
𝑡→0

3
𝑠𝑖𝑛𝑡

𝑡
= 0,−1,3
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Vector Functions and Space Curves

A vector function r is continuous at a if

In view of Definition 1, we see that r is continuous at a if 

and only if its component functions f, g, and h are 

continuous at a.

There is a close connection between continuous vector 

functions and space curves.
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Vector Functions and Space Curves

Suppose that f, g, and h are continuous real-valued 

functions on an interval I.

Then the set C of all points (x, y, z) in space, where

x = f(t)     y = g(t) z = h(t) 

and t varies throughout the interval I, is called a space 

curve.

The equations in      are called parametric equations of C 

and t is called a parameter.

We can think of C as being traced out by a moving particle 

whose position at time t is (f(t), g(t), h(t)).
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Vector Functions and Space Curves

If we now consider the vector function r(t) = f(t), g(t), h(t), 
then r(t) is the position vector of the point P(f(t), g(t), h(t)) 

on C.

Thus any continuous vector 

function r defines a space 

curve C that is traced out by 

the tip of the moving vector 

r(t), as shown in Figure 1.

Figure 1

C is traced out by the tip of a moving 

position vector r(t).
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Example 4 – Sketching a helix

Sketch the curve whose vector equation is

r(t) = cos t i + sin t j + t k

Solution:

The parametric equations for this curve are

x = cos t     y = sin t z = t

Since x2 + y2 = cos2t + sin2t = 1, the curve must lie on the 

circular cylinder x2 + y2 = 1.

The point (x, y, z) lies directly above the point (x, y, 0), 

which moves counterclockwise around the circle x2 + y2 = 1 

in the xy-plane. 
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Example 4 – Solution

(The projection of the curve onto the xy-plane has vector 

equation r(t) = cos t, sin t, 0.) Since z = t, the curve 

spirals upward around the cylinder as t increases. The 

curve, shown in Figure 2, is called a helix.

cont’d

Figure 2
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Vector Functions and Space Curves

The corkscrew shape of the helix in Example 4 is familiar 

from its occurrence in coiled springs.

It also occurs in the model of DNA (deoxyribonucleic acid, 

the genetic material of living cells). 

In 1953 James Watson and 

Francis Crick showed that 

the structure of the DNA 

molecule is that of two linked, 

parallel helixes that are 

intertwined as in Figure 3.
A double helix

Figure 3
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Example 5 – Curve of intersection 

Find a vector function that represents the curve of intersection of 

the cylinder 𝑥2 + 𝑦2 = 1 and the plane 𝑧 + 𝑦 = 2.

Solution:   The curve of intersection C is an ellipse.

The projection of C onto the xy-plane is the circle                

𝑥2 + 𝑦2 = 1, 𝑧 = 0. So we can 

x = cos t   y = sin t 0 ≤ 𝑡 ≤ 2𝜋.

From the equation of the plane, we have 

𝑧 = 2 − 𝑦 = 2 − 𝑠𝑖𝑛𝑡

So we can write parametric equations for C as 

x = cos t         y = sin t           𝑧 + 𝑦 = 2 0 ≤ 𝑡 ≤ 2𝜋.

The corresponding vector equation is

𝒓 𝑡 = 𝑐𝑜𝑠𝑡 𝒊 + 𝑠𝑖𝑛𝑡 𝒋 + 2 − 𝑠𝑖𝑛𝑡 𝒌
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Using Computers to Draw Space Curves

Space curves are inherently more difficult to draw by hand 

than plane curves; for an accurate representation we need 

to use technology.

For instance, Figure 7 shows

a computer-generated graph 

of the curve with parametric 

equations

x = (4 + sin 20t) cos t     

y = (4 + sin 20t) sin t 

z = cos 20t

It’s called a toroidal spiral because it lies on a torus.

Figure 7

A toroidal spiral
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of Vector Functions
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Derivatives
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Derivatives

The derivative r  of a vector function r is defined in much 

the same way as for real valued functions:

if this limit exists. The geometric significance of this 

definition is shown in Figure 1. 

Figure 1

(b) The tangent vector r(t)(a) The secant vector 
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Derivatives

If the points P and Q have position vectors r(t) and r(t + h), 

then represents the vector r(t + h) – r(t), which can 

therefore be regarded as a secant vector. 

If h > 0, the scalar multiple (1/h)(r(t + h) – r(t)) has the 

same direction as r(t + h) – r(t). As h  0, it appears that 

this vector approaches a vector that lies on the tangent 

line. 

For this reason, the vector r (t) is called the tangent vector 

to the curve defined by r at the point P, provided that                              

r (t) exists and r (t) ≠ 0. 
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Derivatives

The tangent line to C at P is defined to be the line through 

P parallel to the tangent vector r (t).

We will also have occasion to consider the unit tangent 

vector, which is
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Derivatives

The following theorem gives us a convenient method for 

computing the derivative of a vector function r: just 

differentiate each component of r.
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Example 1

(a) Find the derivative of r(t) = (1 + t3)i + te–t j + sin 2t k.

(b) Find the unit tangent vector at the point where t = 0.

Solution:

(a) According to Theorem 2, we differentiate each

component of r:

r (t) = 3t2i + (1 – t)e–t j + 2 cos 2t k
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Example 1 – Solution

(b) Since r(0) = i and r (0) = j + 2k, the unit tangent vector

at the point (1, 0, 0) is

cont’d
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Example 2:   Tangent line

Find parametric equations for the tangent line to the helix 

with parametric equations

x = 2 cost,     y = sint,     z = t,

at the point (0,1,
𝜋

2
).

SOLUTION The vector equation of the helix is

𝒓 𝑡 = 2𝑐𝑜𝑠𝑡, 𝑠𝑖𝑛𝑡, 𝑡 , so 𝒓′ 𝑡 = −2𝑠𝑖𝑛𝑡, 𝑐𝑜𝑠𝑡, 1 .

The parameter value corresponding to the point (0,1,
𝜋

2
) is 

𝑡 =
𝜋

2
, so the tangent vector there is 𝒓′

𝜋

2
= −2,0,1 . The 

tangent line is the line through 𝑃(0,1,
𝜋

2
) parallel to the 

vector റ𝑣 = −2,0,1 , so its parametric equations are

x = -2t,           y = 1,            z =
𝜋

2
+ 𝑡
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Derivatives

Just as for real-valued functions, the second derivative of 

a vector function r is the derivative of r , that is, r = (r ). 

For instance, the second derivative of the function,

r(t) = 2 cos t, sin t, t, is

r(t) = –2 cos t, –sin t, 0.
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Differentiation Rules
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Differentiation Rules

The next theorem shows that the differentiation formulas for 

real-valued functions have their counterparts for 

vector-valued functions.
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Example 3

Show that if |r(t) | = c (a constant), then r (t) is orthogonal to 

r(t) for all t.

Solution:

Since

r(t)  r(t) = |r(t)|2 = c2

and c2 is a constant, Formula 4 of Theorem 3 gives

0 =      [r(t)  r(t)] = r (t)  r(t) + r(t)  r (t) = 2r (t)  r(t)

Thus r (t)  r(t) = 0, which says that r (t) is orthogonal to r(t).



1515

Example 3 – Solution

Geometrically, this result says that if a curve lies on a 

sphere with center the origin, then the tangent vector r (t) is 

always perpendicular to the position vector r(t).

cont’d
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Integrals
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Integrals

The definite integral of a continuous vector function r(t) 

can be defined in much the same way as for real-valued 

functions except that the integral is a vector. 

But then we can express the integral of r in terms of the 

integrals of its component functions f, g, and h as follows.
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Integrals

and so

This means that we can evaluate an integral of a vector 

function by integrating each component function.
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Integrals

We can extend the Fundamental Theorem of Calculus to 

continuous vector functions as follows:

where R is an antiderivative of r, that is, R (t) = r(t). 

We use the notation  r(t) dt for indefinite integrals 

(antiderivatives).
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Example 4

If r(t) = 2 cos t i + sin t j + 2t k, then

(1) Indefinite integral:

 r(t) dt =     2 cos t dt i +     sin t dt j +     2t dt k 

= 2 sin t i – cos t j + t2 k + C

where C is a vector constant of integration.

(2) Definite Integral:
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Arc Length and Curvature

We have defined the length of a plane curve with 

parametric equations x = f(t), y = g(t), a  t  b, as the limit 

of lengths of inscribed polygons and, for the case where f'

and g' are continuous, we arrived at the formula

The length of a space 

curve is defined in 

exactly the same 

way (see Figure 1).

Figure 1

The length of a space curve is the limit

of lengths of inscribed polygons.
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Arc Length and Curvature

Suppose that the curve has the vector equation,             

r(t) = f(t), g(t), h(t), a  t  b, or, equivalently, the 

parametric equations x = f(t), y = g(t), z = h(t), where f', g', 

and h' are continuous.

If the curve is traversed exactly once as t increases from 

a to b, then it can be shown that its length is
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Arc Length and Curvature

Notice that both of the arc length formulas     and      can be 

put into the more compact form

because, for plane curves r(t) = f(t) i + g(t) j,

and for space curves r(t) = f(t) i + g(t) j + h(t)k,
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Example 1

Find the length of the arc of the circular helix with vector 

equation r(t) = cos t i + sin t j + t k from the point (1, 0, 0) to 

the point (1, 0, 2). 

Solution:

Since r'(t) = –sin t i + cos t j + k, we have

The arc from (1, 0, 0) to (1, 0, 2) is described by the 

parameter interval 0  t  2 and so, from Formula 3, we 

have



77

Curvature
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Curvatures

A parametrization r(t) is called smooth on an interval I if r'

is continuous and r'(t)  0 on I.

A curve is called smooth if it has a smooth 

parametrization. A smooth curve has no sharp corners or 

cusps; when the tangent vector turns, it does so 

continuously.

If C is a smooth curve defined by the vector function r, 

recall that the unit tangent vector T(t) is given by

and indicates the direction of the curve.
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Curvatures

From Figure 4 you can see that T(t) changes direction very 

slowly when C is fairly straight, but it changes direction 

more quickly when C bends or twists more sharply.

Figure 4

Unit tangent vectors at equally  

spaced points on C
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Curvatures

The curvature of C at a given point is a measure of how 

quickly the curve changes direction at that point.

Specifically, we define it to be the magnitude of the rate of 

change of the unit tangent vector with respect to arc length. 

(We use arc length so that the curvature will be 

independent of the parametrization.)
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Curvatures

The curvature is easier to compute if it is expressed in 

terms of the parameter t instead of s, so we use the Chain 

Rule to write

But ds/dt = |r'(t) | from Equation 7, so
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Example 3

Show that the curvature of a circle of radius a is 1/a.

Solution:

We can take the circle to have center the origin, and then a 

parametrization is

r(t) = a cos t i + a sin t j

Therefore     r'(t) = –a sin t i + a cos t j    and    |r'(t) | = a

so

and

T'(t) = –cos t i – sin t j



1313

Example 3 – Solution

This gives |T'(t)| = 1, so using Equation 9, we have

cont’d
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Curvature

The result of Example 3 shows that small circles have large 

curvature and large circles have small curvature, in 

accordance with our intuition.

We can see directly from the definition of curvature that the 

curvature of a straight line is always 0 because the tangent 

vector is constant.

Although Formula 9 can be used in all cases to compute 

the curvature, the formula given by the following theorem is 

often more convenient to apply.
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Example 4:  Curvature of a Curve

Find the curvature of the twisted cubic 𝒓 𝑡 = 𝑡, 𝑡2, 𝑡3 at 

(0, 0, 0).

Solution:  The point (0, 0, 0) corresponds to t = 0. So we 

need to find 𝜅 0 . To do so, we first compute the required 

ingredients: 

𝒓′ 𝑡 = 1,2𝑡, 3𝑡2 , 𝒓′′ 𝑡 = 0,2,6𝑡 , 

𝒓′ 𝑡 = 1 + 4𝑡2 + 9𝑡4.

𝒓′ 𝑡 × 𝒓′′ 𝑡 =
𝒊 𝒋 𝒌

1 2𝑡 3𝑡2

0 2 6𝑡

= 6𝑡2𝒊 − 6𝑡𝒋 + 2𝒌,

𝒓′ 𝑡 × 𝒓′′ 𝑡 = 2 1 + 9𝑡2 + 9𝑡4.

Thus,  𝜅 𝑡 =
𝒓′ 𝑡 ×𝒓′′ 𝑡

𝒓′ 𝑡 3 =
2 1+9𝑡2+9𝑡4

(1+4𝑡2+9𝑡4)3/2
,  and so 𝜅 0 = 2.
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The Normal and Binormal Vectors
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The Normal and Binormal Vectors

At a given point on a smooth space curve r(t), there are 

many vectors that are orthogonal to the unit tangent     

vector T(t).

We single out one by observing that, because |T(t)| = 1 for 

all t, we have T(t)  T'(t) = 0, so T'(t) is orthogonal to T(t). 

Note that T'(t) is itself not a unit vector.

But at any point where     0 we can define the principal 

unit normal vector N(t) (or simply unit normal) as
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The Normal and Binormal Vectors

The vector B(t) = T(t)  N(t) is called the binormal vector. 

It is perpendicular to both T and N and is also a unit vector. 

(See Figure 6.)

Figure 6
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Example 6

Find the unit normal and binormal vectors for the circular 

helix

r(t) = cos t i + sin t j + t k

Solution:

We first compute the ingredients needed for the unit normal 

vector:

r'(t) = –sin t i + cos t j + k
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Example 6 – Solution

This shows that the normal vector at a point on the helix is 

horizontal and points toward the z-axis. 

The binormal vector is

B(t) = T(t)  N(t)

cont’d
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The Normal and Binormal Vectors

The plane determined by the normal and binormal vectors 

N and B at a point P on a curve C is called the normal 

plane of C at P.

It consists of all lines that are orthogonal to the tangent 

vector T.

The plane determined by the vectors T and N is called the 

osculating plane of C at P. 

The name comes from the Latin osculum, meaning “kiss.” It 

is the plane that comes closest to containing the part of the 

curve near P. (For a plane curve, the osculating plane is 

simply the plane that contains the curve.)
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The Normal and Binormal Vectors

The circle that lies in the osculating plane of C at P, has the 

same tangent as C at P, lies on the concave side of C 

(toward which N points), and has radius  = 1/    (the 

reciprocal of the curvature) is called the osculating circle 

(or the circle of curvature) of C at P. 

It is the circle that best describes how C behaves near P; it 

shares the same tangent, normal, and curvature at P.
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The Normal and Binormal Vectors

We summarize here the formulas for unit tangent, unit 

normal and binormal vectors, and curvature.
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Functions of Several Variables

In this section we study functions of two or more variables 

from four points of view:

 verbally (by a description in words)

 numerically (by a table of values)

 algebraically (by an explicit formula)

 visually (by a graph or level curves)
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Functions of Two Variables
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Functions of Several Variables

The temperature T at a point on the surface of the earth at 

any given time depends on the longitude x and latitude y of 

the point. 

We can think of T as being a function of the two variables x 

and y , or as a function of the pair (x, y). We indicate this 

functional dependence by writing T = f(x, y).

The volume V of a circular cylinder depends on its radius r

and its height h. In fact, we know that V =  r2h. We say 

that V is a function of r and h, and we write V(r, h) =  r2h.
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Functions of Several Variables

We often write z = f(x, y) to make explicit the value taken

on by f at the general point (x, y). 

The variables x and y are independent variables and z is 

the dependent variable.

[Compare this with the notation y = f(x) for functions of a 

single variable.]



77

Example 1 

Find the domain of f if

f(x, y) = ln(x – y ) + xy + 1

Solution:

The expression for f(x, y) is defined as long as x – y > 0 or 

y < x, so the domain of f is

D = {(x, y)  R2 | y < x }

The domain consists of all points that lie below the line        

y = x.
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Example 2

Consider the function

(1) The expression for g is defined as long as                              

9 − 𝑥2 − 𝑦2 ≥ 0, so the domain of g is

D = {(x, y)  R2 | 9 − 𝑥2 − 𝑦2 ≥ 0 }

(2) Points in the domain satisfy                           

9 − 𝑥2 − 𝑦2 ≥ 0 or    𝑥2 + 𝑦2 ≤ 9

So, the domain consists of all points that lie on and inside 

the circle 𝑥2 + 𝑦2 = 9.
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Example 2

The graph has equation z =                                                    

We square both sides of this equation to obtain 

z2 = 9 – x2 – y2 or    x2 + y2 + z2 = 9, 

which we recognize as an equation of the sphere with 

center the origin and radius 3.

