12.2

\ectors
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A guantity such as force, displacement, or
velocity is called a vector and Is represented
by a directed line segment.

DEFINITIONS The vector represented by the directed line segment . 4B has
initial point 4 and terminal point B and its length is denoted by |AB|. Two
vectors are equal if they have the same length and direction.
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Terminal
point

Initial
point

FIGURE 12.7 The directed line segment
AB 1s called a vector.
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The arrow points In the direction of the action
and Its length gives the magnitude of the
action in terms of a suitably chosen unit.

For example, a velocity vector points in the
direction of motion and its length iIs the speed
of the moving object. (See Figure 12.8)
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FIGURE 12.8 The velocity vector of a particle moving along a path
(a) in the plane (b) in space. The arrowhead on the path indicates the
direction of motion of the particle.
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FIGURE 12.9 The four arrows in the
plane (directed line segments) shown
here have the same length and direction.
They therefore ¢ represent the same vector,
and we write AB = CD = OP = EF.
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Letv = ﬁj There is one directed line segment equal to
PQ whose initial point is the origin (Figure 12.10). It is
the representative of v in standard position and 1s the
vector we normally use to represent v.

If v 1s a vector 1n standard position with terminal point
(v4, V3, V3), then the component form of v 1s
V= (171, V2, ’173)

Given the points P(xq, y1,2,) and Q(x,, V5, Z,), the
standard position vector v = PQ 1s
V= (X = X1,Y2 — V1,22 — Z1)
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£ Q(x5, ¥, 27)

P(xlaylazl) / (Vl,vz’ va)

o | Position vector
—
of PO

FIGURE 12.10 A vector P_Q in standard
position has its initial point at the origin.
The directed line segments Pf? and v are
parallel and have the same length.
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The magnitude or length of the vector v = P_Q 1s the nonnegative number

V| = V2 +v2 +vE = V(o —x1)? + (3 — m)? + (22 — z1)?

(See Figure 12.10.)

EXAMPLE 1 Find the (a) component form and (b)
length of the vector with mitial point P( -3, 4, 1) and
terminal point O( -5, 2, 2).

Solution

(a) The standard position vector v representing Wj has
components

V= (xz — xl, yz — yl’ Zz — Zl) — (_2, _2,1)
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(b) The length or magnitude of v = W}L 1S
vl = [PO] = [(-2)2+(-2)+(1)?=3
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DEFINITIONS Let u = (uy, up, u3) and v = (v, v, v3) be vectors with k a
scalar.

Addition: u+tv={(u +v,u + v,u + v
Scalar multiplication: ku = (kuy, kuy, kus)
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(a) (b)

FIGURE 12.12 (a) Geometric interpretation of the vector sum. (b) The parallelogram law of
vector addition.
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FIGURE 12.13 Scalar multiples of u.
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FIGURE 12.14 (a) The vector
u — v, when added to v, gives u.
(b)u —v=u+ (—v).
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EXAMPLE3 Letu = (—1,3,1)andv = (4,7, 0). Find the components of

(a) 2u + 3v (b) u—v (c) ‘%u

Solution
(a) 2u + 3v = 2(—1,3, 1) + 3(4, 7, O) = (—2, 0, 2) + (12,21,0) = (10, 27, 2)

b)) u—v=(-131)—(4,7,0=(-1—-43—-7,1—-0) = (-5,-4,1)

g0 RO RONORT

N | —

© |5
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Properties of Vector Operations
Let u, v, w be vectors and a, b be scalars.

ut+tv=v-+u 2. (w+v)+w=u-+(v+w
. ut+0=u 4. u+(-u)=0
Ou=20 6. lu=nu

a(bu) = (ab)u 8. a(u+v)=agu+av
. (@ + b)u=aqu+ bu

L]

o W=
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Unit VVectors

A vector v of length 1 is called a unit vector.

The standard unit vectors are
i =(1,0,0), j =(0,1,0), k = (0,0,1).

Any vector v = (v, v,, 3) can be written as a linear
combination of the standard unit vectors as follows:
V= <v1; Uy, U3>
= (v4,0,0) + (0, v,,0) + (0,0, v3)
= v4(1,0,0) + v,(0,1,0) + v3(0,0,1)
= V10 + vyj + 3k
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We call the number v, the 1-component of the
vector v, v, the j-component, and v; the k-
component.

In component form, the vector from
P(x1,¥1,21) t0 Q(x3,y2,23) is

PTQ = (X2 —x)i+ (Vo—y1)j + (2, —z1)k

See Figure 12.15.

Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 12 - 18



i O_\Lpz = xZi + yzj + 221(

P‘Z(x29 y29 ZZ)

[~ P(x1,1,21)
(T;] =xi+yj+zk

FIGURE 12.15 The vector from P; to P
iS PPy = (xo —x)i+ (), —y)j +
(Zg - Zl)k.
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If v # 0, then

"y

2. the equation v = |v||TV|

vV . . : N
1. ——1s a unit vector in the direction of v;

expresses v as its length times its direction.

EXAMPLE 4 Find a unit vector u in the direction of the
vector from P;(1,0,1) to P,(3,2,0).

Solution
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First we find the coordinates of the vector
P,P,=(3—-1,2—-0,0—-1) =(2,2,—1).
Next we find the length of the vector
[P P,| = /(2)2+(2)2+(—1)2= 3.

P1 P,

The unit vector u = has the same direction as

PP

|P1 P,

3’3" 3

PP, 22 1
= _

P, P,|
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The midpoint M of the line segment joining points Pi(xy, y1,21) and
P>(x3, ¥2, 2») is the point

X1+tx Vi T2 o z1+ 2
2 7 2 2 )
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P](xp Y1 21)

M(xl +XxXy Yty 2y +Zz)
2 7 2 7 2

Pz(JCz, Y2 Zz)

O

FIGURE 12.16 The coordinates of the

midpoint are the averages of the
coordinates of P, and P,.
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12.3

The Dot Product
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When two nonzero vectors u and v are placed so their
Initial points coincide, they form an angle 6 of
measure 0 < 0 < .

FIGURE 12.20 The angle between u and v.
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THEOREM 1—Angle Between Two Vectors The angle 6 between two nonzero
vectors u = (uy, up, u3) and v = (v, v, v3) is given by

0 = cog”! (ulvl + uUpyvy + u3V3)
[ul|v] |
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DEFINITION The dot product u-v (“u dot v”’) of vectors u = (uy, up, u3)
and v = (v, vp, v3) is

u*v =u1vy + urvy + uzvs.

EXAMPLE 1

(@ (1,-2,-1)-(=6,2,-3) = (1)(=6) + (=2)(2) + (—1)(=3)
=—6-4+3= -7

(b) (%1 + 3j + k)-(4i —j + 2k) = (%)(4) + 3)(—1) + (1)2) =1
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In the notation of the dot product, the angle between two vectors u and v 1s

6 = cos ! ( u-v )
lu||v]

This leads to the formula:

u-v = |ul|lv|cos@
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EXAMPLE 2 Find the angle betweenu = i — 2j — 2k and v = 6i + 3j + 2k.

Solution  We use the formula above:
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DEFINITION Vectors u and v are orthogonal (or perpendicular) if and only
ifu-v = 0.

EXAMPLE 4 To determine if two vectors are orthogonal,
calculate their dot product.

(@u=31-2)+k and v=2j+4k are orthogonal
because
u-v=B%x0)+(-2x2)+(1x4)=0.