But, since z  0, the graph of  g is just the top half of this 

sphere (see the figure to the right).

From the graph it’s clear the range of 

g is 

Range of g = 𝑧 | 0 ≤ 𝑧 ≤ 3 = [0,3]
Graph of
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Example 3

In 1928 Charles Cobb and Paul Douglas published a study 

in which they modeled the growth of the American 

economy during the period 1899–1922. 

They considered a simplified view of the economy in which 

production output is determined by the amount of labor 

involved and the amount of capital invested. 

While there are many other factors affecting economic 

performance, their model proved to be remarkably 

accurate.
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Example 3

The function they used to model production was of the form

P(L, K) = bLK1–

where P is the total production (the monetary value of all 

goods produced in a year), L is the amount of labor (the 

total number of person-hours worked in a year), and K is 

the amount of capital invested (the monetary worth of all 

machinery, equipment, and buildings). 

cont’d
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Example 3

Cobb and Douglas used economic data published by the 

government to obtain Table 1.

Table 1

cont’d
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Example 3

They took the year 1899 as a baseline and P, L, and K for 

1899 were each assigned the value 100. 

The values for other years were expressed as percentages 

of the 1899 figures. 

Cobb and Douglas used the method of least squares to fit 

the data of Table 1 to the function

P(L, K) = 1.01L0.75K0.25

cont’d
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Example 3

If we use the model given by the function in Equation 2 to 

compute the production in the years 1910 and 1920, we get 

the values

P(147, 208) = 1.01(147)0.75(208)0.25  161.9

P(194, 407) = 1.01(194)0.75(407)0.25  235.8

which are quite close to the actual values, 159 and 231.

The production function      has subsequently been used in 

many settings, ranging from individual firms to global 

economics. It has become known as the Cobb-Douglas 

production function.

cont’d
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Example 3

Its domain is {(L, K) | L  0, K  0} because L and K 

represent labor and capital and are therefore never 

negative.

cont’d
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Graphs
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Graphs

Another way of visualizing the behavior of a function of two 

variables is to consider its graph.

Just as the graph of a function f of one variable is a curve C 

with equation y = f(x), so the graph of a function f of two 

variables is a surface S with equation z = f(x, y). 
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Graphs

We can visualize the graph S of f as lying directly above or 

below its domain D in the xy-plane (see the figure below).
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Graphs

The function f(x, y) = ax + by + c is called as a linear 

function. 

The graph of such a function has the equation 

z = ax + by + c          or        ax + by – z + c = 0

so it is a plane. In much the same way that linear functions 

of one variable are important in single-variable calculus, we 

will see that linear functions of two variables play a central 

role in multivariable calculus.
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Example 4

Sketch the graph of

Solution:

The graph has equation                                We square 

both sides of this equation to obtain z2 = 9 – x2 – y2, or      

x2 + y2 + z2 = 9, which we recognize as an equation of the 

sphere with center the origin and radius 3.

But, since z  0, the graph of 

g is just the top half of this 

sphere (see the figure to the right).

Graph of
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Level Curves
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Level Curves

So far we have two methods for visualizing functions: arrow 

diagrams and graphs. A third method, borrowed from 

mapmakers, is a contour map on which points of constant 

elevation are joined to form contour lines, or level curves.

A level curve f(x, y) = k is the set of all points in the domain 

of f at which f takes on a given value k. 

In other words, it shows where the graph of f has height k.
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Level Curves

You can see from the figure below the relation between 

level curves and horizontal traces.
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Level Curves

The level curves f(x, y) = k are just the traces of the graph 

of f in the horizontal plane z = k projected down to the 

xy-plane. 

So if you draw the level curves of a function and visualize 

them being lifted up to the surface at the indicated height, 

then you can mentally piece together a picture of the graph. 

The surface is steep where the level curves are close 

together. It is somewhat flatter where they are farther apart.
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Example  

Sketch the level curves of the function 

f(x, y) = 100 – x2 – y2

for k = 51, 75.

Solution: The level curves are 

100 – x2 – y2  = k    or    x2 + y2  = 100 – k

This is a family of concentric circles with center (0, 0) and 

radius 100 − 𝑘. The case k = 51 gives the level curve      

x2 + y2  = 49 which is a circle of center (0, 0) and radius 7.

The 75-level curve is the circle  x2 + y2  = 25 of center (0, 0) 

and radius 5. See the figures in the next slide.
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Example  
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Level Curves

One common example of level curves occurs in 

topographic maps of mountainous regions, such as the 

map in the figure below.
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Level Curves

The level curves are curves of constant elevation above 

sea level.

If you walk along one of these contour lines, you neither 

ascend nor descend. 

Another common example is the temperature function 

introduced in the opening paragraph of this section.

Here the level curves are called isothermals and join 

locations with the same temperature.
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Level Curves

The figure below shows a weather map of the world 

indicating the average January temperatures. The 

isothermals are the curves that separate the colored bands.

World mean sea-level temperatures in January in degrees Celsius
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Level Curves

For some purposes, a contour map is more useful than a 

graph. It is true in estimating function values. The 

accompanying figures show some computer-generated 

level curves together with the corresponding computer-

generated graphs.
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Level Curves

Notice that the level curves in Figure (c) crowd together 

near the origin. That corresponds to the fact that the graph 

in Figure (d) is very steep near the origin.

Figure c Figure d
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Functions of Three or More 

Variables
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Functions of Three or More Variables

A function of three variables, f, is a rule that assigns to 

each ordered triple (x, y, z) in a domain             a unique 

real number denoted by f(x, y, z).

For instance, the temperature T at a point on the surface of 

the earth depends on the longitude x and latitude y of the 

point and on the time t, so we could write T = f(x, y, t).
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Example 14

Find the domain of f if

f(x, y, z) = ln(z – y) + xy sin z

Solution:

The expression for f(x, y, z) is defined as long as z – y > 0, 

so the domain of f is

D = {(x, y, z)  | z > y}

This is a half-space consisting of all points that lie above 

the plane z = y.
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Functions of Three or More Variables

It’s very difficult to visualize a function f of three variables 

by its graph, since that would lie in a four-dimensional 

space.

However, we do gain some insight into f by examining its 

level surfaces, which are the surfaces with equations 

f(x, y, z) = k, where k is a constant. If the point (x, y, z) 

moves along a level surface, the value of f(x, y, z) remains 

fixed.
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Example: level surfaces

Find the level surfaces of the function

𝑓 𝑥, 𝑦, 𝑧 = 𝑥2 + 𝑦2 + 𝑧2

Solution:

The level surfaces are 𝑥2 + 𝑦2 + 𝑧2 = 𝑘, where 𝑘 ≥ 0. 

These form a family of concentric spheres, 𝑥2 + 𝑦2 + 𝑧2

= 𝑘2, with radius k. Thus, as (x, y, z) varies over any

sphere with center O, the value of 𝑓 𝑥, 𝑦, 𝑧 remains fixed.

See the figure in the next slide.
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Example: Level Surfaces
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Functions of Three or More Variables

Functions of any number of variables can be considered. 

A function of n variables is a rule that assigns a number 

z = f(x1, x2,…, xn) to an n-tuple (x1, x2,…, xn) of real 

numbers. We denote by      the set of all such n-tuples.
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Functions of Three or More Variables

For example, if a company uses n different ingredients in 

making a food product, ci is the cost per unit of the i th 

ingredient, and xi units of the i th ingredient are used, then 

the total cost C of the ingredients is a function of the n

variables x1, x2, . . . , xn:

C = f(x1, x2, . . . , xn) = c1x1 + c2x2 + .  .  . + cnxn

The function f is a real-valued function whose domain is a 

subset of     .
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Functions of Three or More Variables

Sometimes we will use vector notation to write such 

functions more compactly: If x = x1, x2, . . . , xn, we often 

write f(x) in place of f(x1, x2, . . . , xn).

With this notation we can rewrite the function defined in 

Equation 3 as

f(x) = c  x

where c = c1, c2, . . . , cn and c  x denotes the dot product 

of the vectors c and x in Vn.
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Functions of Three or More Variables

In view of the one-to-one correspondence between points 

(x1, x2, . . . , xn) in      and their position vectors 

x = x1, x2, . . . , xn in Vn, we have three ways of looking at 

a function f defined on a subset of      :

1. As a function of n real variables x1, x2, . . . , xn

2. As a function of a single point variable (x1, x2, . . . , xn)

3. As a function of a single vector variable x = x1, x2, . . . ,  

xn
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Limits and Continuity

Let’s compare the behavior of the functions

and

as x and y both approach 0 [and therefore the point (x, y) 

approaches the origin].
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Limits and Continuity

Tables 1 and 2 show values of f(x, y) and g(x, y), correct to 

three decimal places, for points (x, y) near the origin. 

(Notice that neither function is defined at the origin.)

Table 1

Values of f(x, y)
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Limits and Continuity

Table 2

Values of g(x, y)
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Limits and Continuity

It appears that as (x, y) approaches (0, 0), the values of        

f(x, y) are approaching 1 whereas the values of g(x, y) 

aren’t approaching any number. It turns out that these 

guesses based on numerical evidence are correct, and we 

write

and 

does not exist
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Limits and Continuity

In general, we use the notation

to indicate that the values of f(x, y) approach the number L 

as the point (x, y) approaches the point (a, b) along any 

path that stays within the domain of f.
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Limits and Continuity

In other words, we can make the values of f(x, y) as close 

to L as we like by taking the point (x, y) sufficiently close to 

the point (a, b), but not equal to (a, b). A more precise 

definition follows.
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Limits and Continuity

Other notations for the limit in Definition 1 are

and  

f(x, y)  L as (x, y)  (a, b)

For functions of a single variable, when we let x approach 

a, there are only two possible directions of approach, from 

the left or from the right.

We recall that if limxa- f(x)  limxa+ f(x), then limxa f(x) 

does not exist.
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Limits and Continuity

For functions of two variables the situation is not as simple 

because we can let (x, y) approach (a, b) from an infinite 

number of directions in any manner whatsoever 

(see the figure below) as long as (x, y) stays within the 

domain of f.



1111

Limits and Continuity

Definition 1 says that the distance between f(x, y) and L 

can be made arbitrarily small by making the distance from 

(x, y) to (a, b) sufficiently small (but not 0).

The definition refers only to the distance between                           

(x, y) and (a, b). It does not refer to the direction of 

approach. 

Therefore, if the limit exists, then f(x, y) must approach the 

same limit no matter how (x, y) approaches (a, b).
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Limits and Continuity

Thus, if we can find two different paths of approach along 

which the function f(x, y) has different limits, then it follows 

that lim(x, y)  (a, b) f(x, y) does not exist.
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Example: Limits 

Show that                             does not exist.

Solution:

Let f(x, y) = (x2 – y2)/(x2 + y2).

First let’s approach (0, 0) along the x-axis. 

Then y = 0 gives f(x, 0) = x2/x2 = 1 for all x  0, so 

f(x, y)  1    as    (x, y)  (0, 0) along the x-axis



1414

Example – Solution

We now approach along the y-axis by putting x = 0.

Then                                  for all y  0, so 

f(x, y)  –1   as   (x, y)  (0, 0) along the y-axis 

(See Figure 4.)

Figure 4

cont’d 
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Example – Solution

Since f has two different limits along two different lines, the 

given limit does not exist. (This confirms the conjecture we 

made on the basis of numerical evidence at the beginning 

of this section.)

cont’d 
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Example: Limits 
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Limits and Continuity

Now let’s look at limits that do exist. Just as for functions of 

one variable, the calculation of limits for functions of two 

variables can be greatly simplified by the use of properties 

of limits.

The Limit Laws can be extended to functions of two 

variables: The limit of a sum is the sum of the limits, the 

limit of a product is the product of the limits, and so on. 

In particular, the following equations are true.

The Squeeze Theorem also holds.
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Limits and Continuity
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Example: Limits
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Example: Limits
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Example: Limits

Evaluate  lim
(𝑥,𝑦)→(0,0)

3𝑥2𝑦

𝑥2+𝑦2

Solution:

Using polar coordinates 𝑥 = 𝑟𝑐𝑜𝑠𝜃, 𝑦 = 𝑟𝑠𝑖𝑛𝜃, we have 

that as (𝑥, 𝑦) → (0,0), then 𝑟 → 0. So we can find the limit 

as follows:

lim
(𝑥,𝑦)→(0,0)

3𝑥2𝑦

𝑥2+𝑦2
= lim

𝑟→0

3 𝑟𝑐𝑜𝑠𝜃 2(𝑟𝑠𝑖𝑛𝜃)

𝑟𝑐𝑜𝑠𝜃 2+ 𝑟𝑠𝑖𝑛𝜃 2 = lim
𝑟→0

3𝑟3 𝑐𝑜𝑠𝜃 2(𝑠𝑖𝑛𝜃)

𝑟2(𝑐𝑜𝑠2𝜃+𝑠𝑖𝑛2𝜃)

= lim
𝑟→0

3𝑟 𝑐𝑜𝑠𝜃 2 𝑠𝑖𝑛𝜃 = 0.
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Continuity
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Continuity

Recall that evaluating limits of continuous functions of a 

single variable is easy.

It can be accomplished by direct substitution because the 

defining property of a continuous function is                       

limxa f(x) = f(a).

Continuous functions of two variables are also defined by 

the direct substitution property.
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Continuity

The intuitive meaning of continuity is that if the point (x, y) 

changes by a small amount, then the value of f(x, y) 

changes by a small amount.

This means that a surface that is the graph of a continuous 

function has no hole or break. 

Using the properties of limits, you can see that sums, 

differences, products, and quotients of continuous functions 

are continuous on their domains.

Let’s use this fact to give examples of continuous functions.
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Continuity

A polynomial function of two variables (or polynomial, 

for short) is a sum of terms of the form cxmyn, where c is a 

constant and m and n are nonnegative integers.

A rational function is a ratio of polynomials.

For instance,

f(x, y) = x4 + 5x3y2 + 6xy4 – 7y + 6

is a polynomial which is continuous everywhere, whereas

is a rational function which is continuous on                             

𝐷 = 𝑥, 𝑦 |(𝑥, 𝑦) ≠ (0,0) .
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Example:  Continuity

Let 𝑓 𝑥, 𝑦 = ቐ

2𝑥𝑦

𝑥2+𝑦2
𝑖𝑓 (𝑥, 𝑦) ≠ (0,0)

0 𝑖𝑓 𝑥, 𝑦 = (0,0)

Here f is defined at (0, 0) but is still discontinuous there 

because lim
(𝑥,𝑦)→(0,0)

𝑓(𝑥, 𝑦) does not exist. To show this,

lim
(𝑥,𝑦)→(0,0)
𝐴𝑙𝑜𝑛𝑔 𝑥−𝑎𝑥𝑖𝑠

𝑓(𝑥, 𝑦) = lim
𝑦→0

0

𝑦2
= 0,

lim
(𝑥,𝑦)→(0,0)
𝐴𝑙𝑜𝑛𝑔 𝑦=𝑥

𝑓(𝑥, 𝑦) = lim
𝑥→0

2𝑥2

2𝑥2
= 1.

Since f has two different limits along two different paths, the 

given limit does not exist.
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Continuity

The limits in     show that the functions                                  

f(x, y) = x, g(x, y) = y, and h(x, y) = c are continuous. 

Since any polynomial can be built up out of the simple 

functions f, g, and h by multiplication and addition, it follows 

that all polynomials are continuous on     .

Likewise, any rational function is continuous on its domain 

because it is a quotient of continuous functions.
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Example 

Evaluate

Solution:

Since f(x, y) = x2y3 – x3y2 + 3x + 2y is a polynomial, it is 

continuous everywhere, so we can find the limit by direct 

substitution:

(x2y3 – x3y2 + 3x + 2y) = 12
 23 – 13

 22 + 3  1 

+ 2  2

= 11
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Continuity

Just as for functions of one variable, composition is another 

way of combining two continuous functions to get a third.

In fact, it can be shown that if f is a continuous function of 

two variables and g is a continuous function of a single 

variable that is defined on the range of f, then the 

composite function h = g  f defined by h(x, y) = g(f(x, y)) is 

also a continuous function.
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Functions of Three or More 

Variables
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Functions of Three or More Variables

Everything that we have done in this section can be 

extended to functions of three or more variables. 

The notation

means that the values of f(x, y, z) approach the number L

as the point (x, y, z) approaches the point (a, b, c) along 

any path in the domain of f.
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Functions of Three or More Variables

Because the distance between two points (x, y, z)  and 

(a, b, c) in     is given by                                                     , 

we can write the precise definition as follows: For every 

number ε > 0 there is a corresponding number  > 0 such 

that

if (x, y, z) is in the domain of f and

0 <                                                      < 

then | f( x, y, z) – L | < ε
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Functions of Three or More Variables

The function f is continuous at (a, b, c) if

For instance, the function

is a rational function of three variables and so is continuous 

at every point in     except where x2 + y2 + z2 = 1. In other 

words, it is discontinuous on the sphere with center the 

origin and radius 1.
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Functions of Three or More Variables

We can write the definitions of a limit for functions of two or 

three variables in a single compact form as follows.
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14.3 Partial Derivatives
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Partial Derivatives

On a hot day, extreme humidity makes us think the 

temperature is higher than it really is, whereas in very dry  

air we perceive the temperature to be lower than the 

thermometer indicates. 

The National Weather Service has devised the heat index 

(also called the temperature-humidity index, or humidex, in 

some countries) to describe the combined effects of 

temperature and humidity.

The heat index I is the perceived air temperature when the 

actual temperature is T and the relative humidity is H.

So I is a function of T and H and we can write I = f(T, H).
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Partial Derivatives

The following table of values of I is an excerpt from a table 

compiled by the National Weather Service.

Table 1

Heat index I as a function of

temperature and humidity



55

Partial Derivatives

If we concentrate on the highlighted column of the table, 

which corresponds to a relative humidity of H = 70%, we 

are considering the heat index as a function of the single 

variable T for a fixed value of H. Let’s write g(T) = f(T, 70). 

Then g(T) describes how the heat index I increases as the 

actual temperature T increases when the relative humidity 

is 70%. 

The derivative of g when T = 96F is the rate of change of    

I with respect to T when T = 96F:
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Partial Derivatives

We can approximate g(96) using the values in Table 1 by 

taking h = 2 and –2:

Averaging these values, we can say that the derivative          

g(96) is approximately 3.75.
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Partial Derivatives

This means that, when the actual temperature is 96F and 

the relative humidity is 70%, the apparent temperature  

(heat index) rises by about 3.75F for every degree that the 

actual temperature rises!
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Partial Derivatives

Now let’s look at the highlighted row in Table 1, which 

corresponds to a fixed temperature of T = 96F.

Table 1

Heat index I as a function of

temperature and humidity
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Partial Derivatives

The numbers in this row are values of the function                  

G(H) = f(96, H), which describes how the heat index 

increases as the relative humidity H increases when the 

actual temperature is T = 96F.

The derivative of this function when H = 70% is the rate of 

change of I with respect to H when H = 70%:
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Partial Derivatives

By taking h = 5 and –5, we approximate G(70) using the 

tabular values:

By averaging these values we get the estimate 

G(70)  0.9. This says that, when the temperature is 96F

and the relative humidity is 70%, the heat index rises about 

0.9F for every percent that the relative humidity rises.
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Partial Derivatives

In general, if f is a function of two variables x and y, 

suppose we let only x vary while keeping y fixed, say y = b, 

where b is a constant. 

Then we are really considering a function of a single 

variable x, namely, g(x) = f(x, b). If g has a derivative at a, 

then we call it the partial derivative of f with respect to x 

at (a, b) and denote it by fx(a, b). Thus
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Partial Derivatives

By the definition of a derivative, we have

and so Equation 1 becomes
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Partial Derivatives

Similarly, the partial derivative of f with respect to y at               

(a, b), denoted by fy(a, b), is obtained by keeping x fixed     

(x = a) and finding the ordinary derivative at b of the 

function G(y) = f(a, y):

With this notation for partial derivatives, we can write the 

rates of change of the heat index I with respect to the 

actual temperature T and relative humidity H when               

T = 96F and H = 70% as follows:

fT (96, 70)  3.75        fH(96, 70)  0.9



1414

Partial Derivatives

If we now let the point (a, b) vary in Equations 2 and 3,        

fx and fy become functions of two variables.
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Partial Derivatives

There are many alternative notations for partial derivatives.

For instance, instead of fx we can write f1 or D1f (to indicate 

differentiation with respect to the first variable) or ∂f /∂x. 

But here ∂f /∂x can’t be interpreted as a ratio of differentials.
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Partial Derivatives

To compute partial derivatives, all we have to do is 

remember from Equation 1 that the partial derivative with 

respect to x is just the ordinary derivative of the function g

of a single variable that we get by keeping y fixed. 

Thus we have the following rule.
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Example: Partial derivatives

If f(x, y) = x3 + x2y3 – 2y2, find fx(2, 1) and fy(2, 1).

Solution:

Holding y constant and differentiating with respect to x, 

we get

fx(x, y) = 3x2 + 2xy3

and so  fx(2, 1) = 3  22 + 2  2  13 

Holding x constant and differentiating with respect to y, 

we get

fy(x, y) = 3x2y2 – 4y

fy(2, 1) = 3  22
 12 – 4  1

= 16

= 8
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Example: Partial derivatives
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Example: Partial derivatives

If  𝑓 𝑥, 𝑦 = 𝑠𝑖𝑛
𝑥

1+𝑦
, calculate 

𝜕𝑓

𝜕𝑥
and  

𝜕𝑓

𝜕𝑦
.

Solution:

𝜕𝑓

𝜕𝑥
= 𝑐𝑜𝑠

𝑥

1 + 𝑦
∙
𝜕

𝜕𝑥

𝑥

1 + 𝑦
= 𝑐𝑜𝑠

𝑥

1 + 𝑦
∙

1

1 + 𝑦

𝜕𝑓

𝜕𝑦
= 𝑐𝑜𝑠

𝑥

1 + 𝑦
∙
𝜕

𝜕𝑦

𝑥

1 + 𝑦
= 𝑐𝑜𝑠

𝑥

1 + 𝑦
∙

−𝑥

(1 + 𝑦)2
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Example: Implicit differentiation

Find  
𝜕𝑧

𝜕𝑥
and  

𝜕𝑧

𝜕𝑦
if z is defined implicitly as a function of x

and y by the equation 𝑥3 + 𝑦3 + 𝑧3 + 6𝑥𝑦𝑧 = 1.

Solution: To find 
𝜕𝑧

𝜕𝑥
, we differentiate implicitly with respect to 

x, being careful to treat y as a constant:

3𝑥2 + 3𝑧2
𝜕𝑧

𝜕𝑥
+ 6𝑥𝑦

𝜕𝑧

𝜕𝑥
+ 6𝑦𝑧 = 0

Solving this equation for 
𝜕𝑧

𝜕𝑥
, we obtain

𝜕𝑧

𝜕𝑥
=
−3𝑥2 − 6𝑦𝑧

3𝑧2 + 6𝑥𝑦
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Example: implicit Differentiation

To find 
𝜕𝑧

𝜕𝑦
, we differentiate implicitly with respect to y, being 

careful to treat x as a constant:

0 + 3𝑧2
𝜕𝑧

𝜕𝑦
+ 3𝑦2 + 6𝑥𝑦

𝜕𝑧

𝜕𝑦
+ 6𝑥𝑧 = 0

Solving this equation for 
𝜕𝑧

𝜕𝑦
, we obtain

𝜕𝑧

𝜕𝑦
=
−3𝑦2 − 6𝑥𝑧

3𝑧2 + 6𝑥𝑦
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Interpretations of Partial Derivatives
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Interpretations of Partial Derivatives

To give a geometric interpretation of partial derivatives, we 

recall that the equation z = f(x, y) represents a surface              

S (the graph of f ). If f(a, b) = c, then the point P(a, b, c) lies 

on S. 

By fixing y = b, we are restricting our attention to the curve 

C1 in which the vertical plane y = b intersects S. (In other 

words, C1 is the trace of S in the plane y = b.) 
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Interpretations of Partial Derivatives

Likewise, the vertical plane x = a intersects S in a curve C2. 

Both of the curves C1 and C2 pass through the point P.   

(See the figure to the right)

Notice that the curve C1 is the 

graph of the function 

g(x) = f(x, b), so the slope of its 

tangent T1 at P is g (a) = fx(a, b). 

The curve C2 is the graph of the 

function G(y) = f(a, y), so the 

slope of its tangent T2 at P is           

G(b) = fy(a, b).   

The partial derivatives of f at (a, b) are

the slopes of the tangents to C1 and C2.
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Interpretations of Partial Derivatives

Thus the partial derivatives fx(a, b) and fy(a, b) can be 

interpreted geometrically as the slopes of the tangent lines 

at P(a, b, c) to the traces C1 and C2 of S in the planes y = b

and x = a. 

As we have seen in the case of the heat index function, 

partial derivatives can also be interpreted as rates of 

change. 

If z = f(x, y), then ∂z /∂x represents the rate of change of z 

with respect to x when y is fixed. Similarly, ∂z /∂y represents 

the rate of change of z with respect to y when x is fixed.
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Example: Interpretations of Partial Derivatives

If f(x, y) = 4 – x2 – 2y2, find fx(1, 1) and fy(1, 1) and interpret 

these numbers as slopes.

Solution:

We have

fx(x, y) = –2x             fy(x, y) = –4y

fx(1, 1) = –2              fy(1, 1) = –4
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Example – Solution

The graph of f is the paraboloid z = 4 – x2 – 2y2 and the 

vertical plane y = 1 intersects it in the parabola z = 2 – x2,    

y = 1. (As in the preceding discussion, we label it C1 in the 

given figure.) 

The slope of the tangent line to 

this parabola at the point

(1, 1, 1) is fx(1, 1) = –2.

cont’d
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Example 2 – Solution

Similarly, the curve C2 in which the plane x = 1 intersects 

the paraboloid is the parabola z = 3 – 2y2, x = 1, and the 

slope of the tangent line at (1, 1, 1) is fy(1, 1) = –4. (See the 

figure below.)

cont’d
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Functions of More Than Two 

Variables
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Functions of More Than Two Variables

Partial derivatives can also be defined for functions of three 

or more variables. For example, if f is a function of three 

variables x, y, and z, then its partial derivative with respect 

to x is defined as

and it is found by regarding y and z as constants and 

differentiating f(x, y, z) with respect to x.
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Functions of More Than Two Variables

If w = f(x, y, z), then fx = ∂w /∂x can be interpreted as the 

rate of change of w with respect to x when y and z are held 

fixed. But we can’t interpret it geometrically because the 

graph of f lies in four-dimensional space. 

In general, if u is a function of n variables, 

u = f(x1, x2,…, xn), its partial derivative with respect to the 

i th variable xi is 

and we also write
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Example

Find fx, fy, and fz if f(x, y, z) = exy ln z.

Solution:

Holding y and z constant and differentiating with respect     

to x, we have

fx = yexy ln z

Similarly,

fy = xexy ln z      and      fz =
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Higher Derivatives
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Higher Derivatives

If f is a function of two variables, then its partial derivatives  

fx and fy are also functions of two variables, so we can 

consider their partial derivatives (fx)x, (fx)y, (fy)x, and (fy)y, 

which are called the second partial derivatives of f. 

If z = f(x, y), we use the following notation:
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Higher Derivatives

Thus the notation fxy (or ∂2f /∂y ∂x) means that we first 

differentiate with respect to x and then with respect to y, 

whereas in computing fyx the order is reversed.
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Example: Second partial derivatives

Find the second partial derivatives of

f(x, y) = x3 + x2y3 – 2y2

Solution:

In Example 1 we found that

fx(x, y) = 3x2 + 2xy3 fy(x, y) = 3x2y2 – 4y

Therefore

fxx =       (3x2 + 2xy3)

= 6x + 2y3
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Example – Solution

fxy =       (3x2 + 2xy3)

= 6xy2

fyx =       (3x2y2 – 4y)

= 6xy2

fyy = (3x2y2 – 4y)

= 6x2y – 4

cont’d
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Higher Derivatives

Notice that fxy = fyx in the last example. This is not just a 

coincidence. 

It turns out that the mixed partial derivatives fxy and fyx are 

equal for most functions that one meets in practice. 

The following theorem, which was discovered by the 

French mathematician Alexis Clairaut (1713–1765), gives 

conditions under which we can assert that fxy = fyx.
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Example: Mixed Partial Derivatives

Let 𝑓 𝑥, 𝑦 = ቐ
𝑥3𝑦−𝑥𝑦3

𝑥2+𝑦2
𝑖𝑓 𝑥, 𝑦 ≠ 0,0

0 𝑖𝑓 𝑥, 𝑦 = 0,0

(1) Find 𝑓𝑥(0,0) and  𝑓𝑦(0,0).

(2) Show that  𝑓𝑥𝑦 0,0 = −1 and  𝑓𝑦𝑥 0,0 = 1.

(3) Does the result of part (2) contradict Clairaut’s

Theorem?

SOLUTION: Note that for 𝑥, 𝑦 ≠ 0,0 ,  we have

𝑓𝑥 =
𝑥4𝑦+4𝑥2𝑦3−𝑦5

𝑥2+𝑦2 2 and  𝑓𝑦 =
𝑥5−4𝑥3𝑦2−𝑥𝑦4

𝑥2+𝑦2 2 .
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Example: Mixed Partial Derivatives

(1) 𝑓𝑥 0,0 = lim
ℎ→0

𝑓 0+ℎ,0 −𝑓(0,0)

ℎ
= lim

ℎ→0

0−0

ℎ
= 0,

𝑓𝑦 0,0 = lim
ℎ→0

𝑓 0,0+ℎ −𝑓(0,0)

ℎ
= lim

ℎ→0

0−0

ℎ
= 0 .

(2) 𝑓𝑥𝑦 0,0 = lim
ℎ→0

𝑓𝑥 0,0+ℎ −𝑓𝑥(0,0)

ℎ
= lim

ℎ→0

−ℎ−0

ℎ
= −1,

𝑓𝑦𝑥 0,0 = lim
ℎ→0

𝑓𝑦 0+ℎ,0 −𝑓𝑦(0,0)

ℎ
= lim

ℎ→0

ℎ−0

ℎ
= 1.

(3) No, since 𝑓𝑥𝑦 and 𝑓𝑥𝑦 are not continuous.
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Higher Derivatives

Partial derivatives of order 3 or higher can also be defined. 

For instance,

and using Clairaut’s Theorem it can be shown that             

fxyy = fyxy = fyyx if these functions are continuous.
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Example: Higher Derivatives
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Partial Differential Equations



4444

Partial Differential Equations

Partial derivatives occur in partial differential equations that 

express certain physical laws. 

For instance, the partial differential equation

is called Laplace’s equation after Pierre Laplace          

(1749–1827). 

Solutions of this equation are called harmonic functions; 

they play a role in problems of heat conduction, fluid flow, 

and electric potential.
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Example 8 

Show that the function u(x, y) = ex sin y is a solution of 

Laplace’s equation.

Solution:

We first compute the needed second-order partial 

derivatives:

ux = ex sin y            uy = ex cos y

uxx = ex sin y          uyy = –ex sin y

So         uxx + uyy = ex sin y – ex sin y = 0

Therefore u satisfies Laplace’s equation.
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Partial Differential Equations

The wave equation

describes the motion of a waveform, which could be an 

ocean wave, a sound wave, a light wave, or a wave 

traveling along a vibrating string. 
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Partial Differential Equations

For instance, if u(x, t) represents the displacement of a 

vibrating violin string at time t and at a distance x from one 

end of the string (as in the figure below), then u(x, t) 

satisfies the wave equation.