(b)u=1-2)+3k and v=4i+)-k arenot
orthogonal because
u-v=010Ax4)+(-2x1)+B3x-1)=-1=+0.
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Properties of the Dot Product

If u, v, and w are any vectors and c is a scalar, then

l.urv=v-u
J.u(v+w)=u'v+uw
5.0-u =0.

2. (cu)*v=u-(cv) =c(u-v)

4. u-u = |ul?
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The vector projection of u = PQ onto a nonzero vector

v = PS (Figure 12.23) is the vector PR determined by
dropping a perpendicular from Q to the line PS. The
notation for this vector Is proj,u.

\
T
<
 /

;I_______
/
<

-
P S

)

FIGURE 12.23 The vector projection of
u onto wv.
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The vector projection of u onto v Is the vector

_ u-v
projp,uU = (W) (%

The scalar component of u in the direction of v is the
scalar |u|cos@ which can be computed also using

that
u-v
lu|cosf@ = ——
V]
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Length = |u| cos 6 Length = —|u| cos 6
(a) (b)

FIGURE 12.25 The length of projy uis (a) |u| cos # if cos§ = 0 and
(b) —|u| cos B ifcos O < 0.
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EXAMPLE 5  Find the vector projection of u = 6i + 3j + 2k ontov = i — 2j — 2k

and the scalar component of u in the direction of v.

Solution  We find proj, u from Equation (1):

oy = U vv:6—6—4
PENVU = VYY" T+ 4 +4

(i— 2j — 2K)

A _ 4. 8.8
= 9(1 2j — 2k) 91+9J+9k.

We find the scalar component of u in the direction of v from Equation (2):

= olz 1 1 . l'_g’_g
|lu| cos§ = u v (6i + 3j + 2Kk) (31 34 3k>

_y_nn_4__4

=2 -2 3 3
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12.4

The Cross Product



Let u and v be two nonzero vectors in space. If u and
v are not parallel, they determine a plane. We select a
unit vector n perpendicular to the plane by the right-

hand rule. This means that we choose n to be the unit
(normal) vector that points the way your right thumb

points when your fingers curl through the angle 6
from u to v (Figure 12.27).

FIGURE 12.27 The construction of
um o< vl
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DEFINITION

uXv=_(|lu||v|]sinf)n

Because n Is a unit vector, the magnitude of u X v IS

lu X v| = |ul||v] |sin@]|n| = |u|]|v]|sind.
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Parallel Vectors

Nonzero vectors u and v are parallel if and only ifu X v = 0.
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Properties of the Cross Product
If u, v, and w are any vectors and r, s are scalars, then

1. (ru) X (sv) = (rs)(u X v) 2.uX(v+w)=uXv+uXw
3.vXu=—(aXv) 4, (v+w)Xu=vXu+wXu
5.0 Xu=090 6. u X (vXw)=@-wy— (u-v)w
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FIGURE 12.28 The construction of
v X U.
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JXk=-(Kk X))

FIGURE 12.29 The pairwise cross
products of i, J, and k.
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Area of the parallelogram determined by u and v

Area = base - height

= |u - |v|sin 6]
= lu x|
|
v/ |
ih — |v|sin 0|
o
' >

FIGURE 12.30 The parallelogram
determined by u and v.
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The area of the parallelogram determined by u and v is
Area = |lu X v|.

This area can be computed using that

lu X v| = |ul|v|sinb
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Calculating the Cross Product as a Determinant
Ifu=uwui+ uj+ wukandv = vii + v, j + vk, then

i j k
uXv=|u u usl.
Vi \%) V3
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EXAMPLE1 Findu X vandv X uifu=2i+ j+ kandv = —4i + 3j + k

Solution
- - k
y 2‘;1|11,‘21‘,‘21‘k
uxXyv= = 1 — ]
3 1 —4 1 —4 3
—4 3 1

= —2i — 6j + 10K

vXu=—(uXv)=2 +6j — 10k
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To find the area of the parallelogram determined by
u=(2,11)and v = (—4,3,1) we use that

Area = |u X v|.

We found in Example 1 thatu X v = 2i + 6j — 10k.
Then,

Area = |u X v| = {/(2)2+(6)2+(—10)2= V/140.
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EXAMPLE 3 Find the area of the triangle with
vertices P(1, -1, 0), Q(2, 1, -1), and R(-1, 1, 2).

Solution PQ = (1,2,—1), PR = (—2,2,2),

|t gk
PQXxPR=|1 2 —1|=6i+6k.
-2 2 2
The area of the parallelogram determined by P, Q,

and R Is
[PQ x PR| = \/(6)2+(0)2+(6)?= V72.
The triangle's area is half of this, or v/72/2.
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h
-~

R(-1,1,2)

P(1,-1,0)

x Q2,1,-1)

FIGURE 12.31 The vector PQ X PR is
perpendicular to the plane of triangle POR
(Example 2). The area of triangle POR i1s
half of |@ X }Tfﬂ (Example 3).
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The product (u x v) - w is called the triple scalar product
of u, v, and w (in that order).

As you can see from the formula
|(u X D) -w| = |uxv||w||cosb|,

the absolute value of this product is the volume of the
parallelepiped determined by u, v, and w (Figure 12.34).

The number |u x | is the area of the base parallelogram.
The number |w||cos8] is the parallelepiped’s height.
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i e i

A ea of base
= |uxV

Volume = area of base - height
= [u X v| |w| |cos 6
= |(u X V) - w|

FIGURE 12.34 The number |(u X v) - w| is the volume of a parallelepiped.

Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 12 - 16



Calculating the Triple Scalar Product as a Determinant
Ui U Uz
(uXv)ew=|v, v 3

wp Wy W3
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EXAMPLE 6  Find the volume of the box (parallelepiped) determined by u = i + 2j — Kk,
v=-2i+ 3k,andw = 7j — 4k.

Solution  Using the rule for calculating determinants, we find
1 2 -1
(uXv)ew=[—2 0 3| = —23.
0 7 —4
The volume is |(u X v)+w| = 23 units cubed.
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12.5

Lines and Planes in Space

Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley



Lines In Space

Suppose that L Is a line In space passing through a point
Py(xq, Vo, Zo) parallel to a vector v = vyi + vyj + v3k.
Then L is the set of all points P(x, y, z) for which PP Is

parallel to v (Figure 12.35). Thus, P,P = tv for some
scalar parameter t. The value of t depends on the location

of the point P along the line, and the domain of t is
(—00, ).
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Vector Equation for a Line
A vector equation for the line L through Py(xy, yo, zo) parallel to v is

r(¢) = rog + tv, —00 <t < 00, (2)

where r is the position vector of a point P(x, y, z) on L and r( is the position
vector of Py(xo, Yo, Zo) .

=
T Po(xgs Yo- 20)
_,g:::’;’]\}ﬂ, ,
7 (x, ¥, 2)
—
*— v
g \
y
x

FIGURE 12.35 A point P lieson L
through Py parallel to v if and only if
Po P 1s a scalar multiple of v.
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Parametric Equations for a Line
The standard parametrization of the line through Py(xy, yo, zo) parallel to
v=wi+wmj+ nkis

X=x9ttvy, y=y9+titv, z=2zy+ tvzy, —00 << (3)
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EXAMPLE 1 Find parametric equations for the line through (—2, 0,4) parallel to
v = 2i + 4j — 2k (Figure 12.36).