Here the constant a depends on the density of the string  

and on the tension in the string.
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14.4
Tangent Planes and Linear 

Approximations
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Tangent Planes



44

Tangent Planes

Suppose a surface S has equation z = f(x, y), where f has 

continuous first partial derivatives, and let P(x0, y0, z0) be a 

point on S.

Let C1 and C2 be the curves obtained by intersecting the 

vertical planes y = y0 and x = x0 with the surface S. Then 

the point P lies on both C1 and C2.

Let T1 and T2 be the tangent lines to the curves C1 and C2

at the point P.
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Tangent Planes

Then the tangent plane to the surface S at the point P is 

defined to be the plane that contains both tangent lines 

T1 and T2. (See Figure 1.)

Figure 1

The tangent plane contains the tangent lines T1 and T2.
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Tangent Planes

If C is any other curve that lies on the surface S and 

passes through P, then its tangent line at P also lies in the 

tangent plane.

Therefore you can think of the tangent plane to S at P as 

consisting of all possible tangent lines at P to curves that lie 

on S and pass through P. The tangent plane at P is the 

plane that most closely approximates the surface S near 

the point P. We know that any plane passing through the 

point P(x0, y0, z0) has an equation of the form

A(x – x0) + B(y – y0) + C(z – z0) = 0
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Tangent Planes

By dividing this equation by C and letting a = –A/C and 

b = –B/C, we can write it in the form

z – z0 = a(x – x0) + b(y – y0)

If Equation 1 represents the tangent plane at P, then its 

intersection with the plane y = y0 must be the tangent 

line T1. Setting y = y0 in Equation 1 gives

z – z0 = a(x – x0)        where y = y0

and we recognize this as the equation (in point-slope form) 

of a line with slope a.
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Tangent Planes

But we know that the slope of the tangent T1 is fx(x0, y0).

Therefore a = fx(x0, y0).

Similarly, putting x = x0 in Equation 1, we get 

z – z0 = b(y – y0), which must represent the tangent line T2, 

so b = fy(x0, y0).
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Example 1

Find the tangent plane to the elliptic paraboloid z = 2x2 + y2

at the point (1, 1, 3).

Solution:

Let f(x, y) = 2x2 + y2. 

Then

fx(x, y) = 4x                 fy(x, y) = 2y

fx(1, 1) = 4                  fy(1, 1) = 2

Then      gives the equation of the tangent plane at 

(1, 1, 3) as

z – 3 = 4(x – 1) + 2(y – 1)

or                                    z = 4x + 2y – 3



1010

Tangent Planes

Figure 2(a) shows the elliptic paraboloid and its tangent 

plane at (1, 1, 3) that we found in Example 1. In parts (b) 

and (c) we zoom in toward the point (1, 1, 3) by restricting 

the domain of the function f(x, y) = 2x2 + y2.

Figure 2

The elliptic paraboloid z = 2x2 + y2 appears to coincide with its 

tangent plane as we zoom in toward (1, 1, 3).
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Tangent Planes

Notice that the more we zoom in, the flatter the graph 

appears and the more it resembles its tangent plane. 

In Figure 3 we corroborate this impression by zooming in 

toward the point (1, 1) on a contour map of the function 

f(x, y) = 2x2 + y2.

Figure 3

Zooming in toward (1, 1) on a contour map of f(x, y) = 2x2 + y2
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Tangent Planes

Notice that the more we zoom in, the more the level curves 

look like equally spaced parallel lines, which is 

characteristic of a plane.
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Differentiability
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14.5 The Chain Rule
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The Chain Rule

Recall that the Chain Rule for functions of a single variable 

gives the rule for differentiating a composite function:

If y = f(x) and x = g(t), where f and g are differentiable 

functions, then y is indirectly a differentiable function of t

and

For functions of more than one variable, the Chain Rule 

has several versions, each of them giving a rule for 

differentiating a composite function. 
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The Chain Rule

The first version (Theorem 2) deals with the case where       

z = f(x, y) and each of the variables x and y is, in turn, a 

function of a variable t.

This means that z is indirectly a function of t, 

z = f(g(t), h(t)), and the Chain Rule gives a formula for 

differentiating z as a function of t. We assume that f is 

differentiable. 
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The Chain Rule

Recall that this is the case when fx and fy are continuous.

Since we often write ∂z/∂x in place of ∂ f/∂x, we can rewrite

the Chain Rule in the form
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Example 1

If z = x2y + 3xy4, where x = sin 2t and y = cos t, find dz/dt

when t = 0.

Solution:

The Chain Rule gives

It’s not necessary to substitute the expressions for x and y

in terms of t.
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Example 1 – Solution

We simply observe that when t = 0, we have x = sin 0 = 0 

and y = cos 0 = 1. 

Therefore

cont’d
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The Chain Rule

We now consider the situation where z = f(x, y) but each of   

x and y is a function of two variables s and t: 

x = g(s, t), y = h(s, t). 

Then z is indirectly a function of s and t and we wish to find 

∂z /∂s and ∂z/∂t. 

Recall that in computing ∂z/∂t we hold s fixed and compute 

the ordinary derivative of z with respect to t. 

Therefore we can apply Theorem 2 to obtain 



9

The Chain Rule

A similar argument holds for ∂z /∂s and so we have proved 

the following version of the Chain Rule.

Case 2 of the Chain Rule contains three types of variables: 

s and t are independent variables, x and y are called 

intermediate variables, and z is the dependent variable.



10

The Chain Rule

Notice that Theorem 3 has one term for each intermediate 

variable and each of these terms resembles the              

one-dimensional Chain Rule in Equation 1.

To remember the Chain Rule, it’s helpful to draw the tree 

diagram in Figure 2.

Figure 2
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The Chain Rule: Tree Diagram
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The Chain Rule

We draw branches from the dependent variable z to the 

intermediate variables x and y to indicate that z is a 

function of x and y. Then we draw branches from x and y to 

the independent variables s and t. 

On each branch we write the corresponding partial 

derivative. To find ∂z /∂s, we find the product of the partial 

derivatives along each path from z to s and then add these 

products: 
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The Chain Rule

Similarly, we find ∂z /∂t by using the paths from z to t.

Now we consider the general situation in which a 

dependent variable u is a function of n intermediate 

variables x1, …, xn, each of which is, in turn, a function of m

independent variables t1,…, tm. 

Notice that there are n terms, one for each intermediate 

variable. The proof is similar to that of Case 1.
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The Chain Rule
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The Chain Rule
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The Chain Rule
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Implicit Differentiation
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Implicit Differentiation

The Chain Rule can be used to give a more complete 

description of the process of implicit differentiation.

We suppose that an equation of the form F(x, y) = 0 

defines y implicitly as a differentiable function of x, that is, 

y = f(x), where F(x, f(x)) = 0 for all x in the domain of f. 

If F is differentiable, we can apply Case 1 of the Chain Rule 

to differentiate both sides of the equation F(x, y) = 0 with 

respect to x. 

Since both x and y are functions of x, we obtain 
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Implicit Differentiation

But dx /dx = 1, so if ∂F /∂x ≠ 0 we solve for dy /dx and obtain

To derive this equation we assumed that F(x, y) = 0 defines

y implicitly as a function of x. 
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Implicit Differentiation

The Implicit Function Theorem, proved in advanced 

calculus, gives conditions under which this assumption is 

valid: 

It states that if F is defined on a disk containing (a, b), 

where F(a, b) = 0, Fy(a, b) ≠ 0, and Fx and Fy are 

continuous on the disk, then the equation F(x, y) = 0 

defines y as a function of x near the point (a, b) and the 

derivative of this function is given by Equation 6. 
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Example 8

Find y if x3 + y3 = 6xy.

Solution:

The given equation can be written as

F(x, y) = x3 + y3 – 6xy = 0

so Equation 6 gives
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Implicit Differentiation

Now we suppose that z is given implicitly as a function         

z = f(x, y) by an equation of the form F(x, y, z) = 0. 

This means that F(x, y, f(x, y)) = 0 for all (x, y) in the 

domain of f. If F and f are differentiable, then we can use 

the Chain Rule to differentiate the equation F(x, y, z) = 0 as 

follows: 
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Implicit Differentiation

But and 

so this equation becomes

If ∂F /∂z ≠ 0, we solve for ∂z /∂x and obtain the first formula 

in Equations 7. 

The formula for ∂z /∂y is obtained in a similar manner.
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Implicit Differentiation

Again, a version of the Implicit Function Theorem 

stipulates conditions under which our assumption is valid: 

If F is defined within a sphere containing (a, b, c), where       

F(a, b, c) = 0, Fz(a, b, c) ≠ 0, and Fx, Fy, and Fz are

continuous inside the sphere, then the equation

F(x, y, z) = 0 defines z as a function of x and y near the

point (a, b, c) and this function is differentiable, with partial

derivatives given by     .
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14.6 Directional Derivatives and the Gradient Vector
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Directional Derivatives and the Gradient Vector

In this section we introduce a type of derivative, called a 

directional derivative, that enables us to find the rate of 

change of a function of two or more variables in any 

direction.
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Directional Derivatives



55

Directional Derivatives

Recall that if z = f(x, y), then the partial derivatives fx and fy
are defined as

and represent the rates of change of z in the 

x- and y-directions, that is, in the directions of the unit 

vectors i and j.
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Directional Derivatives

Suppose that we now wish to find the rate of change of z at 

(x0, y0) in the direction of an arbitrary unit vector u = a, b. 

(See Figure 2.)

To do this we consider the surface S with the equation 

z = f(x, y) (the graph of f) and we let z0 = f(x0, y0). Then the 

point P(x0, y0, z0) lies on S.

Figure 2

A unit vector u = a, b = cos , sin  
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Directional Derivatives

The vertical plane that passes through P in the direction of 

u intersects S in a curve C. (See Figure 3.)

Figure 3
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Directional Derivatives

The slope of the tangent line T to C at the point P is the 

rate of change of z in the direction of u. If Q(x, y, z) is 

another point on C and P, Q are the projections of P, Q 

onto the xy-plane, then the vector         is parallel to u and 

so

= hu = ha, hb

for some scalar h. Therefore x – x0 = ha, y – y0 = hb,         

so x = x0 + ha, y = y0 + hb, and
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Directional Derivatives

If we take the limit as h  0, we obtain the rate of change         

of z (with respect to distance) in the direction of u, which is 

called the directional derivative of f in the direction of u.
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Directional Derivatives

By comparing Definition 2 with Equations     , we see that if 

u = i = 1, 0, then Dif = fx and if u = j = 0, 1, then Djf = fy.

In other words, the partial derivatives of f with respect to 

x and y are just special cases of the directional derivative.



1111

Example 1

Use the weather map in Figure 1 to estimate the value of 

the directional derivative of the temperature function at 

Reno in the southeasterly direction.

Figure 1
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Example 1 – Solution

The unit vector directed toward the southeast is  

but we won’t need to use this expression. 

We start by drawing a line through Reno toward the 

southeast (see Figure 4).

Figure 4
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Example 1 – Solution

We approximate the directional derivative DuT by the 

average rate of change of the temperature between the 

points where this line intersects the isothermals 

T = 50 and T = 60.

The temperature at the point southeast of Reno is T = 60F

and the temperature at the point northwest of Reno is 

T = 50F.  

The distance between these points looks to be about 

75 miles. So the rate of change of the temperature in the 

southeasterly direction is

cont’d
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Directional Derivatives

When we compute the directional derivative of a function 

defined by a formula, we generally use the following 

theorem.
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Directional Derivatives

If the unit vector u makes an angle  with the positive        

x-axis (as in Figure 2), then we can write u = cos , sin  
and the formula in Theorem 3 becomes

Duf(x, y) = fx(x, y) cos  + fy(x, y) sin 

Figure 2

A unit vector u = a, b = cos , sin  
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The Gradient Vectors
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The Gradient Vectors

Notice from Theorem 3 that the directional derivative of a 

differentiable function can be written as the dot product of 

two vectors:

Duf(x, y) = fx(x, y)a + fy(x, y)b

= fx(x, y), fy(x, y)  a, b

= fx(x, y), fy(x, y)  u

The first vector in this dot product occurs not only in 

computing directional derivatives but in many other 

contexts as well. 

So we give it a special name (the gradient of f ) and a 

special notation (grad f or f, which is read “del f ”).
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The Gradient Vectors
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Example 3

If f(x, y) = sin x + exy, then

f(x, y) = fx, fy

= cos x + yexy, xexy

and f(0, 1) = 2, 0



2020

The Gradient Vectors

With this notation for the gradient vector, we can rewrite the 

expression (7) for the directional derivative of a 

differentiable function as

This expresses the directional derivative in the direction of 

u as the scalar projection of the gradient vector onto u.
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Example
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Functions of Three Variables
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Functions of Three Variables

For functions of three variables we can define directional 

derivatives in a similar manner.

Again Duf(x, y, z) can be interpreted as the rate of change 

of the function in the direction of a unit vector u.
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Functions of Three Variables

If we use vector notation, then we can write both 

definitions (2 and 10) of the directional derivative in the 

compact form

where x0 = x0, y0 if n = 2 and x0 = x0, y0, z0 if n = 3. 

This is reasonable because the vector equation of the line 

through x0 in the direction of the vector u is given by 

x = x0 + tu and so f(x0 + hu) represents the value of f at a 

point on this line.
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Functions of Three Variables

If f(x, y, z) is differentiable and u = a, b, c, then

Duf(x, y, z) = fx(x, y, z)a + fy(x, y, z)b + fz(x, y, z)c

For a function f of three variables, the gradient vector, 

denoted by f or grad f, is

f(x, y, z) = fx(x, y, z), fy(x, y, z), fz(x, y, z)

or, for short,
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Functions of Three Variables

Then, just as with functions of two variables, Formula 12 for 

the directional derivative can be rewritten as
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Example 5

If f(x, y, z) = x sin yz, (a) find the gradient of f and (b) find 

the directional derivative of f at (1, 3, 0) in the direction of 

v = i + 2 j – k.

Solution:

(a) The gradient of f is

f(x, y, z) = fx(x, y, z), fy(x, y, z), fz(x, y, z)

= sin yz, xz cos yz, xy cos yz
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Example 5 – Solution

(b) At (1, 3, 0) we have f(1, 3, 0) = 0, 0, 3. 

The unit vector in the direction of v = i + 2 j – k is

Therefore Equation 14 gives

Duf(1, 3, 0) = f(1, 3, 0)  u

cont’d
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Maximizing the Directional 

Derivatives
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Maximizing the Directional Derivatives

Suppose we have a function f of two or three variables and 

we consider all possible directional derivatives of f at a 

given point. 

These give the rates of change of f in all possible 

directions. 

We can then ask the questions: In which of these directions 

does f change fastest and what is the maximum rate of 

change? The answers are provided by the following 

theorem.
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Example 6

(a) If f(x, y) = xey, find the rate of change of f at the point 

P(2, 0) in the direction from P to           .

(b) In what direction does f have the maximum rate of

change? What is this maximum rate of change?

Solution:

(a) We first compute the gradient vector:

f(x, y) = fx, fy = ey, xey

f(2, 0) = 1, 2
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Example 6 – Solution

The unit vector in the direction of       = –1.5, 2 is              

u =             so the rate of change of f in the direction from P 

to Q is

Duf(2, 0) = f(2, 0)  u

(b) According to Theorem 15, f increases fastest in the

direction of the gradient vector f(2, 0) = 1, 2. 

The maximum rate of change is

|f(2, 0)| = |1, 2 | =

cont’d
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Example

Suppose that the temperature at a point in space is given 

by  𝑇 𝑥, 𝑦, 𝑧 = 80/ 1 + 𝑥2 + 2𝑦2 + 3𝑧2 , where T is 

measured in degrees Celsius and x, y, z in meters. In 

which direction does the temperature increase fastest at 

the point (1, 1, -2)? What is the maximum rate of increase?

Solution:

(a) We first compute the gradient vector:

𝛻𝑇 𝑥, 𝑦, 𝑧 = 𝑓𝑥 , 𝑓𝑦 , 𝑓𝑧 =

−160𝑥

1+𝑥2+2𝑦2+3𝑧2 2 ,
−320𝑦

1+𝑥2+2𝑦2+3𝑧2 2 ,
−480𝑧

1+𝑥2+2𝑦2+3𝑧2 2

At the point (1, 1, -2) the gradient vector is
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Example: Solution

𝛻𝑇 1,1,−2 =
−5

8
,
−10

8
,
30

8
.