Solution ~ With Py(xo, yo,z9) equal to (—2,0,4) and v;i + v,j + sk equal to
2i + 4 — 2k, Equations (3) become

x = -2+ 2t y = 4t, z =4 — 2t.
\f

KO(——Z, 0, 4)
\ .
al t=20

FIGURE 12.36 Selected points and
parameter values on the line in Example 1.
The arrows show the direction of

increasing 7.
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EXAMPLE 2  Find parametric equations for the line through P(—3,2, —3) and
o(1,—1,4).
Solution  The vector

PO =(1 = (=3))i + (-1 = 2)j + (4 = (-3)k

= 4i — 3j + 7k

is parallel to the line, and Equations (3) with (xo, yo, z0) = (=3, 2, —3) give

x= -3+ 4, y =2 — 3t z= -3+ 17t.

We could have chosen Q(1, —1, 4) as the “base point” and written
x =1+ 4¢, y=—-1— 31, z=4 + 7t.

These equations serve as well as the first; they simply place you at a different point on the
line for a given value of 7. O
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EXAMPLE 3  Parametrize the line segment joining the points P(—3,2, —3) and
O(1, —1, 4) (Figure 12.37).

Solution ~ We begin with equations for the line through P and Q, taking them, in this
case, from Example 2:
x = —3 + 4, y =2 — 3 z= -3+ Tt.
We observe that the point
(x,y,z) = (=3 +4t,2 — 3¢t,—3 + Tt)

on the line passes through P(—3,2, —3) at ¢t = 0 and O(1, —1,4) at t = 1. We add the
restriction 0 = ¢ = 1 to parametrize the segment:

x = —3 + 44, y =2 — 3t z= -3+ Tt O=¢r=1.
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Q(,-1,4)

> N

Ns

P(-3,2,-3)

FIGURE 12.37 Example 3 derives a
parametrization of line segment PQ. The
arrow shows the direction of increasing .

Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Slide 12 - 8




Distance from a Point § to a Line Through P Parallel to v

(5)

P

FIGURE 12.38 The distance from
S to the line through P parallel to v 1s
| PS| sin 6, where 6 is the angle between

PS and v.
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EXAMPLE 5  Find the distance from the point S(1, 1, 5) to the line
L: x=1+1, y=3-—1, z = 2t.

Solution  We see from the equations for L that L passes through P(1, 3, 0) parallel to
v =1 — j + 2k With

PS=(1—=1i+(1=3)j+((5-0k=—2j+ 5k

and
i j Kk
PSXv=10 -2 5| =i+35j+ 2k
1 -1 2
Equation (5) gives

PSS XV NV1+25+4 V30
d = = = = V5.
M Vi+1+4 Ve
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BN
An Equation for a Plane in Space

Plane M

v
P(x, y, 2)

Po(XO, yO’.ZO)/‘

FIGURE 12.39 The standard equation for
a plane in space is defined in terms of a
vector normal to the plane: A point P lies
in the plane through Py normal to n if and
only if n - PTP = 0.
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An Equation for a Plane in Space

A plane in space Is determined by knowing a point
on the plane and a vector that is perpendicular or
normal to the plane.

Suppose that plane M passes through a point
Py(x9,¥0,2Zo) and is normal to the vector n = Ai
+ Bj + Ck. Then M is the set of all points P(x, v, z)

for which PO—ﬁ IS orthogonal to n (Figure 12.39).
Thus, the dot product

n'P()P:O.
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This equation Is equivalent to

—

n-P,P=0
(Ai+ Bj + Ck) - [(x —x0)i + (y —yo)j + (z — zp)k] = 0

or
Alx —x0) + By —yo) + C(z—25) =0

Equation for a Plane
The plane through Py(xo, o, zo) normal ton = Ai + Bj + Ck has

Vector equation: n: Pﬁ’ =0
Component equation: A(x — x9) + B(y — yo) + C(z — z9) = 0
Component equation simplified: Ax + By + Cz = D, where

D = Axy + Byy + Cz
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Example 6 Find an equation for the plane through
Py(—3,0,7) perpendicular to n = 5i + 2j — k.

Solution The component equation Is
Alx —x9) + By —y0) + C(z—2) =0
5x—(-3)+2y—-0)+(-1D(=z—-7)=0

Simplifying, we obtain
5 + 2y — z = —22.
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EXAMPLE 7 Find an equation for the plane
through A(0, 0,1), B(2, 0, 0), and C(0, 3, 0).

Solution To write an equation for the plane, we find
a vector normal to the plane and use it with one of
the pomts As a pomt we choose A(0, 0,1) and the

vector AB x AC is normal to the plane

|t Tk
ABXAC=12 0 —-1|=3i+2j+6k.
0 3 -1
The component equation for the plane is

3(x-0)+2(y-0)+6(z-1) =
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EXAMPLE 8 Find parametric equations for the line
In which the planes intersect

3x-6y-2z=15 and 2x+y-2z=5.

Solution It i1s known from geometry that nq; X n, Is
a vector parallel to the planes’ line of intersection. In

our case,

i k
nyXn, =3 —6 -=2|=14i+ 2j+ 15k.
2 1 =2
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To find a point on the line, we can take any point
common to the two planes. Substituting z = 0 in the
plane equations and solving for x and y
simultaneously

3X -6y =15
2X+y=5
Identifies one of these points as (3, -1, 0).
The line is
X=3+14t, y=-1+2t z=15t1.
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FIGURE 12.40 How the line of
intersection of two planes is related to the
planes’ normal vectors (Example 8).
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EXAMPLE 10 Find the point where the line
X=8/3+2t, y=-2t, z=1+1
Intersects the plane 3x + 2y + 6z = 6.

Solution The point (8/3 + 2t, -2t, 1 + t) lies in the
plane If its coordinates satisfy the equation of the
plane, that is, If

3(8/3+2t) + 2(-2t) + 6(1 + 1) =6
t=-1
The point of Intersection (x,y,z) IS
(8/3 + 2(-1), -2(-1), 1 + (-1)) = (2/3, 2, 0).
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The Distance from a Point to a Plane

If P Is a point on a plane with normal n, then the
distance from any point S to the plane is the length of
the vector projection of PS onto n. That is, the
distance from S to the plane is

i=|ps. 2
|n|
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EXAMPLE 11 Find the distance from S(1, 1, 3) to
the plane 3x + 2y + 6z = 6.

Solution We find a point P in the plane and

calculate the length of the vector projection of PS
onto a vector n normal to the plane (Figure 12.41).
From the equation of the plane we obtain that

n =3i + 2j + 6k

To find a point P in the plane we setx =0andz=0
In the equation of the plane to get P(0, 3, 0).
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PS=(1—-0)i+(l—-3)j+(3—0k
=i—2j+3k

n| = y(3)2+(2)2+(6)%= 7

The distance from S to the plane is

_ _ 3. 2. 6
d—|PS (l—2]+3k)-(7i+—j+7k)

InI | 7

3 4 18] 17

7 7 71”7
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> 2N

n = 3i + 2j + 6k
S, 1,3) (5

3x+ 2y +67=206 ?(0,0,

e L Distance from
0 i S to the plane
7 o~
/
/
/ (2,0, 0) P©0,3,0) 7

FIGURE 12.41 The distance from S to the plane is the
length of the vector projection of PS onto n (Example 11).
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FIGURE 12.42 The angle between two
planes is obtained from the angle between
their normals.
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EXAMPLE 12 Find the angle between the planes
3x-6y-2z2=15 and 2x+y-2z=5.

Solution The vectors

n,=3i—6j—2k, n,=2i+j—-2k
are normals to the planes. The angle between them is

0 = cos~ ! M) o cos™! (i)
Inq|In,] 21

~ 1.38 radians
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12.6

Cylinders and Quadric Surfaces
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Z Generating curve
(in the yz-plane)

generating curve
parallel to x-axis

FIGURE 12.43 A cylinder and generating
curve.
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e — QO(x()9 x()za Z)

Po(xO, sz, O)

FIGURE 12.44 Every point of the

cylinder in Example 1 has coordinates of
the form (xg, xo°, z). We call it “the
cylinder y = x2.”
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Elliptical cross-section
in the plane z = z Wi

\

2 2
; X 34
The ellipse ? T

in the xy-plane

=]

The ellipse

2 2 Y g2
x_2+2_2.__1 Theelllpse;+;5=l
¢ . in the yz-plane
in the xz-plane e Yz

FIGURE 12.45 The ellipsoid ,
2 2
X Yy z

S+ =+==1
a>~ bt &

in Example 2 has elliptical cross-sections in each of the three coordinate planes.
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The parabola z = é y% in the yz-plane
4 2
Part of the hyperbola #

in the plane z = ¢

2 2
Part of the hyperbola i—5 == |

The parabola z = - " in the plane z = —c

in the xz-plane

FIGURE 12.46 The hyperbolic paraboloid (y?/b?) — (x*/a®) = z/c, ¢ > 0. The cross-sections in planes perpendicular to the
z-axis above and below the xy-plane are hyperbolas. The cross-sections in planes perpendicular to the other axes are parabolas.
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Table 12.1 Graphs of Quadric Surfaces

Z
Elliptical cross-section
inthe plane z = 7y |/ 5 5
: Y
The ellipse x_2 A =
a
in the xy-plane

The ellipse ;
K22 W A
; + ? =1 The ellipse 2 % 2
in the xz-plane In the yz:plane
x2 y 7
ELLIPSOID =+ +5=1
b c

a
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I
Table 12.1 Graphs of Quadric Surfaces (cont)

>
N

>
»
> 5

: g s
The parabolaz = Sx The ellipse

X a
_ intheplane z = ¢

2 2
X y
_+_2

2
in the xz-plane

The parabola z = b%f

in the yz-plane

2 2

x4

a2

ELLIPTICAL PARABOLOID
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Table 12.1 Graphs of Quadric Surfaces (cont)

(3]

2
Thelinez=-Sy #  Theellipse> + 2 =1 2
b a- b- A

in the yz-plane in the plane z = ¢

Z=C

The line z = Cx

in the xz-plane

TESiLs

X

ELLIPTICALCONE =5 + =5 =5
b
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Table 12.1 Graphs of Quadric Surfaces (cont)

o

2
Part of the hyperbola %= — £

5 iy B | in the xz-plane

. x2
The ellipse = +
b a

in the xy-plane

, b

2 X

2

Part of the hyperbola y_2 - z_2 = l—/
b C ' ELL

; IPSE

in the yz-plane

HYPERBOLOID OF ONE SHEET
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ar ¢
Z /
2 2 4
The ellipse x_2 + y_2 =2

a
& /in the plane z = ¢

o]

>

2
Y _
== =l

\

2
Z2
2 2= 1
a b C

2
X Y
=
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Table 12.1 Graphs of Quadric Surfaces (cont)

2

2
z  Theellipse ? + % =i

in the plane z = V2

>

The hyperbola

2 2
E_E =1
2 o2

in the xz-plane
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Table 12.1 Graphs of Quadric Surfaces (cont)

The parabola z = l—:—z y% in the yz-plane

Part of the hyperbola # - -

-t
[

15

a
in the plane z = ¢
I~
S
J 2 v2
T~ Part of the hyperbola % — == I
. R a-
The parabola z = "ﬁ S in the plane z = —¢
in the xz-plane
X
y: XX _z
HYPERBOLIC PARABOLOID “5 — 5 =73, ¢ >0
a
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“tor Functions and Space Curves

In general, a function is a rule that assigns to each element
In the domain an element in the range.

A vector-valued function, or vector function, is simply a
function whose domain is a set of real numbers and whose
range Is a set of vectors.

We are most interested in vector functions r whose values
are three-dimensional vectors.

This means that for every number t in the domain of r there
IS @ unique vector in V5 denoted by r(t).



!tor Functions and Space Curves

If f(t), g(t), and h(t) are the components of the vector r(t),
then f, g, and h are real-valued functions called the
component functions of r and we can write

r(t) = (f(t), g(t), h(t)) = f(B)i + g(t) + h(t)k

We use the letter t to denote the independent variable
because it represents time in most applications of vector
functions.



!*nple 1 — Domain of a vector function

Find the domain of the vector function
r(t) = (e 3, V4 —t2,In(t + 1) )

Solution: The component functions are

f)=e 3t g(t) = V4 — t2 h(t) =In(t + 1)

By our usual convention, the domain of r consists of all
values of t for which the expression for r(t) is defined.

e 3t is defined for all t € R, V4 — t? is defined when
4—t>>200r—-2<t<2, andIn(t + 1) is defined when
t+1>0o0rt>-1.

Therefore the domain of r is the interval (-1, 2].



!*nple 2 — Domain of a vector function

Find the domain of the vector function

r(t) = (¢3,In(3 — ©) ,Vt)

Solution: The component functions are

f=t2 g =In@B-1 h(t) =Vt

By our usual convention, the domain of r consists of all
values of t for which the expression for r(t) is defined.

t3 is defined for all t € R, In(3 —t) is defined when 3 -t >0
ort< 3, and +/t is defined whent > 0.

Therefore the domain of r is the interval [0, 3).



“tor Functions and Space Curves

The limit of a vector function r is defined by taking the
limits of its component functions as follows.

1| Ifr(r) = (f(1). g(), h(1)), then

lim r(7) = <Iim f(1), lim g(z), lim /z(r)>

provided the limits of the component functions exist.

Limits of vector functions obey the same rules as limits of
real-valued functions.



!ﬂple 3 — Limit of a vector function

EXAMPLE 1 If r(t) =< 5 Smt) then

sint
}rirlcl) r(t) = <11m t3,lim ,lim BT> = (0,—1,3)

t—0 t—0 tz — t t—0

EXAMPLE 2 Ifr(¢) = (cost)i + (sin?)j + tk, then

lim r(¢) = ( lim cos z‘)i + ( lim smt)] + ( lim z‘)k
t—/4 t—>/4 t—1/4 t— /4

V2. V2

_—l+—_]+zk



“tor Functions and Space Curves

A vector function r is continuous at a If

lim r(7) = r(a)

r—d

In view of Definition 1, we see that r is continuous at a if
and only if its component functions f, g, and h are
continuous at a.

There Is a close connection between continuous vector
functions and space curves.



“tor Functions and Space Curves

Suppose that f, g, and h are continuous real-valued
functions on an interval I.

Then the set C of all points (X, y, z) in space, where

2 x=1) y=9@) z=h()
and t varies throughout the interval I, is called a space
curve.

The equations in [2] are called parametric equations of C
and t is called a parameter.

We can think of C as being traced out by a moving particle
whose position at time t is (f(t), g(t), h(t)).

10



“tor Functions and Space Curves

If we now consider the vector function r(t) = {f(t), g(t), h(t)),
then r(t) is the position vector of the point P(f(t), g(t), h(t))

on C.