By Theorem 15 the temperature increases fastest in the 

direction of the gradient vector 𝛻𝑇 1,1, −2 =
−5

8
,
−10

8
,
30

8
.

The maximum rate of increase is the length of the

gradient vector:

𝛻𝑇 1,1,−2 =
−5

8

2
+

−10

8

2 30

8

2
= 4°𝐶/m.
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Tangent Planes to Level Surfaces
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Tangent Planes to Level Surfaces

Suppose S is a surface with equation F(x, y, z) = k, that is, 

it is a level surface of a function F of three variables, and let

P(x0, y0, z0) be a point on S. 

Let C be any curve that lies on the surface S and passes 

through the point P. Recall that the curve C is described by 

a continuous vector function r(t) = x(t), y(t), z(t).

Let t0 be the parameter value corresponding to P; that is, 

r(t0) = x0, y0, z0. Since C lies on S, any point (x(t), y(t), 

z(t)) must satisfy the equation of S, that is,

F(x(t), y(t), z(t)) = k
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Tangent Planes to Level Surfaces

If x, y, and z are differentiable functions of t and F is also 

differentiable, then we can use the Chain Rule to 

differentiate both sides of Equation 16 as follows:

But, since F = Fx, Fy, Fz and r(t) = x(t), y(t), z(t), 

Equation 17 can be written in terms of a dot product as

F  r(t) = 0
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Tangent Planes to Level Surfaces

In particular, when t = t0 we have r(t0) = x0, y0, z0, so

F(x0, y0, z0)  r(t0) = 0

Equation 18 says that the gradient vector at P, F(x0, y0, 

z0), is perpendicular to the tangent vector r(t0) to any curve 

C on S that passes through P. (See Figure 9.)

Figure 9
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Tangent Planes to Level Surfaces

If F(x0, y0, z0)  0, it is therefore natural to define the 

tangent plane to the level surface F(x, y, z) = k at 

P(x0, y0, z0) as the plane that passes through P and has 

normal vector F(x0, y0, z0). 

Using the standard equation of a plane, we can write the 

equation of this tangent plane as
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Tangent Planes to Level Surfaces

The normal line to S at P is the line passing through P           

and perpendicular to the tangent plane. 

The direction of the normal line is therefore given by the 

gradient vector F(x0, y0, z0) and so, its symmetric 

equations are
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Tangent Planes to Level Surfaces

In the special case in which the equation of a surface S is 

of the form z = f(x, y) (that is, S is the graph of a function f 

of two variables), we can rewrite the equation as

F(x, y, z) = f(x, y) – z = 0

and regard S as a level surface (with k = 0) of F. Then

Fx(x0, y0, z0) = fx(x0, y0) 

Fy(x0, y0, z0) = fy(x0, y0) 

Fz(x0, y0, z0) = –1 

so Equation 19 becomes

fx(x0, y0)(x – x0) + fy(x0, y0)(y – y0) – (z – z0) = 0
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Example 8

Find the equations of the tangent plane and normal line at 

the point (–2, 1, –3) to the ellipsoid

Solution:

The ellipsoid is the level surface (with k = 3) of the function
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Significance of the Gradient 

Vectors
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Example 8 – Solution

Therefore we have

Fx(x, y, z) = Fy(x, y, z) = 2y Fz(x, y, z) =

Fx(–2, 1, –3) = –1 Fy(–2, 1, –3) = 2 Fz(–2, 1, –3) = 

Then Equation 19 gives the equation of the tangent plane 

at (–2, 1, –3) as

–1(x + 2) + 2(y – 1) – (z + 3) = 0

which simplifies to 3x – 6y + 2z + 18 = 0.

By Equation 20, symmetric equations of the normal line are

cont’d
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Significance of the Gradient Vectors

We now summarize the ways in which the gradient vector 

is significant.

We first consider a function f of three variables and a point 

P(x0, y0, z0) in its domain. 

On the one hand, we know from Theorem 15 that the 

gradient vector f(x0, y0, z0) gives the direction of fastest 

increase of f. 

On the other hand, we know that 

f(x0, y0, z0) is orthogonal to the 

level surface S of f through P. 

(Refer to Figure 9.)

Figure 9
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Significance of the Gradient Vectors

These two properties are quite compatible intuitively 

because as we move away from P on the level surface S, 

the value of f does not change at all. 

So it seems reasonable that if we move in the 

perpendicular direction, we get the maximum increase.

In like manner we consider a function f of two variables and 

a point P(x0, y0) in its domain. 

Again the gradient vector f(x0, y0) gives the direction of 

fastest increase of f. Also, by considerations similar to our 

discussion of tangent planes, it can be shown that f(x0, y0) 

is perpendicular to the level curve f(x, y) = k that passes 

through P.
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Significance of the Gradient Vectors

Again this is intuitively plausible because the values of f 

remain constant as we move along the curve. 

(See Figure 11.)

Figure 11
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Significance of the Gradient Vectors

If we consider a topographical map of a hill and let f(x, y) 

represent the height above sea level at a point with 

coordinates (x, y), then a curve of steepest ascent can be 

drawn as in Figure 12 by making it perpendicular to all of 

the contour lines.

Figure 12



5050

Significance of the Gradient Vectors

Computer algebra systems have commands that plot 

sample gradient vectors. 

Each gradient vector f(a, b) is plotted starting at the point 

(a, b). Figure 13 shows such a plot (called a gradient vector 

field) for the function f(x, y) = x2 – y2 superimposed on a 

contour map of f. 

As expected, the gradient 

vectors point “uphill” and 

are perpendicular to the 

level curves.

Figure 13
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14.7 Maximum and Minimum Values
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Maximum and Minimum Values

In this section we see how to use partial derivatives to 

locate maxima and minima of functions of two variables.

Look at the hills and valleys in the graph of f shown in     

Figure 1.

Figure 1
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Maximum and Minimum Values

There are two points (a, b) where f has a local maximum, 

that is, where f(a, b) is larger than nearby values of f(x, y). 

The larger of these two values is the absolute maximum.

Likewise, f has two local minima, where f(a, b) is smaller 

than nearby values. 

The smaller of these two values is the absolute minimum.
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Maximum and Minimum Values

If the inequalities in Definition 1 hold for all points (x, y)                 

in the domain of f, then f has an absolute maximum                      

(or absolute minimum) at (a, b).
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Maximum and Minimum Values

A point (a, b) is called a critical point (or stationary point)  

of f if fx(a, b) = 0 and fy(a, b) = 0, or if one of these partial 

derivatives does not exist. 

Theorem 2 says that if f has a local maximum or minimum  

at (a, b), then (a, b) is a critical point of f.

However, as in single-variable calculus, not all critical 

points give rise to maxima or minima.

At a critical point, a function could have a local maximum or 

a local minimum or neither.
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Example 1

Let f(x, y) = x2 + y2 – 2x – 6y + 14.

Then 

fx(x, y) = 2x – 2         fy(x, y) = 2y – 6

These partial derivatives are equal to 0 when x = 1 and 

y = 3, so the only critical point is (1, 3).

By completing the square, we find that

f(x, y) = 4 + (x – 1)2 + (y – 3)2



88

Example 1

Since (x – 1)2  0 and (y – 3)2  0, we have f(x, y)  4 for all 

values of x and y.

Therefore f(1, 3) = 4 is a local minimum, and in fact it is the 

absolute minimum of f.

This can be confirmed geometrically

from the graph of f, which is the

elliptic paraboloid with vertex

(1, 3, 4) shown in Figure 2.

cont’d

Figure 2

z = x2 + y2 – 2x – 6y + 14
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Maximum and Minimum Values

The following test, is analogous to the Second Derivative 

Test for functions of one variable.

In case (c) the point (a, b) is called a saddle point of f and 

the graph of f crosses its tangent plane at (a, b).
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Example

Find the shortest distance from the point (1, 0, -2) to the 

plane 𝑥 + 2𝑦 + 𝑧 = 4.

SOLUTION The distance from any point (𝑥, 𝑦, 𝑧) to the 

point (1, 0, -2) is

𝑑 = 𝑥 − 1 2 + 𝑦 − 0 2 + 𝑧 + 2 2

but if (𝑥, 𝑦, 𝑧) lies on the plane 𝑥 + 2𝑦 + 𝑧 = 4, then z = 4
− 𝑥 − 2𝑦 and so we have

𝑑 = 𝑥 − 1 2 + 𝑦 − 0 2 + 4 − 𝑥 − 2𝑦 + 2 2

We can minimize d by minimizing the simpler expression

𝑑2 = 𝑓 𝑥, 𝑦 = 𝑥 − 1 2 + 𝑦2 + 6− 𝑥 − 2𝑦 2

By solving the equations



1313

Example

𝑓𝑥 = 2 𝑥 − 1 − 2 6 − 𝑥 − 2𝑦 = 4𝑥 + 4𝑦 − 14 = 0,

𝑓𝑥 = 2𝑦 − 4 6 − 𝑥 − 2𝑦 = 4𝑥 + 10𝑦 − 24 = 0,

we find that the only critical point is 
11

6
,
5

3
. Since 𝑓𝑥𝑥 = 4, 

𝑓𝑥𝑦 = 4, 𝑓𝑦𝑦 = 10, we have 𝐷 = 𝑓𝑥𝑥𝑓𝑦𝑦 − 𝑓𝑥𝑦
2
= 24 > 0

and 𝑓𝑥𝑥 > 0, so by the Second Derivatives Test f  has a 

local minimum at 
11

6
,
5

3
. Intuitively, we can see that this 

local minimum is actually an absolute minimum because 

there must be a point on the given plane that is closest to 

(1, 0, -2). At this point we get  𝑑 =
5

6
6. So, the shortest 

distance from the point (1, 0, -2) to the plane 𝑥 + 2𝑦 + 𝑧 = 4

is  
5

6
6.
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Absolute Maximum and Minimum 

Values
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Absolute Maximum and Minimum Values

For a function f of one variable, the Extreme Value 

Theorem says that if f is continuous on a closed interval

[a, b], then f has an absolute minimum value and an 

absolute maximum value.

According to the Closed Interval Method, we found these 

by evaluating f not only at the critical numbers but also at 

the endpoints a and b.

There is a similar situation for functions of two variables.

Just as a closed interval contains its endpoints, a closed 

set in      is one that contains all its boundary points. 
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Absolute Maximum and Minimum Values

[A boundary point of D is a point (a, b) such that every disk 

with center (a, b) contains points in D and also points not  

in D.] 

For instance, the disk

D = {(x, y)| x2 + y2  1}

which consists of all points on and inside the circle              

x2 + y2 = 1, is a closed set because it contains all of its 

boundary points (which are the points on the circle               

x2 + y2 = 1).
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Absolute Maximum and Minimum Values

But if even one point on the boundary curve were omitted, 

the set would not be closed. (See Figure 11.)

A bounded set in      is one that is contained within some 

disk.

Figure 11(a)

Sets that are not closedClosed sets

Figure 11(b)
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Absolute Maximum and Minimum Values

In other words, it is finite in extent.

Then, in terms of closed and bounded sets, we can state 

the following counterpart of the Extreme Value Theorem in 

two dimensions.
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Absolute Maximum and Minimum Values

To find the extreme values guaranteed by Theorem 8, we 

note that, by Theorem 2, if f has an extreme value at        

(x1, y1), then (x1, y1) is either a critical point of f or a 

boundary point of D.

Thus we have the following extension of the Closed Interval 

Method.
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Example 7

Find the absolute maximum and minimum values of the 

function f(x, y) = x2 – 2xy + 2y on the rectangle

D = {(x, y) |0  x  3, 0  y  2}.

Solution:

Since f is a polynomial, it is continuous on the closed, 

bounded rectangle D, so Theorem 8 tells us there is both 

an absolute maximum and an absolute minimum.

According to step 1 in     , we first find the critical points. 

These occur when 

fx = 2x – 2y = 0                  fy = –2x + 2 = 0
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Example 7 – Solution

so the only critical point is (1, 1), and the value of f there is  

f(1, 1) = 1.

In step 2 we look at the values of f on the boundary of D,

which consists of the four line segments L1, L2, L3, L4

shown in Figure 12. 

cont’d

Figure 12
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Example 7 – Solution

On L1 we have y = 0 and

f(x, 0) = x2                0  x  3

This is an increasing function of x, so its minimum value is      

f(0, 0) = 0 and its maximum value is f(3, 0) = 9.

On L2 we have x = 3 and

f(3, y) = 9 – 4y 0  y  2

This is a decreasing function of y, so its maximum value is     

f(3, 0) = 9 and its minimum value is f(3, 2) = 1. 

cont’d



2323

Example 7 – Solution

On L3 we have y = 2 and

f(x, 2) = x2 – 4x + 4           0  x  3

Simply by observing that f(x, 2) = (x – 2)2, we see that the 

minimum value of this function is f(2, 2) = 0 and the 

maximum value is f(0, 2) = 4.

cont’d
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Example 7 – Solution

Finally, on L4 we have x = 0 and

f(0, y) = 2y 0  y  2

with maximum value f(0, 2) = 4 and minimum value

f(0, 0) = 0.

Thus, on the boundary, the minimum value of f is 0 and the 

maximum is 9.

cont’d
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Example 7 – Solution

In step 3 we compare these values with the value                

f(1, 1) = 1 at the critical point and conclude that the 

absolute maximum value of f on D is f(3, 0) = 9 and the 

absolute minimum value is f(0, 0) = f(2, 2) = 0.

Figure 13 shows the graph of f.

Figure 13

f(x, y) = x2 – 2xy + 2y

cont’d
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Example 8

Find the absolute maximum and minimum values of

𝑓(𝑥, 𝑦) = 2 + 2𝑥 + 2𝑦 − 𝑥2 − 𝑦2

on the triangular region in the first quadrant bounded by the 

lines x = 0, y = 0, y = 9 − x.
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Example 8 – Solution

Since f is differentiable, the only places where f can 

assume these values are points inside the triangle where  

𝑓𝑥 = 𝑓𝑦 = 0 and points on the boundary.

(a) Interior points. For these we have

𝑓𝑥 = 2 − 2𝑥 = 0, 𝑓𝑦 = 2 − 2𝑦 = 0,

yielding the single point (x, y) = (1, 1). The value of f there 

is  f(1,1) = 4.

(b) Boundary points. We take the triangle one side at a 

time:

i) On the segment OA, y = 0. The function

𝑓 𝑥, 𝑦 = 𝑓 𝑥, 0 = 2 + 2𝑥 − 𝑥2

cont’d
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Example 8 – Solution

may now be regarded as a function of x defined on the 

closed interval [0, 9]. Its extreme values may occur at the 

endpoints

𝑥 = 0 𝑤ℎ𝑒𝑟𝑒 𝑓 0,0 = 2
𝑥 = 9 𝑤ℎ𝑒𝑟𝑒 𝑓 9,0 = −61

and at the interior points where 𝑓′ 𝑥, 0 = 2 − 2𝑥 = 0. The 

only interior point where

𝑓′ 𝑥, 0 = 0 is x = 1, where f(1,0) = 3.

ii) On the segment OB, x = 0 and f(x,y) = f(0,y) = 2 + 2y -

y2. We know from the symmetry of f in x and y and from the 

analysis we just carried out that the candidates on this 

segment are: 𝑓 0,0 = 2, 𝑓 0,9 = −61, 𝑓 0,1 = 3.

cont’d
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Example 8 – Solution

iii) We have already accounted for the values of f at the 

endpoints of AB, so we need only look at the interior points 

of AB. With y = 9 − 𝑥, we have

𝑓 𝑥, 9 − 𝑥 = 2 + 2𝑥 + 2 9 − 𝑥 − 𝑥2 − 9 − 𝑥 2

= −61 + 18𝑥 − 2𝑥2.

Setting 𝑓′ 𝑥, 9 − 𝑥 = 18 − 4𝑥 = 0 gives 𝑥 = 9/2.

At this value of x, 𝑦 = 9 − 𝑥 = 9 −
9

2
= 9/2 and

𝑓
9

2
,
9

2
= −41/2.

We list all the candidates: 4, 2, − 61, 3, − 41/2. The 

maximum is 4, which f assumes at (1, 1). The minimum is 

− 61, which f assumes at (0, 9) and (9, 0).

cont’d
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15.2 Iterated Integrals
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Iterated Integrals

Suppose that f is a function of two variables that is 

integrable on the rectangle R = [a, b]  [c, d]. 

We use the notation to mean that x is held fixed 

and f(x, y) is integrated with respect to y from y = c to y = d. 

This procedure is called partial integration with respect to y. 

(Notice its similarity to partial differentiation.)

Now is a number that depends on the value of 

x, so it defines a function of x: 
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Iterated Integrals

If we now integrate the function A with respect to x from       

x = a to x = b, we get

The integral on the right side of Equation 1 is called an 

iterated integral. Usually the brackets are omitted. Thus

means that we first integrate with respect to y from c to d

and then with respect to x from a to b.
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Iterated Integrals

Similarly, the iterated integral

means that we first integrate with respect to x (holding y

fixed) from x = a to x = b and then we integrate the 

resulting function of y with respect to y from y = c to y = d. 

Notice that in both Equations 2 and 3 we work from the 

inside out.
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Example 1

Evaluate the iterated integrals.

(a) (b) 

Solution:

(a) Regarding x as a constant, we obtain
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Example 1 – Solution

Thus the function A in the preceding discussion is given 

by in this example.

We now integrate this function of x from 0 to 3:

cont’d
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Example 1 – Solution

(b) Here we first integrate with respect to x:

cont’d
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Iterated Integrals

Notice that in Example 1 we obtained the same answer 

whether we integrated with respect to y or x first.

In general, it turns out (see Theorem 4) that the two iterated 

integrals in Equations 2 and 3 are always equal; that is, the 

order of integration does not matter. 
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Example 2

Evaluate ׭
𝑅
𝑦𝑠𝑖𝑛(𝑥𝑦)𝑑𝐴 , where 𝑅 = 1,2 × 0, 𝜋 .

SOLUTION: It is easier to integrate with respect to x first

׭
𝑅
𝑦𝑠𝑖𝑛 𝑥𝑦 𝑑𝐴 = ׬

0

𝜋
׬
1

2
𝑦𝑠𝑖𝑛(𝑥𝑦)𝑑𝑥𝑑𝑦 = ׬

0

𝜋
׬
1

2
𝑦𝑠𝑖𝑛(𝑥𝑦)𝑑𝑥 𝑑𝑦

= න
0

𝜋

𝑦
−cos(𝑥𝑦)

𝑦
]1
2 𝑑𝑥 = −න

0

𝜋

cos 2𝑥 − cos(𝑥) 𝑑𝑥

= −
sin 2𝑥

2
− sin 𝑥 ]0

𝜋 = 0

If we reverse the order of integration, ׬
1

2
׬
0

𝜋
𝑦𝑠𝑖𝑛(𝑥𝑦)𝑑𝑦𝑑𝑥, 

we get hard integrals.
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Iterated Integrals

In the special case where f(x, y) can be factored as the 

product of a function of x only and a function of y only, the 

double integral of f can be written in a particularly simple 

form. 

To be specific, suppose that f(x, y) = g(x)h(y) and 

R = [a, b]  [c, d].

Then Fubini’s Theorem gives 
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Iterated Integrals

In the inner integral, y is a constant, so h(y) is a constant 

and we can write

since is a constant.

Therefore, in this case, the double integral of f can be 

written as the product of two single integrals:
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Volumes and Double Integrals
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In a similar manner we consider a function f of two 

variables defined on a closed rectangle

R = [a, b]  [c, d ] = {(x, y)  |a  x  b, c  y  d}

and we first suppose that f(x, y)  0.

The graph of f is a surface 

with equation z = f(x, y).

Let S be the solid that lies 

above R and under the 

graph of f, that is,

S = {(x, y, z)  |0  z  f(x, y), (x, y)  R} 

(See Figure 2.)

Volumes and Double Integrals

Figure 2
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Volumes and Double Integrals

Our goal is to find the volume of S.

volume can be written as a double integral
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Example 1

Find the volume of the solid that lies above the square R = [0,2] 

 [0,2] and below the elliptic paraboloid z = 16 – x2 – 2y2.

SOLUTION: 

Volume = ׭
𝑅

16 − 𝑥2 − 2𝑦2 𝑑𝐴

= න
0

2

න
0

2

16 − 𝑥2 − 2𝑦2 𝑑𝑦𝑑𝑥 =න
0

2

න
0

2

16 − 𝑥2 − 2𝑦2 𝑑𝑦 𝑑𝑥

= න
0

2

[16𝑦 − 𝑥2𝑦 −
2

3
𝑦3]0

2𝑑𝑥 = න
0

2 80

3
− 2𝑥2 𝑑𝑥 =

80

3
𝑥 −

2

3
𝑥3]0

2

= 48.
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Example 1 – Solution

The solid in Example 1 is shown in the Figure below.

cont’d
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Example 2

Find the volume of the solid that lies above the rectangular 

region R = [0, 2]  [0, 1] and below the plane z = 4 – x – y.

SOLUTION: 

Volume = ׭
𝑅

4 − 𝑥 − 𝑦 𝑑𝐴

= න
0

2

න
0

1

4 − 𝑥 − 𝑦 𝑑𝑦𝑑𝑥 =න
0

2

න
0

1

4 − 𝑥 − 𝑦 𝑑𝑦 𝑑𝑥

= න
0

2

[4𝑦 − 𝑥𝑦 −
1

2
𝑦2]0

1𝑑𝑥

= න
0

2 7

2
− 𝑥 𝑑𝑥 =

7

2
𝑥 −

1

2
𝑥2]0

2 = 5.
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Example 2 – Solution

The solid in Example 2 is shown in the Figure below.

cont’d
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Example 3

Find the volume of the solid in the first octant bounded by

the cylinder z = 16 – x2 and the plane  y = 5.

SOLUTION: The cylinder intersects the xy-plane when

0 = 16 − 𝑥2 or 𝑥 = ±4. Since the solid lies in the first 

octant we have 0 ≤ 𝑥 ≤ 4 and  0 ≤ 𝑦 ≤ 5.

Volume = ׭
𝑅

16 − 𝑥2 𝑑𝐴 = ׬
0

4
׬
0

5
16 − 𝑥2 𝑑𝑦𝑑𝑥

= න
0

4

න
0

5

16 − 𝑥2 𝑑𝑦 𝑑𝑥 = න
0

4

[ 16 − 𝑥2 𝑦]0
5𝑑𝑥

= න
0

4

5 16 − 𝑥2 𝑑𝑥 = 5(16𝑥 −
1

3
𝑥3)]0

4 =
640

3
.
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Properties of Double Integrals
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Properties of Double Integrals

We list here three properties of double integrals. We 

assume that all of the integrals exist. Properties 7 and 8 are 

referred to as the linearity of the integral.

[f(x, y) + g(x, y)] dA = f(x, y) dA +     g(x, y) dA

c f(x, y) dA = c     f(x, y) dA   where c is a constant

If f(x, y)  g(x, y) for all (x, y) in R, then

f(x, y) dA  g(x, y) dA
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15 Multiple Integrals
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15.3 Double Integrals over General Regions
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Double Integrals over General Regions

For single integrals, the region over which we integrate is 

always an interval. 

But for double integrals, we want to be able to integrate a 

function f not just over rectangles but also over regions D of 

more general shape, such as the one illustrated in Figure 1. 

Figure 1
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Double Integrals over General Regions

We suppose that D is a bounded region, which means that 

D can be enclosed in a rectangular region R as in Figure 2. 

Then we define a new function F with domain R by

Figure 2
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Double Integrals over General Regions

If F is integrable over R, then we define the double 

integral of f over D by

Definition 2 makes sense because R is a rectangle and so    

R F(x, y) dA has been previously defined.
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Double Integrals over General Regions

The procedure that we have used is reasonable because 

the values of F(x, y) are 0 when (x, y) lies outside D and so 

they contribute nothing to the integral.

This means that it doesn’t matter what rectangle R we use 

as long as it contains D.

In the case where f(x, y)  0, we can still interpret 

D f(x, y) dA as the volume of the solid that lies above D 

and under the surface z = f(x, y) (the graph of f).
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Double Integrals over General Regions

You can see that this is reasonable by comparing the 

graphs of f and F in Figures 3 and 4 and remembering that 

R F(x, y) dA is the volume under the graph of F.

Figure 3 Figure 4
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Double Integrals over General Regions

Figure 4 also shows that F is likely to have discontinuities 

at the boundary points of D.

Nonetheless, if f is continuous on D and the boundary 

curve of D is “well behaved”, then it can be shown that 

R F(x, y) dA exists and therefore D f(x, y) dA exists.

In particular, this is the case for type I and type II regions.
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Double Integrals over General Regions

A plane region D is said to be of type I if it lies between the 

graphs of two continuous functions of x, that is,

D = {(x, y) | a  x  b, g1(x)  y  g2(x)}

where g1 and g2 are continuous on [a, b]. Some examples 

of type I regions are shown in Figure 5.

Some type I regions

Figure 5
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Double Integrals over General Regions

In order to evaluate D f(x, y) dA when D is a region of     

type I, we choose a rectangle R = [a, b]  [c, d ] that 

contains D, as in Figure 6, and we let F be the function 

given by Equation 1; that is, F agrees with f on D and F is 0 

outside D.

Figure 6
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Double Integrals over General Regions

Then, by Fubini’s Theorem,

Observe that F(x, y) = 0 if y < g1(x) or y > g2(x) because     

(x, y) then lies outside D. Therefore

because F(x, y) = f(x, y) when g1(x)  y  g2(x).
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Double Integrals over General Regions

Thus we have the following formula that enables us to 

evaluate the double integral as an iterated integral.

The integral on the right side of      is an iterated integral, 

except that in the inner integral we regard x as being 

constant not only in f(x, y) but also in the limits of 

integration, g1(x) and g2(x).
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Double Integrals over General Regions

We also consider plane regions of type II, which can be 

expressed as

D = {(x, y) | c  y  d, h1(y)  x  h2(y)}

where h1 and h2 are continuous. Two such regions are 

illustrated in Figure 7. 

Some type II regions

Figure 7
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Double Integrals over General Regions

Using the same methods that were used in establishing     , 

we can show that
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1616
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Example 2

Evaluate D (x + 2y) dA, where D is the region bounded by 

the parabolas y = 2x2 and y = 1 + x2.

Solution:

The parabolas intersect when 2x2 = 1 + x2, that is, x2 = 1, 

so x = 1.

We note that the region D, 

sketched in the Figure, is a 

type I region but not a type II 

region and we can write

D = {(x, y) | –1  x  1, 2x2  y  1 + x2}
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Example 2 – Solution

Since the lower boundary is y = 2x2 and the upper 

boundary is y = 1 + x2, Equation 3 gives

cont’d
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Example 1 – Solution
cont’d
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Find the volume of the solid that lies under the paraboloid        

𝑧 = 𝑥2 + 𝑦2and above the region in the xy-plane bounded by 

the line y = 2x and the parabola y = x2.

From the Figure below we see that D is a type I region and

𝐷 = 𝑥, 𝑦 |0 ≤ 𝑥 ≤ 2, 𝑥2 ≤ 𝑦 ≤ 2𝑥

Example 3
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Thus, 

Volume = ׭
𝐷

𝑥2 + 𝑦2 𝑑𝐴 = ׬
0

2
׬
𝑥2
2𝑥

𝑥2 + 𝑦2 𝑑𝑦𝑑𝑥

= න
0

2

න
𝑥2

2𝑥

𝑥2 + 𝑦2 𝑑𝑦 𝑑𝑥 = න
0

2

𝑥2𝑦 +
1

3
𝑦3]𝑥2

2𝑥𝑑𝑥

= න
0

2

−
𝑥6

3
− 𝑥4 +

14

3
𝑥3 𝑑𝑥

= −
𝑥7

21
−
𝑥5

5
+
14

12
𝑥4]0

2 =
216

35

Example 3 - Solution
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Evaluate the iterated integral ׬
0

1
׬
𝑥

1
𝑠𝑖𝑛 𝑦2 𝑑𝑦𝑑𝑥 .

If we try to evaluate the integral as it stands, we are faced with 

the task of first evaluating ׬ 𝑠𝑖𝑛 𝑦2 𝑑𝑦. But it’s impossible to do 

so in finite terms since is not an elementary function. So we 

must change the order of integration. This is accomplished by 

first expressing the given iterated integral as a double integral. 

We have

න
0

1

න
𝑥

1

𝑠𝑖𝑛 𝑦2 𝑑𝑦𝑑𝑥 =ඵ
𝐷

𝑠𝑖𝑛 𝑦2 𝑑𝐴

where 𝐷 = 𝑥, 𝑦 |0 ≤ 𝑥 ≤ 1, 𝑥 ≤ 𝑦 ≤ 1 .

Example 4
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We sketch this region. Then from the Figure below we see that 

an alternative description of D as type II region is

𝐷 = 𝑥, 𝑦 |0 ≤ 𝑦 ≤ 1,0 ≤ 𝑥 ≤ 𝑦 .

ඵ
𝐷

𝑠𝑖𝑛 𝑦2 𝑑𝐴 = න
0

1

න
0

𝑦

𝑠𝑖𝑛 𝑦2 𝑑𝑥𝑑𝑦 = න
0

1

𝑥𝑠𝑖𝑛 𝑦2 ]0
𝑦
𝑑𝑦

= න
0

1

𝑦𝑠𝑖𝑛 𝑦2 𝑑𝑦 = −
1

2
𝑐𝑜𝑠 𝑦2 ]0

1 =
1

2
(1 − 𝑐𝑜𝑠1)

Example 4
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Properties of Double Integrals
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Properties of Double Integrals

We assume that all of the following integrals exist. The first 

three properties of double integrals over a region D follow 

immediately from Definition 2.

If f(x, y)  g(x, y) for all (x, y) in D, then
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Properties of Double Integrals

The next property of double integrals is similar to the 

property of single integrals given by the equation

If D = D1 U D2, where D1 and D2

don’t overlap except perhaps on 

their boundaries (see Figure 17), 

then
Figure 17
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Properties of Double Integrals

Property 9 can be used to evaluate double integrals over 

regions D that are neither type I nor type II but can be 

expressed as a union of regions of type I or type II.      

Figure 18 illustrates this procedure.

Figure 18(a)

D is neither type I nor type II. D = D1  D2, D1 is type I, D2 is type II.

Figure 18(b)
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Properties of Double Integrals

The next property of integrals says that if we integrate the 

constant function f(x, y) = 1 over a region D, we get the 

area of D:
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Properties of Double Integrals

Figure 19 illustrates why Equation 10 is true: A solid 

cylinder whose base is D and whose height is 1 has 

volume A(D)  1 = A(D), but we know that we can also write 

its volume as D 1 dA.

Cylinder with base D and height 1

Figure 19
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Double Integrals in Polar Coordinates

Suppose that we want to evaluate a double integral 

 R f(x, y) dA, where R is one of the regions shown in 

Figure 1. In either case the description of R in terms of 

rectangular coordinates is rather complicated, but R is  

easily described using polar coordinates. 

Figure 1
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Double Integrals in Polar Coordinates

Recall from Figure 2 that the polar coordinates (r,  ) of a 

point are related to the rectangular coordinates (x, y) by the 

equations

Figure 2
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Double Integrals in Polar Coordinates

The regions in Figure 1 are special cases of a polar 

rectangle

R = {(r,  ) | a  r  b,     }

which is shown in Figure 3.

Figure 1

Polar rectangle

Figure 3
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Double Integrals in Polar Coordinates

In order to compute the double integral  R f(x, y) dA, where

R is a polar rectangle, we use the following theorem:
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Double Integrals in Polar Coordinates

The formula in      says that we convert from rectangular to 

polar coordinates in a double integral by writing 

x = r cos  and y = r sin , using the appropriate limits of 

integration for r and , and replacing dA by r dr d.

Be careful not to forget the additional factor r on the right 

side of Formula 2. 