Thus any continuous vector
function r defines a space
curve C that is traced out by
the tip of the moving vector
r(t), as shown in Figure 1.

g
AT = (f(t), g(t), h(t))

Cis

\»

-\.

traced out by the tip of a moving

position vector r(t).

Figure 1

11



!mple 4 — Sketching a helix

Sketch the curve whose vector equation is

r(t) =costi+sint) +tk

Solution:
The parametric equations for this curve are
X=cost y=sint z=t

Since x? + y? = cos?t + sin‘t = 1, the curve must lie on the
circular cylinder x2 + y2 = 1.

The point (X, Yy, z) lies directly above the point (X, y, 0),
which moves counterclockwise around the circle x2 + y? =1

In the xy-plane.
12



!mple 4 — Solution

cont’d

(The projection of the curve onto the xy-plane has vector

equation r(t) = {cost, sin t, 0).) Since z = t, the curve
spirals upward around the cylinder as t increases. The
curve, shown in Figure 2, is called a helix.

Figure 2

13



!tor Functions and Space Curves

The corkscrew shape of the helix in Example 4 is familiar
from its occurrence in coiled springs.

It also occurs in the model of DNA (deoxyribonucleic acid,
the genetic material of living cells).

In 1953 James Watson and
Francis Crick showed that
the structure of the DNA
molecule iIs that of two linked,
parallel helixes that are
Intertwined as in Figure 3.

A double helix
Figure 3 14



qmple 5 — Curve of Intersection

Find a vector function that represents the curve of intersection of
the cylinder x? + y? = 1 and the plane z + y = 2.

Solution: The curve of intersection C is an ellipse.

The projection of C onto the xy-plane is the circle
x?+y?=1, z=0. So we can

X = Ccost y=sint 0<t<2m.
From the equation of the plane, we have
z=2—y=2-—sint
So we can write parametric equations for C as
X = Ccos't y =sint z+y=2 0<t<2m.

The corresponding vector equation is
r(t) = costi+sintj+ (2 —sint) k



qg Computers to Draw Space Curves

Space curves are inherently more difficult to draw by hand
than plane curves; for an accurate representation we need
to use technology.

For instance, Figure 7 shows
a computer-generated graph
of the curve with parametric
equations

X = (4 + sin 20t) cos t
y = (4 + sin 20t) sin t

A toroidal spiral

Z = cos 20t Figure 7

It's called a toroidal spiral because it lies on a torus. 6
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13.2 of Vector Functions
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Derivatives



!ivatives

The derivative r’ of a vector function r is defined in much
the same way as for real valued functions:

de o rlt+h) —rQ)
E’ o rir) Il1r1'1

h—=0 h

If this limit exists. The geometric significance of this
definition is shown in Figure 1.

rit+h)—rit|
eir+hy=rin g ' - n
ri),
p i’ B ——pch—e
rv rif)
rir+h rit=1m
7 e
=S —
_'.". ,
(a) The secant vecP( (b) The tangent vector r'(t)

Figure 1



-ivatives

If the points P and Q have position vectors r(t) and r(t + h),
then PO represents the vector r(t + h) — r(t), which can
therefore be regarded as a secant vector.

If h > 0, the scalar multiple (1/n)(r(t + h) —r(t)) has the
same direction as r(t + h) —r(t). As h — 0, it appears that
this vector approaches a vector that lies on the tangent
line.

For this reason, the vector r'(t) is called the tangent vector
to the curve defined by r at the point P, provided that
r'(t) exists and r'(t) # 0.



!ivatives

The tangent line to C at P is defined to be the line through
P parallel to the tangent vector r'(t).

We will also have occasion to consider the unit tangent
vector, which is

r'(z)
r'(7) |

T(¢) =



!ivatives

The following theorem gives us a convenient method for
computing the derivative of a vector function r: just
differentiate each component of r.

2

Theorem If r(r) = (f(2). g(1), h(t)) = f()i + g(¢)j + h(t) k, where f, g, and

h are differentiable functions, then

r'(0) = (f'(0,g'0).h'@0)) =f i+ g@)j+ h@k




!mple 1

(a) Find the derivative of r(t) = (1 + t3)i + te'j + sin 2t k.

(b) Find the unit tangent vector at the point where t = 0.

Solution:
(a) According to Theorem 2, we differentiate each
component of r:

r'(t) =3t4i + (1 —t)etj+ 2 cos 2t k



!mple 1 — Solution

cont’d

(b) Since r(0) =1 and r’(0) =] + 2k, the unit tangent vector
at the point (1, 0, O) is

r'(0)

I r'(0) |

T(0) =

j+ 2k

v+ 4




qmple 2. Tangent line

Find parametric equations for the tangent line to the helix
with parametric equations

X=2cost, y=sint, z=t,
at the point (0,1,-).
SOLUTION The vector equation of the helix is
r(t) = (2cost, sint, t), so r'(t) = (—2sint, cost, 1).

The parameter value corresponding to the point (0,1,%) IS

t = % so the tangent vector there is r’ G) =(—2,0,1). The

tangent line is the line through P(O,l,g) parallel to the
vector v = (—2,0,1), so its parametric equations are

T
X = -2, y =1, z=7+1 10



!ivatives

Just as for real-valued functions, the second derivative of
a vector function r is the derivative of r’, thatis, r” = (r')’.

For instance, the second derivative of the function,
r(t) =(2 cos t, sint, t), is

I‘"(t) = (—2 COS t, —Sin t, O>

11



Differentiation Rules
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-erentiation Rules

The next theorem shows that the differentiation formulas for
real-valued functions have their counterparts for
vector-valued functions.

[3] Theorem Suppose u and v are differentiable vector functions, ¢ is a scalar,
and f is a real-valued function. Then

1
1. —[ul) + v()] = u'(t) + V(1)
dt

i
Codt

N

[cu(r)] = cu'(r)

w

d . . ,
: Th—[f(r)u(r)] = f'(Hulr) + f(Nu'(r)

d . : : '
4. T{lu(r) - v())] = u'(e) - v(r) + ulr) - v'(1)

(

d ; -
5. T[U(” X v(t)] = u'(t) X v(£) + ult) X v'(r)

¢

d . IR i
. _[U(f(’))] :/ (I)U (f(f)) (Chain Rule)
dt

=2

13



!mple 3

Show that if [r(t)| = c (a constant), then r'(t) is orthogonal to
r(t) for all t.

Solution:
Since

r(t) - rt) = [r(H[> = c?
and c? is a constant, Formula 4 of Theorem 3 gives

0= % [r(t) - r()] = r'(t) - r(t) + r(t) - r'() = 2r'(t) - r(t)

Thus r'(t) - r(t) = 0, which says that r'(t) is orthogonal to r(t).

14



!mple 3 — Solution

cont’d

Geometrically, this result says that if a curve lies on a
sphere with center the origin, then the tangent vector r’(t) is
always perpendicular to the position vector r(t).

FIGURE 13.8 If a particle moves on a
sphere in such a way that its position r is a
differentiable function of time, then
r-(dr/dt) = O.

15



Integrals
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“grals

The definite integral of a continuous vector function r(t)
can be defined in much the same way as for real-valued
functions except that the integral is a vector.

But then we can express the integral of r in terms of the
Integrals of its component functions f, g, and h as follows.

*b . . ok
r(7) dt = lim D, r(t*) At

—_— 00
Ja n =1

= lim [( (1) At) i+ (2 g(1) Ar)j + (Z h(t’) Ar) k]
= i=1 i=1 i=1

17



‘grals

and so

"h r(r) dt = (“hf(r) a’r) i+ (‘I g(1) dr)j + ("h h(t) dr) k

This means that we can evaluate an integral of a vector
function by integrating each component function.

18



“grals

We can extend the Fundamental Theorem of Calculus to
continuous vector functions as follows:

(" () dr = R()], = R(B) — R(@)

where R Is an antiderivative of r, that is, R'(t) = r(t).

We use the notation f r(t) dt for indefinite integrals
(antiderivatives).

19



!mple 4

Ifr(t) =2costi+sintj+ 2tk, then
(1) Indefinite integral:

Ir(t)dt:(fzcostdt)i+( Isintdt)j+( Iztdt> k
=2sinti—costj+t?k+C

where C Is a vector constant of integration.

(2) Definite Integral:
J.77/2 r(7) dt = [2 SINTL — COST) + ,zk]g/z

0

2
=2i+j+Tk

20
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-Length and Curvature

We have defined the length of a plane curve with
parametric equations x = f(t), y = g(t), a<t < b, as the limit
of lengths of inscribed polygons and, for the case where f'
and g' are continuous, we arrived at the formula

1 L—’ VIO + [g'(0) -‘d/—‘ \/(f{;) (ill\r) dt

The length of a space
curve Is defined in
exactly the same
way (see Figure 1). T T

The length of a space curve is the limit
of lengths of inscribed polygons.

Figure 1



-Length and Curvature

Suppose that the curve has the vector equation,

r(t) = (f(t), g(t), h(t)), a<t<b, or, equivalently, the
parametric equations x = f(t), y = g(t), z = h(t), where f', g',
and h' are continuous.

If the curve Is traversed exactly once as t increases from
a to b, then it can be shown that its length is

2 L="VIFfOE + g0  + [N O dt

di di dar |




!Length and Curvature

Notice that both of the arc length formulas|1|and [2] can be
put into the more compact form

3 L= [b|r’(r)|dr

because, for plane curves r(t) = f(t)i + g(t)],

Ir'@) | =|fOi+g0j| =L OF +[g 0]

and for space curves r(t) = f(t)i1 + g(t)] + h(t)k,

()| =|fOi+g0Oj+hH0Ok| =IO+ [g®] + [ 0]

5



!mple 1

Find the length of the arc of the circular helix with vector
equation r(t) =costi +sintj+tk fromthe point (1, 0, 0) to
the point (1, O, 2n7).

Solution:
Sincer'(t) =—sinti + costj+k, we have

r’(r)| = /(—sin?#)? + cos?t + | = \/f

The arc from (1, 0, 0) to (1, O, 2x) is described by the
parameter interval 0 £t < 27 and so, from Formula 3, we

have , .
L= ‘ r'(l)|dr =Jmﬂ/2 dt = 227
0

2T ‘
JO



Curvature



Teunatures

A parametrization r(t) is called smooth on an interval I if r'
IS continuous and r'(t) = 0 on |.

A curve is called smooth if it has a smooth
parametrization. A smooth curve has no sharp corners or

cusps; when the tangent vector turns, it does so
continuously.

If C is a smooth curve defined by the vector function r,
recall that the unit tangent vector T(t) is given by

_ r'(7)
() |
and indicates the direction of the curve.

T(¢)



Teunatures

From Figure 4 you can see that T(t) changes direction very
slowly when C is fairly straight, but it changes direction
more quickly when C bends or twists more sharply.

{ v \

() \\ ] ‘v‘
/ C
: y
A Y

Unit tangent vectors at equally
spaced points on C

Figure 4



Teunatures

The curvature of C at a given point is a measure of how
quickly the curve changes direction at that point.

Specifically, we define it to be the magnitude of the rate of
change of the unit tangent vector with respect to arc length.
(We use arc length so that the curvature will be
Independent of the parametrization.)

8 | Definition The curvature of a curve is

ar
ds

K:

where T is the unit tangent vector.




Teunatures

The curvature is easier to compute if it is expressed Iin

terms of the parameter t instead of s, so we use the Chain
Rule to write

dT dT ds
= and K=
dt ds dt

ar
ds

dT/dt
ds/dt

But ds/dt = |r'(t)| from Equation 7, so

_ [T'(0]
r'() |

9 k(1)




!mple 3

Show that the curvature of a circle of radius a is 1/a.

Solution:
We can take the circle to have center the origin, and then a
parametrization is

r(t) =acosti+asintj

Therefore r'(t)=—-asinti+acost] and |r'(t)|=a

SO r’(r)
T(r) =
(1) )

= —sinti+ costj

and
T'(t) =—costi—sint]

12



!mple 3 — Solution

This gives | T'(t)|] = 1, so using Equation 9, we have

cont’d

T

k(1)

r'()| a

13



“eunature

The result of Example 3 shows that small circles have large
curvature and large circles have small curvature, in
accordance with our intuition.

We can see directly from the definition of curvature that the
curvature of a straight line is always 0 because the tangent
vector Is constant.

Although Formula 9 can be used in all cases to compute
the curvature, the formula given by the following theorem is
often more convenient to apply.

10| Theorem The curvature of the curve given by the vector function r is

() X () |
K(,) = ' 3
r'(r) |

14




!mple 4: Curvature of a Curve

Find the curvature of the twisted cubic r(t) = (¢, t?,t3) at
(0, 0, 0).

Solution: The point (0O, 0, 0) correspondstot=0. So we
need to find x(0). To do so, we first compute the required
iIngredients:
r'(t) = (1,2t,3t%), r"(t) =(0,2,6t),
I (£)] = V1 + 4t2 + 92,

i k
r@)xr'’(t) =1 2]t 3t2| = 6t%i — 6tj + 2k,
0 2 6t
7' (t) x "' (t)| = 2V'1 + 9¢t2 + 9t*.
I @®xr'(®]  2vV1+9tz+9ot*

and so x(0) = 2.

Thus, k(t) = PO (1+4t2+9t4)3/2" 15



The Normal and Binormal Vectors
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! Normal and Binormal Vectors

At a given point on a smooth space curve r(t), there are
many vectors that are orthogonal to the unit tangent
vector T(t).

We single out one by observing that, because | T(t)| = 1 for
all t, we have T(t) - T'(t) = 0, so T'(t) is orthogonal to T(t).

Note that T'(t) is itself not a unit vector.

But at any point where k # 0 we can define the principal
unit normal vector N(t) (or simply unit normal) as

_ T
T(0)|

N(7)

17



“ Normal and Binormal Vectors

The vector B(t) = T(t) x N(t) is called the binormal vector.

It is perpendicular to both T and N and is also a unit vector.
(See Figure 6.)

T(1) /

B(r)

N(7)

/

Figure 6

18



!mple 6

Find the unit normal and binormal vectors for the circular
helix

r(t) =costi+sint) +tk

Solution:
We first compute the ingredients needed for the unit normal
vector:

r') =—sinti+costj+k |r()| =42

T(r) = 0] = ﬁ(—sin f1 +co5t)+ K
ISR P e L
(r)—ﬁ(—costl—smu) | (r)\—ﬁ y



!mple 6 — Solution

cont’d

Z

—

=
|
|

—costi—sintj= (—cost, —sint, 0)

This shows that the normal vector at a point on the helix is
horizontal and points toward the z-axis.