A classical method for remembering 

this is shown in Figure 5, where the 

“infinitesimal” polar rectangle can be 

thought of as an ordinary rectangle 

with dimensions r d and dr and 

therefore has “area” dA = r dr d. Figure 5
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Example 1

Evaluate  R (3x + 4y2) dA, where R is the region in the 

upper half-plane bounded by the circles x2 + y2 = 1 and 

x2 + y2 = 4.

Solution:

The region R can be described as

R = {(x, y) | y  0, 1  x2 + y2  4}

It is the half-ring shown in Figure 1(b),

and in polar coordinates it is given by

1  r  2, 0    . Figure 1(b)
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Example 1 – Solution
cont’d

Therefore, by Formula 2,
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Example 2

Find the volume of the solid bounded by the plane z = 0 

and the paraboloid  z = 1 - x2 - y2.

SOLUTION: If we put z = 0 in the equation of the 

paraboloid, we get x2 + y2 = 1. This means that the plane 

intersects the paraboloid in the circle x2 + y2 = 1, so the 

solid lies under the paraboloid and above the circular disk 

D given by 𝑥2 + 𝑦2 ≤ 1. In polar coordinates D is given by  

0 ≤ 𝑟 ≤ 1, 0 ≤ 𝜃 ≤ 2𝜋. Since z = 1 - x2 - y2 = 1 - r2 the 

volume is

Volume = ׭
𝐷

1 − 𝑥2 − 𝑦2 𝑑𝐴 = ׬
0

2𝜋
׬
0

1
1 − 𝑟2 𝑟𝑑𝑟𝑑𝜃

= න
0

2𝜋 𝑟2

2
−
𝑟4

4
]0
1𝑑𝜃 = න

0

2𝜋 1

4
𝑑𝜃 =

𝜋

2
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Double Integrals in Polar Coordinates

What we have done so far can be 

extended to the more complicated 

type of region shown in Figure 7.

In fact, by combining Formula 2 

with 

where D is a type II region, we obtain the following formula.

Figure 7
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Double Integrals in Polar Coordinates

In particular, taking f(x, y) = 1, h1( ) = 0, and h2( ) = h( ) in 

this formula, we see that the area of the region D bounded 

by  = ,  = , and r = h( ) is
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Example 3
Find the volume of the solid that lies under the paraboloid        

z = x2 + y2 above the xy-plane, and inside the cylinder              

x2 + y2 = 2x.

SOLUTION: The solid lies above the disk D whose boundary 

circle has equation x2 + y2 = 2x or, after completing the square 

𝑥 − 1 2 + 𝑦2 = 1, In polar coordinates the boundary circle 

becomes 𝑟2 = 2𝑟𝑐𝑜𝑠𝜃, or 𝑟 = 2𝑐𝑜𝑠𝜃. Thus the disk D is given 

by 

𝐷 = 𝑟, 𝜃 | −
𝜋

2
≤ 𝜃 ≤

𝜋

2
, 0 ≤ 𝑟 ≤ 2𝑐𝑜𝑠𝜃

Volume = ׭
𝐷

𝑥2 + 𝑦2 𝑑𝐴 = ׬
−𝜋/2

𝜋/2
׬
0

2𝑐𝑜𝑠𝜃
𝑟2 𝑟𝑑𝑟𝑑𝜃

= න
−𝜋/2

𝜋/2 𝑟4

4
]0
2𝑐𝑜𝑠𝜃𝑑𝜃 = 4න

−𝜋/2

𝜋/2

𝑐𝑜𝑠𝜃 4 𝑑𝜃 =
3𝜋

2
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Example 4
Change the Cartesian integral into an equivalent

polar integral. 

(a) ׬
−1

1
׬
− 1−𝑥2
1−𝑥2

𝑥2 + 𝑦2 𝑑𝑦𝑑𝑥 ׬=
0

2𝜋
׬
0

1
𝑟2 𝑟𝑑𝑟𝑑𝜃

(b)׬
−2

2
׬
0

4−𝑥2
𝑥𝑦 𝑑𝑦𝑑𝑥 ׬=

0

𝜋
׬
0

2
𝑟2𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃 𝑟𝑑𝑟𝑑𝜃

(c) ׬
0

1
׬
0

1−𝑥2 2

1+ 𝑥2+𝑦2
𝑑𝑦𝑑𝑥 ׬=

0

𝜋/2
׬
0

1 2

1+𝑟
𝑟𝑑𝑟𝑑𝜃

(d)׬
0

3
׬
0

9−𝑦2
𝑒−(𝑥

2+𝑦2)𝑑𝑥𝑑𝑦 ׬=
0

𝜋/2
׬
0

3
𝑒−𝑟

2
𝑟𝑑𝑟𝑑𝜃

(e) ׬
−1

1
׬
− 1−𝑦2
0

𝑥 + 2 𝑑𝑥𝑑𝑦 ׬=
𝜋

2𝜋
׬
0

1
𝑟𝑐𝑜𝑠𝜃 + 2 𝑟𝑑𝑟𝑑𝜃
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Example 5

Consider the integral  ׬
0

∞
׬
0

∞
𝑒− 𝑥2+𝑦2 𝑑𝑥𝑑𝑦. 

In polar coordinates the boundaries become

𝐷 = 𝑟, 𝜃 |0 ≤ 𝜃 ≤ 𝜋/2, 0 ≤ 𝑟 ≤ ∞

න
0

∞

න
0

∞

𝑒− 𝑥2+𝑦2 𝑑𝑥𝑑𝑦 = න
0

𝜋/2

න
0

∞

𝑒−𝑟
2
𝑟𝑑𝑟𝑑𝜃

Note that, ׬
0

∞
𝑒−𝑟

2
𝑟𝑑𝑟 = lim

𝑎→∞
׬
0

𝑎
𝑒−𝑟

2
𝑟𝑑𝑟

= lim
𝑎→∞

−
1

2
𝑒−𝑎

2
− 1 =

1

2

So, ׬
0

∞
׬
0

∞
𝑒− 𝑥2+𝑦2 𝑑𝑥𝑑𝑦 = ׬

0

𝜋/2 1

2
𝑑𝜃 =

𝜋

4
.
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Example 5

Let  𝐼 = ׬
0

∞
𝑒−𝑥

2
𝑑𝑥, then

𝐼2 = න
0

∞

𝑒−𝑥
2
𝑑𝑥 න

0

∞

𝑒−𝑦
2
𝑑𝑦 = න

0

∞

න
0

∞

𝑒− 𝑥2+𝑦2 𝑑𝑥𝑑𝑦 =
𝜋

4

Thus, 𝐼 = ׬
0

∞
𝑒−𝑥

2
𝑑𝑥 =

𝜋

4
=

𝜋

2
.

cont’d
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Triple Integrals

We have defined single integrals for functions of one 

variable and double integrals for functions of two variables, 

so we can define triple integrals for functions of three 

variables. 

Let’s first deal with the simplest case where f is defined on 

a rectangular box:

B = {(x, y, z) | a  x  b, c  y  d, r  z  s}

The first step is to divide B into sub-boxes. We do this by 

dividing the interval [a, b] into l subintervals [xi –1, xi] of 

equal width x, dividing [c, d] into m subintervals of width 

y, and dividing [r, s] into n subintervals of width z. 
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Triple Integrals

The planes through the endpoints of 

these subintervals parallel to the 

coordinate planes divide the box B

into lmn sub-boxes

Bijk = [xi –1, xi]  [yj –1, yj]  [zk –1, zk]

which are shown in Figure 1.

Each sub-box has volume 

V = x y z.

Figure 1
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Triple Integrals

Then we form the triple Riemann sum

where the sample point is in Bijk.

By analogy with the definition of a double integral, we 

define the triple integral as the limit of the triple Riemann 

sums in     . 
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Triple Integrals

Again, the triple integral always exists if f is continuous. We 

can choose the sample point to be any point in the sub-

box, but if we choose it to be the point (xi, yj, zk) we get a  

simpler-looking expression for the triple integral:
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Triple Integrals

Just as for double integrals, the practical method for 

evaluating triple integrals is to express them as iterated 

integrals as follows.

The iterated integral on the right side of Fubini’s Theorem 

means that we integrate first with respect to x (keeping 

y and z fixed), then we integrate with respect to y (keeping 

z fixed), and finally we integrate with respect to z.
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Triple Integrals

There are five other possible orders in which we can 

integrate, all of which give the same value.

For instance, if we integrate with respect to y, then z, and 

then x, we have 
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Example

Evaluate the triple integral B xyz2 dV, where B is the 

rectangular box given by

B = {(x, y, z) | 0  x  1, –1  y  2, 0  z  3}

Solution:

We could use any of the six possible orders of integration. 

If we choose to integrate with respect to x, then y, and    

then z, we obtain
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Example – Solution
cont’d
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Triple Integrals

Now we define the triple integral over a general bounded 

region E in three-dimensional space (a solid) by much the 

same procedure that we used for double integrals. 

We enclose E in a box B of the type given by Equation 1. 

Then we define F so that it agrees with f on E but is 0 for 

points in B that are outside E. 

By definition,

This integral exists if f is continuous and the boundary of E

is “reasonably smooth.”
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Triple Integrals

The triple integral has essentially the same properties as 

the double integral.

We restrict our attention to continuous functions f and to 

certain simple types of regions.
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Triple Integrals

A solid region E is said to be of type 1 if it lies between the 

graphs of two continuous functions of x and y, that is,

E = {(x, y, z) | (x, y)  D, u1(x, y)  z  u2(x, y)}

where D is the projection of E onto the xy-plane as shown 

in Figure 2.

Figure 2

A type 1 solid region
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Triple Integrals

Notice that the upper boundary of the solid E is the surface 

with equation z = u2(x, y), while the lower boundary is the 

surface z = u1(x, y).

By the same sort of argument, it can be shown that if E is a 

type 1 region given by Equation 5, then

The meaning of the inner integral on the right side of  

Equation 6 is that x and y are held fixed, and therefore      

u1(x, y) and u2(x, y) are regarded as constants, while               

f(x, y, z) is integrated with respect to z.
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Triple Integrals

In particular, if the projection D of E onto the xy-plane is a 

type I plane region (as in Figure 3), 

Figure 3

A type 1 solid region where the projection D is a type I plane region
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Triple Integrals

In particular, if the projection D of E onto the xy-plane is a 

type I plane region (as in Figure 3), then

E = {(x, y, z) | a  x  b, g1(x)  y  g2(x), u1(x, y)  z  u2(x, y)}

and Equation 6 becomes
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Triple Integrals

If, on the other hand, D is a type II plane region (as in 

Figure 4), then

E = {(x, y, z) | c  y  d, h1(y)  x  h2(y), u1(x, y)  z  u2(x, y)}

and Equation 6 becomes

Figure 4

A type 1 solid region with a type II projection
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A solid region E is of type 2 if it is of the form 

E = {(x, y, z) | (y, z)  D, u1(y, z)  x  u2(y, z)}

where, this time, D is the projection 

of E onto the yz-plane (see Figure 7). 

The back surface is x = u1(y, z), 

the front surface is x = u2(y, z), 

and we have
Figure 7

A type 2 region

Triple Integrals
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Triple Integrals

Finally, a type 3 region is of the form 

E = {(x, y, z) | (x, z)  D, u1(x, z)  y  u2(x, z)}

where D is the projection of E onto the xz-plane, y = u1(x, z) 

is the left surface, and y = u2(x, z) is the right surface      

(see Figure 8).

Figure 8

A type 3 region



2020

Triple Integrals

For this type of region we have

In each of Equations 10 and 11 there may be two possible 

expressions for the integral depending on whether D is a 

type I or type II plane region (and corresponding to 

Equations 7 and 8).
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Example

Evaluate ׮
𝐸

𝑥2 + 𝑧2 𝑑𝑉 where E is the region bounded 

by the paraboloid 𝑦 = 𝑥2 + 𝑧2 and the plane y = 4.

SOLUTION: If we regard it as a type 1 region, then we 

need to consider its projection onto the xy-plane:

The trace of 𝑦 = 𝑥2 + 𝑧2 in the z = 0 plane is 𝑦 = 𝑥2 and 

the trace of the plane y = 4 is the line y = 4.

This is the parabolic region
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Example - Solution

From 𝑦 = 𝑥2 + 𝑧2 we obtain z = ± 𝑦 − 𝑥2, so the lower 

boundary surface of E is z = − 𝑦 − 𝑥2 and the upper 

surface is z = 𝑦 − 𝑥2. Therefore the description of as

a type 1 region is

ම

𝐸

𝑥2 + 𝑧2 𝑑𝑉 = න
−2

2

න
𝑥2

4

න
− 𝑦−𝑥2

𝑦−𝑥2

𝑥2 + 𝑧2 𝑑𝑧𝑑𝑦𝑑𝑥 =
128

15
𝜋
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Applications of Triple Integrals
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Applications of Triple Integrals

Recall that if f(x)  0, then the single integral 

represents the area under the curve y = f(x) from a to b, 

and if f(x, y)  0, then the double integral D f(x, y) dA

represents the volume under the surface z = f(x, y) and 

above D. 

The corresponding interpretation of a triple integral            

E f(x, y, z) dV, where f(x, y, z)  0, is not very useful 

because it would be the “hypervolume” of a 

four-dimensional object and, of course, that is very difficult 

to visualize. (Remember that E is just the domain of the 

function f; the graph of f lies in four-dimensional space.)
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Applications of Triple Integrals

Nonetheless, the triple integral E f(x, y, z) dV can be 

interpreted in different ways in different physical situations, 

depending on the physical interpretations of x, y, z and         

f(x, y, z). 

Let’s begin with the special case where f(x, y, z) = 1 for all 

points in E. Then the triple integral does represent the 

volume of E:
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Applications of Triple Integrals

For example, you can see this in the case of a type 1 

region by putting f(x, y, z) = 1 in Formula 6:

and we know this represents the volume that lies between 

the surfaces z = u1(x, y) and z = u2(x, y).
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Example

Use a triple integral to find the volume of the tetrahedron T

bounded by the planes x + 2y + z = 2, x = 2y, x = 0, and     

z = 0. 

Solution:

The tetrahedron T and its projection D onto the xy-plane 

are shown in the Figures below.
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Example – Solution

The lower boundary of T is the plane z = 0 and the upper 

boundary is the plane x + 2y + z = 2, that is, z = 2 – x – 2y.

Therefore we have

(Notice that it is not necessary to use triple integrals to 

compute volumes. They simply give an alternative method 

for setting up the calculation.)

cont’d
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Example

Find the volume of the region D enclosed by the surfaces   

𝑧 = 𝑥2 + 3𝑦2 and 𝑧 = 8 − 𝑥2 − 𝑦2

Solution The volume is 

𝑉𝑜𝑙𝑢𝑚𝑒 =ම

𝐸

1 𝑑𝑉

To find the limits of integration for evaluating the

integral, we first sketch the region. The surfaces intersect 

on the elliptical cylinder 𝑥2 + 3𝑦2 = 8 − 𝑥2 − 𝑦2 or             

𝑥2 + 2𝑦2 = 4, 𝑧 ≥ 0. The projection of E onto the xy-plane, 

is an ellipse with the same equation: 𝑥2 + 2𝑦2 = 4.
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Example - Solution

𝑉𝑜𝑙𝑢𝑚𝑒 =ම

𝐸

1 𝑑𝑉 = න
−2

2

න
− (4−𝑥2)/2

(4−𝑥2)/2

න
𝑥2+3𝑦2

8−𝑥2−𝑦2

1𝑑𝑧𝑑𝑦𝑑𝑥

= 8 2𝜋
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Find the volume of the tetrahedron in the accompanying 

figure.

Example
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Example - Solution

𝑉𝑜𝑙𝑢𝑚𝑒 =ම

𝐸

1 𝑑𝑉

First we find the z-limits of integration. A line parallel to the 

z-axis through a typical point (x, y) in the xy-plane “shadow” 

enters the tetrahedron at z = 0 and exits through the

upper plane where z = y - x.

Next we find the y-limits of integration. On the xy-plane, 

where the sloped side of the tetrahedron crosses the plane 

along the line y = x. A line through (x, y) parallel to the y-

axis enters the shadow in the xy-plane at y = x and exits at

y = 1. 
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Example - Solution

Finally we find the x-limits of integration. As the line parallel 

to the y-axis in the previous step sweeps out the shadow, 

the value of x varies from x = 0 to x = 1.