The binormal vector Is

B(t) = T(t) x N(t) = %

1

~ 72

i

—sin ¢

| —cos't

J
COS f
—sin t

(sint, —cost, 1)

k
1
0

20



! Normal and Binormal Vectors

The plane determined by the normal and binormal vectors
N and B at a point P on a curve C is called the normal
plane of C at P.

It consists of all lines that are orthogonal to the tangent
vector T.

The plane determined by the vectors T and N is called the
osculating plane of C at P.

The name comes from the Latin osculum, meaning “kiss.” It
IS the plane that comes closest to containing the part of the
curve near P. (For a plane curve, the osculating plane is
simply the plane that contains the curve.)

21



! Normal and Binormal Vectors

The circle that lies in the osculating plane of C at P, has the
same tangent as C at P, lies on the concave side of C
(toward which N points), and has radius p = 1/K (the
reciprocal of the curvature) is called the osculating circle
(or the circle of curvature) of C at P.

It is the circle that best describes how C behaves near P; it
shares the same tangent, normal, and curvature at P.

22



“ Normal and Binormal Vectors

We summarize here the formulas for unit tangent, unit
normal and binormal vectors, and curvature.

B(r) = T(1) X N(1)

T |r'@) X r"(1)]
|T'(1) | |r'(n) |?

23



Partial Derivatives
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-ctions of Several Variables

In this section we study functions of two or more variables
from four points of view:

= verbally
= numerically
= algebraically

= visually

(by a description in words)
(by a table of values)
(by an explicit formula)

(by a graph or level curves)



Functions of Two Variables



-ctions of Several Variables

The temperature T at a point on the surface of the earth at
any given time depends on the longitude x and latitude y of
the point.

We can think of T as being a function of the two variables x
and y , or as a function of the pair (x, y). We indicate this
functional dependence by writing T = f(X, y).

The volume V of a circular cylinder depends on its radius r
and its height h. In fact, we know that V = 7 rh. We say
that V is a function of r and h, and we write V(r, h) = 7 r?h.



-ctions of Several Variables

Definition A function f of two variables is a rule that assigns to each ordered pair
of real numbers (x, y) in a set D a unique real number denoted by f(x, y). The set
D 1s the domain of f and its range is the set of values that f takes on, that is,

{f(x.y) | (x.y) €D}.

We often write z = f(Xx, y) to make explicit the value taken
on by f at the general point (X, y).

The variables x and y are independent variables and z is
the dependent variable.

[Compare this with the notation y = f(x) for functions of a
single variable.]



!mple 1

Find the domain of f if

fx,y)=Inx-y)+xy+1

Solution:

The expression for f(x, y) is defined as longas x—y > 0 or
y < X, so the domain of fis

D={(xy) e R°| y<x}

The domain consists of all points that lie below the line
Yy = X.



!mple 2

Consider the function g(x.y) =9 — x2 — y2.

(1) The expression for g is defined as long as
9 —x? —y? >0, so the domain of g is

D={(x,y) e R2|9—x%2—-92>0}
(2) Points in the domain satisfy
9—x2—9y2>0 or x2+y2<9
So, the domain consists of all points that lie on and inside
the circle x% + y% = 9.



!mple 2

The graph has equation z = =9 —a—y2,
We square both sides of this equatlon to obtaln

7°=9—-X>—y? or Xx°+y?+72=9,
which we recognize as an equation of the sphere with
center the origin and radius 3.

But, since z > 0, the graph of g is just the top half of this
sphere (see the figure to the right). :[m -

From the graph it’'s clear the range of \, 0o DA

gis (3,0, 0) | 2

Graph of g(x, ¥) =V 9 —x*—y’



qmple 3

In 1928 Charles Cobb and Paul Douglas published a study
In which they modeled the growth of the American
economy during the period 1899-1922.

They considered a simplified view of the economy in which
production output is determined by the amount of labor
iInvolved and the amount of capital invested.

While there are many other factors affecting economic
performance, their model proved to be remarkably
accurate.

10



!mple 3

The function they used to model production was of the form

cont’d

1 P(L, K) = bLaK1-@

where P Is the total production (the monetary value of all
goods produced in a year), L is the amount of labor (the
total number of person-hours worked in a year), and K is
the amount of capital invested (the monetary worth of all
machinery, equipment, and buildings).

11



!mple 3

cont’d

Cobb and Douglas used economic data published by the

government to obtain Table 1.

Year ' oo L K
1899 100 100 100
1900 101 105 107
1901 112 110 114
1902 122 117 122
1903 124 122 131
1904 122 121 138
1905 143 125 149
1906 152 134 163
1907 151 140 176
1908 126 123 185
1909 155 143 198
1910 159 147 208

Table 1

Year
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922

153
177
184

e D
C O

[ SO N S T 5]
)~

S5 2 S S SO T S B &S
o

~1 ‘W
O

240

L
148
155
156
152
156
183
198
201
196
194
146
161

K
216
226
236
244
266
208
335
366
387
407
417
431

12



!mple 3

They took the year 1899 as a baseline and P, L, and K for
1899 were each assigned the value 100.

cont’d

The values for other years were expressed as percentages
of the 1899 figures.

Cobb and Douglas used the method of least squares to fit
the data of Table 1 to the function

2 P(L, K) = 1.01L075K0.25

13



!mple 3

If we use the model given by the function in Equation 2 to
compute the production in the years 1910 and 1920, we get
the values

cont’d

P(147, 208) = 1.01(147)°-75(208)%-%5 ~ 161.9
P(194, 407) = 1.01(194)0-75(407)°-%5 ~ 235.8

which are quite close to the actual values, 159 and 231.

The production function | 1| has subsequently been used In
many settings, ranging from individual firms to global
economics. It has become known as the Cobb-Douglas
production function.

14



!mple 3

cont’d

Its domain is {(L, K) | L> 0, K> 0} because L and K
represent labor and capital and are therefore never
negative.

15



Graphs
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-phs

Another way of visualizing the behavior of a function of two
variables Is to consider its graph.

Definition If f 1s a function of two variables with domain D, then the graph of f
is the set of all points (x, y, z) in R’ such that z = f(x, y) and (x, y) is in D.

Just as the graph of a function f of one variable is a curve C
with equation y = f(x), so the graph of a function f of two
variables is a surface S with equation z = f(x, y).

17



!phs

We can visualize the graph S of f as lying directly above or
below its domain D in the xy-plane (see the figure below).

A
e (X, ), f(X,))
,// \ T
,/."; 1l R
e
ale r fly)
D .J\:
\ o (‘ ! 0'

18



!phs

The function f(x, y) = ax + by + c is called as a linear
function.

The graph of such a function has the equation
Z=ax+by+c or ax+by—-z+c=0

so it is a plane. In much the same way that linear functions

of one variable are important in single-variable calculus, we

will see that linear functions of two variables play a central
role in multivariable calculus.

19



!mple 4

Sketch the graph of g(x.y) = /9 — x> — y2.

Solution:

The graph has equation z = /9 — x> — y?. We square
both sides of this equation to obtain z2 = 9 — x2 — y?, or

X% +y?2 + 72 = 9, which we recognize as an equation of the
sphere with center the origin and radius 3.

But, since z > 0, the graph of _I(_(_).(L 3)
g is just the top half of this e

sphere (see the figure to the right). Qoo
(3, (V‘ l >
G'r-aph of g(x, y) =9 —x2—y?

20




| evel Curves
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!el Curves

So far we have two methods for visualizing functions: arrow
diagrams and graphs. A third method, borrowed from
mapmakers, is a contour map on which points of constant
elevation are joined to form contour lines, or level curves.