Thus,

𝑉𝑜𝑙𝑢𝑚𝑒 =ම

𝐸

1 𝑑𝑉 = න
0

1

න
𝑥

1

න
0

𝑦−𝑥

1𝑑𝑧𝑑𝑦𝑑𝑥 =
1

6
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15.8
Triple Integrals in Cylindrical 

Coordinates
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Triple Integrals in Cylindrical Coordinates

In plane geometry the polar coordinate system is used to 

give a convenient description of certain curves and regions.

Figure 1 enables us to recall the connection between polar 

and Cartesian coordinates.

Figure 1
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Triple Integrals in Cylindrical Coordinates

If the point P has Cartesian coordinates (x, y) and polar 

coordinates (r, ), then, from the figure,

x = r cos  y = r sin 

r2 = x2 + y2         tan = 

In three dimensions there is a coordinate system, called 

cylindrical coordinates, that is similar to polar coordinates 

and gives convenient descriptions of some commonly 

occurring surfaces and solids. As we will see, some triple 

integrals are much easier to evaluate in cylindrical 

coordinates.
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Cylindrical Coordinates
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Cylindrical Coordinates

In the cylindrical coordinate system, a point P in 

three-dimensional space is represented by the ordered 

triple (r, , z) where r and  are polar coordinates of the 

projection of P onto the xy-plane and z is the directed 

distance from the xy-plane to P. (See Figure 2.)

Figure 2

The cylindrical coordinates of a point
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Cylindrical Coordinates

To convert from cylindrical to rectangular coordinates, we 

use the equations

whereas to convert from rectangular to cylindrical 

coordinates, we use 
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Example 1

(a) Plot the point with cylindrical coordinates (2, 2 /3, 1) 

and find its rectangular coordinates.

(b) Find cylindrical coordinates of the point with rectangular 

coordinates (3, –3, –7). 

Solution:

(a) The point with cylindrical coordinates (2, 2 /3, 1) is 

plotted in Figure 3.

Figure 3
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Example 1 – Solution

From Equations 1, its rectangular coordinates are

Thus the point is (–1,     , 1) in rectangular coordinates. 

cont’d



10

Example 1 – Solution

(b) From Equations 2 we have

Therefore one set of cylindrical coordinates is                              

(       , 7 /4, –7). Another is (       , – /4, –7).

As with polar coordinates, there are infinitely many choices.

cont’d
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Example 2

Describe the surface whose equation in cylindrical 

coordinates is 

(a) z = r.

By converting the equation into rectangular coordinates, we 

get

𝑧 = 𝑟
𝑧2 = 𝑟2

𝑧2 = 𝑥2 + 𝑦2

This is a circular cone whose axis is the z-axis.
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Example 2

(b) r = 2.

Converting the equation into rectangular coordinates, yields

𝑟 = 2
𝑟2 = 4

𝑥2 + 𝑦2 = 4

This is a circular cylinder whose axis is the z-axis.
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Example 2

(c) 𝑧 = 4 − 𝑟2.

Converting the equation into rectangular coordinates, yields

𝑧 = 4 − (𝑥2 + 𝑦2)

This is a paraboloid whose axis is the z-axis.

(d) 2𝑟2 + 𝑧2 = 1.

Converting the equation into rectangular coordinates, yields

2 𝑥2 + 𝑦2 + 𝑧2 = 1
𝑥2

1/2
+

𝑦2

1/2
+ 𝑧2 = 1

This is an ellipsoid
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Evaluating Triple Integrals with 

Cylindrical Coordinates



15

Evaluating Triple Integrals with Cylindrical Coordinates

Suppose that E is a type 1 region whose projection D onto 

the xy-plane is conveniently described in polar coordinates 

(see Figure 6). 

Figure 6
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Evaluating Triple Integrals with Cylindrical Coordinates

In particular, suppose that f is continuous and 

E = {(x, y, z) |(x, y)  D, u1(x, y)  z  u2(x, y)}

where D is given in polar coordinates by

D = {(r, )|    β , h1()  r  h2()}

We know
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Evaluating Triple Integrals with Cylindrical Coordinates

But to evaluate double integrals in polar coordinates, we 

have the formula

Formula 4 is the formula for triple integration in 

cylindrical coordinates.
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Evaluating Triple Integrals with Cylindrical Coordinates

It says that we convert a triple integral from rectangular to 

cylindrical coordinates by writing x = r cos , y = r sin , 

leaving z as it is, using the appropriate limits of integration 

for z, r, and , and replacing dV by r dz dr d.

(Figure 7 shows how to remember this.)

Figure 7

Volume element in cylindrical

coordinates: dV = r dz dr d
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Evaluating Triple Integrals with Cylindrical Coordinates

It is worthwhile to use this formula when E is a solid region 

easily described in cylindrical coordinates, and especially 

when the function f(x, y, z) involves the expression x2 + y2.
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Example 3

Evaluate ׮
𝐸

𝑥2 + 𝑦2 𝑑𝑉, where E is the solid lies within 

the cylinder x2 + y2 = 1, below the plane  z = 4, and above 

the paraboloid  z = 1 – x2 – y2. (See Figure 8.) 

Figure 8
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Example 3 – Solution

SOLUTION: In cylindrical coordinates the cylinder is r = 1 

and the paraboloid is z = 1 – r2, so we can write

E = {(r, , z) |0    2, 0  r  1, 1 – r2  z  4}

ම

𝐸

𝑥2 + 𝑦2 𝑑𝑉 = න
0

2𝜋

න
0

1

න
1−𝑟2

4

𝑟2 𝑟𝑑𝑧𝑑𝑟𝑑𝜃

= න
0

2𝜋

න
0

1

න
1−𝑟2

4

𝑟2 𝑑𝑧𝑑𝑟𝑑𝜃 = න
0

2𝜋

න
0

1

ሿ𝑟2𝑧 1−𝑟2
4 𝑑𝑟𝑑𝜃

= න
0

2𝜋

න
0

1

(3𝑟2 + 𝑟4) 𝑑𝑟𝑑𝜃 = න
0

2𝜋

቉(𝑟3+
𝑟5

5
)
0

1

𝑑𝜃 = න
0

2𝜋 6

5
𝑑𝜃

=
12𝜋

5
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Example 4

Evaluate׬
−2

2
׬
− 4−𝑥2
4−𝑥2

׬
𝑥2+𝑦2
4

𝑥2 + 𝑦2 𝑑𝑧𝑑𝑦𝑑𝑥. 

SOLUTION: This iterated integral is a triple integral over 

the solid region

𝐸 = 𝑥, 𝑦, 𝑧 | − 2 ≤ 𝑥 ≤ 2, − 4 − 𝑥2 ≤ 𝑦 ≤ 4 − 𝑥2, 𝑥2 + 𝑦2 ≤ 𝑧 ≤ 4

and the projection of E onto the xy-plane is the disk

𝑥2 + 𝑦2 ≤ 4. The lower surface of E is the cone

z = 𝑥2 + 𝑦2 and its upper surface is the plane z = 4.

This region has a much simpler description in cylindrical 

coordinates:

𝐸 = 𝑟, 𝜃, 𝑧 |0 ≤ 𝜃 ≤ 2𝜋, 0 ≤ 𝑟 ≤ 2, 𝑟 ≤ 𝑧 ≤ 2
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Example 4

Therefore we have

න
−2

2

න
− 4−𝑥2

4−𝑥2

න
𝑥2+𝑦2

4

𝑥2 + 𝑦2 𝑑𝑧𝑑𝑦𝑑𝑥 =ම
𝐸

𝑥2 + 𝑦2 𝑑𝑉

= න
0

2𝜋

න
0

2

න
𝑟

2

𝑟2 𝑟𝑑𝑧𝑑𝑟𝑑𝜃 = න
0

2𝜋

න
0

2

න
𝑟

2

𝑟3 𝑑𝑧𝑑𝑟𝑑𝜃 =
16𝜋

5
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15.9
Triple Integrals in Spherical 

Coordinates



3

Triple Integrals in Spherical Coordinates

Another useful coordinate system in three dimensions is 

the spherical coordinate system.

It simplifies the evaluation of triple integrals over regions 

bounded by spheres or cones.
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Spherical Coordinates
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Spherical Coordinates

The spherical coordinates (, , ) of a point P in space 

are shown in Figure 1, where  = |OP | is the distance from 

the origin to P,  is the same angle as in cylindrical 

coordinates, and  is the angle between the positive z-axis 

and the line segment OP.

The spherical coordinates of a point

Figure 1
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Spherical Coordinates

Note that 

  0                   0    

The spherical coordinate system is especially useful in 

problems where there is symmetry about a point, and the 

origin is placed at this point.
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Spherical Coordinates

For example, the sphere with center the origin and radius c

has the simple equation  = c (see Figure 2); this is the 

reason for the name “spherical” coordinates.

 = c, a sphere

Figure 2
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Spherical Coordinates

The graph of the equation  = c is a vertical half-plane          

(see Figure 3), and the equation  = c represents a 

half-cone with the z-axis as its axis (see Figure 4).

 = c, a half-plane 

Figure 3

 = c, a helf-cone 

Figure 4
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Spherical Coordinates

The relationship between rectangular and spherical 

coordinates can be seen from Figure 5. 

From triangles OPQ and OPP  we have

z =  cos  r =  sin 

Figure 5
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Spherical Coordinates

But x = r cos  and y = r sin , so to convert from spherical 

to rectangular coordinates, we use the equations

Also, the distance formula shows that

We use this equation in converting from rectangular to 

spherical coordinates.
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Example 1

The point (2,  /4,  /3) is given in spherical coordinates. 

Plot the point and find its rectangular coordinates.

Solution:

We plot the point in Figure 6.

Figure 6
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Example 1 – Solution

From Equations 1 we have

Thus the point (2,  /4,  /3) is                          in rectangular 

coordinates.

cont’d
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Example 2

Describe the surface whose equation in spherical 

coordinates is  𝜌 = 𝑠𝑖𝑛𝜙 𝑠𝑖𝑛𝜃.

SOLUTION: Using that  𝑦 = 𝜌𝑠𝑖𝑛𝜙 𝑠𝑖𝑛𝜃 we get
𝑦 = 𝜌𝑠𝑖𝑛𝜙 𝑠𝑖𝑛𝜃 = 𝜌2 = 𝑥2 + 𝑦2 + 𝑧2

𝑥2 + 𝑦2 − 𝑦 + 𝑧2 = 0

𝑥2 + 𝑦2 − 𝑦 +
1

4
−
1

4
+ 𝑧2 = 0

𝑥2 + 𝑦 −
1

2

2

+ 𝑧2 =
1

4

This is a sphere with center  0,
1

2
, 0 and radius  

1

2
.
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Evaluating Triple Integrals with

Spherical Coordinates
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Evaluating Triple Integrals with Spherical Coordinates

In the spherical coordinate system the counterpart of a 

rectangular box is a spherical wedge

E = {(, , ) | a    b,     , c    d }

where a  0 and  –   2, and d – c  . Although we 

defined triple integrals by dividing solids into small boxes, it 

can be shown that dividing a solid into small spherical 

wedges always gives the same result.
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Evaluating Triple Integrals with Spherical Coordinates

We have the following formula for triple integration in 

spherical coordinates.
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Evaluating Triple Integrals with Spherical Coordinates

Formula 3 says that we convert a triple integral from 

rectangular coordinates to spherical coordinates by writing

x =  sin  cos  y =  sin  sin  z =  cos 

using the appropriate limits of integration, and replacing dv

by 2 sin  d d d.
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Evaluating Triple Integrals with Spherical Coordinates

This is illustrated in Figure 8.

Volume element in spherical

coordinates: dV =  2 sin  d d d

Figure 8
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Evaluating Triple Integrals with Spherical Coordinates

This formula can be extended to include more general 

spherical regions such as

E = {(, , ) |     , c    d, g1(, )    g2(, )}

In this case the formula is the same as in      except that the 

limits of integration for  are g1(, )  and g2(, ).

Usually, spherical coordinates are used in triple integrals 

when surfaces such as cones and spheres form the 

boundary of the region of integration.
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Example 3

Evaluate ׮
𝐸
𝑒 𝑥2+𝑦2+𝑧2

3/2

𝑑𝑉 , where E is the unit ball: 

𝐸 = 𝑥, 𝑦, 𝑧 |𝑥2 + 𝑦2 + 𝑧2 ≤ 1

SOLUTION: Since the boundary of E is a sphere, we use 

spherical coordinates:

𝐸 = 𝜌, 𝜃, 𝜙 |0 ≤ 𝜌 ≤ 1,0 ≤ 𝜃 ≤ 2𝜋, 0 ≤ 𝜙 ≤ 𝜋 .

Thus,

ම
𝐸

𝑒 𝑥2+𝑦2+𝑧2
3/2

𝑑𝑉 = න
0

𝜋

න
0

2𝜋

න
0

1

𝑒𝜌
3
𝜌2𝑠𝑖𝑛𝜙 𝑑𝜌𝑑𝜃𝑑𝜙

=
4

3
𝜋 𝑒 − 1 .
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Example 4

Evaluate ׮
𝐸

𝑥2 + 𝑦2 + 𝑧2 𝑑𝑉 , where E is the hemisphere  

𝐸 = 𝑥, 𝑦, 𝑧 | 𝑥2+ 𝑦2 + 𝑧2 ≤ 9, 𝑧 ≥ 0

SOLUTION: Since the boundary of E is a part of a sphere, 

we use spherical coordinates:

𝐸 = 𝜌, 𝜃, 𝜙 |0 ≤ 𝜌 ≤ 3,0 ≤ 𝜃 ≤ 2𝜋, 0 ≤ 𝜙 ≤ 𝜋/2 .

Thus,

ම
𝐸

𝑥2 + 𝑦2 + 𝑧2 𝑑𝑉 = න
0

𝜋/2

න
0

2𝜋

න
0

3

𝜌2 𝜌2𝑠𝑖𝑛𝜙 𝑑𝜌𝑑𝜃𝑑𝜙

=
486

5
𝜋
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Example 5

Evaluate ׮
𝐸

𝑥2+𝑦2 𝑑𝑉 , where E lies between the 

spheres 𝑥2+𝑦2 + 𝑧2 ≤ 9 and  𝑥2+𝑦2 + 𝑧2 ≤ 4.

SOLUTION: We use spherical coordinates:

𝐸 = 𝜌, 𝜃, 𝜙 |2 ≤ 𝜌 ≤ 3,0 ≤ 𝜃 ≤ 2𝜋, 0 ≤ 𝜙 ≤ 𝜋 .

Note that

𝑥2+𝑦2 = 𝜌2𝑠𝑖𝑛2𝜙𝑐𝑜𝑠2𝜃 + 𝜌2𝑠𝑖𝑛2𝜙𝑐𝑜𝑠2𝜃 = 𝜌2𝑠𝑖𝑛2𝜙

Thus,

ම
𝐸

𝑥2 + 𝑦2 𝑑𝑉 = න
0

𝜋

න
0

2𝜋

න
2

3

𝜌4𝑠𝑖𝑛3𝜙 𝑑𝜌𝑑𝜃𝑑𝜙 =
1688

5
𝜋
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Example 6

Use spherical coordinates to find the volume of the solid 

that lies above the cone                        and below the 

sphere x2 + y2 + z2 = z. (See Figure 9.)

Figure 9
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Example 6 – Solution

Notice that the sphere passes through the origin and has 

center (0, 0,   ). We write the equation of the sphere in 

spherical coordinates as

2 =  cos  or          =  cos 

The equation of the cone can be written as



25

Example 6 – Solution

This gives sin  = cos , or  =  /4. Therefore the 

description of the solid E in spherical coordinates is

E = {(, , ) | 0    2, 0    /4, 0    cos }

cont’d
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Example 6 – Solution

Figure 11 shows how E is swept out if we integrate first with 

respect to , then , and then .

Figure 11

 varies from 0 to  /4

while  is constant.

 varies from 0 to cos 

while  and  are constant.
 varies from 0 to 2 .

cont’d
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Example 6 – Solution

The volume of E is

cont’d