Definition The level curves of a function f of two variables are the curves with
equations f(x, y) = k, where k 1s a constant (in the range of f).

A level curve f(x, y) = k is the set of all points in the domain
of f at which f takes on a given value k.

In other words, it shows where the graph of f has height k.
22



!el Curves

You can see from the figure below the relation between
level curves and horizontal traces.

Z

45

f
|

1 1

£y \ |

1 :
>

&l

<

&
. /

flx, y)=20—
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!el Curves

The level curves f(X, y) = k are just the traces of the graph
of f in the horizontal plane z = k projected down to the
Xy-plane.

So if you draw the level curves of a function and visualize
them being lifted up to the surface at the indicated height,

then you can mentally piece together a picture of the graph.

The surface is steep where the level curves are close

together. It is somewhat flatter where they are farther apart.

24



!mple

Sketch the level curves of the function
f(x, y) = 100 — x2 — y?
fork =51, 75.
Solution: The level curves are
100 —x2—y?2 =k or x?2+y?2=100-k
This is a family of concentric circles with center (0, 0) and

radius V100 — k. The case k = 51 gives the level curve
X? + y? = 49 which is a circle of center (0, 0) and radius 7.

The 75-level curve is the circle x? +y?2 =25 of center (0, 0)
and radius 5. See the figures in the next slide.

25



!mple

The contour curve f(x, y) = 100 — x> — y2 =75
is the circle x*> + y? = 25 in the plane z = 75.

The level curve f(x, y) = 100 — xo = _v"' =75
is the circle x* + y? = 25 in the xy-plane.

FIGURE 14.6 A plane z = c parallel to
the xy-plane intersecting a surface
z = f(x, y) produces a contour curve.

The surface
100
z=f(xy)
f6x, y)="15 = 100 — x? — y?

~ is the graph of f.

f(x,y) =51

| (a typical

- level curve in
the function’s

domain)

FIGURE 14.5 The graph and selected
level curves of the function f(x, y) in
Example 3.

26



!el Curves

One common example of level curves occurs Iin
topographic maps of mountainous regions, such as the
map in the figure below.

27



!el Curves

The level curves are curves of constant elevation above
sea level.

If you walk along one of these contour lines, you neither
ascend nor descend.

Another common example is the temperature function
Introduced in the opening paragraph of this section.

Here the level curves are called isothermals and join
locations with the same temperature.

28



!el Curves

The figure below shows a weather map of the world
Indicating the average January temperatures. The
Isothermals are the curves that separate the colored bands.

World mean sea-level temperatures in January in degrees Celsius

29



!el Curves

For some purposes, a contour map is more useful than a
graph. It is true in estimating function values. The
accompanying figures show some computer-generated
level curves together with the corresponding computer-
generated graphs.

(a) Level curves of flx, y)=—xye™ ™ (b) Two views of fly, y}=—xye ™

30



—3y —3y

Level curves of f(x, v) = — i X,y ~ >
Ty 4 S |

Figure c Figure d

Notice that the level curves in Figure (c) crowd together
near the origin. That corresponds to the fact that the graph
In Figure (d) is very steep near the origin.

31



Functions of Three or More
Variables

32



-ctions of Three or More Variables

A function of three variables, f, is a rule that assigns to
each ordered triple (X, y, z) inadomain p C R* a unigue
real number denoted by f(X, vy, 2).

For instance, the temperature T at a point on the surface of
the earth depends on the longitude x and latitude y of the
point and on the time t, so we could write T = f(X, y, 1).

33



!mple 14

Find the domain of f if

f(X,¥,2) =In(z-y) + Xy sin z

Solution:

The expression for f(x, y, z) is defined as longas z-y > 0,
so the domain of fis

D={XYy,2) eR’'[z>YV}

This is a half-space consisting of all points that lie above
the plane z = .

34



!ctions of Three or More Variables

It's very difficult to visualize a function f of three variables
by its graph, since that would lie in a four-dimensional

space.

However, we do gain some insight into f by examining its
level surfaces, which are the surfaces with equations

f(X, Y, z) = k, where k is a constant. If the point (X, y, z)
moves along a level surface, the value of f(x, y, z) remains
fixed.

RH
35



!mple: level surfaces

Find the level surfaces of the function
f(x,vy,z) = \/xz + y? + z2

Solution:

The level surfaces are /x2 + y2 + z2 = k, where k > 0.
These form a family of concentric spheres, x* + y* + z?2
= k?, with radius k. Thus, as”%\g, y, Z) varies over any

sphere with center O, the value of f(x, y, z) remains fixed.
See the figure in the next slide.

36



!mple: Level Surfaces

\/x2+y2+z2=1

Vil +y2+72=2

FIGURE 14.8 The level surfaces of
fx,y,2) = Vx2 + 2 + 22 are
concentric spheres (Example 4).

37



-ctions of Three or More Variables

Functions of any number of variables can be considered.
A function of n variables is a rule that assigns a number
z = f(Xq, Xp,..., X)) t0o @n n-tuple (X4, X,,..., X,,) of real
numbers. We denote by  the set of all such n-tuples.

ﬂ;ﬁ?'
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-ctions of Three or More Variables

For example, if a company uses n different ingredients in
making a food product, ¢ is the cost per unit of the ith
Ingredient, and x; units of the ith ingredient are used, then
the total cost C of the ingredients is a function of the n

variables Xq, X, . . ., X’

The function f is a real-valued function whose domain is a
subset of p-.

39



-ctions of Three or More Variables

Sometimes we will use vector notation to write such

functions more compactly: If x = (X, X,, . . ., X,), we often
write f(x) in place of f(x{, X5, . . ., X,).

With this notation we can rewrite the function defined In
Equation 3 as

f(x) =c X

where ¢ ={c,, C,, ..., c,) and c - x denotes the dot product
of the vectors c and x in V,..

40



-ctions of Three or More Variables

In view of the one-to-one correspondence between points
(X1, Xs, . . ., X,) In R* and their position vectors

X = (X4, X5, . . ., X,) In V,, we have three ways of looking at
a function f defined on a subset of R :

1. As a function of n real variables x, X,, . . ., X,

2. As a function of a single point variable (X, X5, . . ., X;,)

3. As a function of a single vector variable x = (X, X,, . . .,
Xn)

41



Partial Derivatives
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!its and Continuity

Let's compare the behavior of the functions

sin(x? 4+ y?%)

flx,y) = —5—
' ' X o Y-
and i i
_ xX°—y
('x, \*) —— ~ - =
S xX° +y°

as x and y both approach O [and therefore the point (X, y)
approaches the origin].



!its and Continuity

Tables 1 and 2 show values of f(x, y) and g(X, y), correct to
three decimal places, for points (X, y) near the origin.
(Notice that neither function is defined at the origin.)

Values of f(x, y)

Table 1

: S| =10 | =05 |02 [ 0 02 | 05 | 10 ‘
—I,OV 0.455 ().7597 ().829 (.84 ] ().829 ‘ 0.759 - 0.455 7“
—0.5 | 0.759 ().959 ().986 0.990 0.986 0.959 0.759 |
—-(0.2 0.829 0.986 ().999 1.000 ).999 ().Y86 (0.829

0 0.841 (.990 1.000 1.000 ().990 (.84 1 |
0.2 | 0.829 0.986 | 0.999 1.000 0.999 | .986 0.829 |
0.5 0.759 0.959 ().986 0.990 0.986 | 0.959 (1.759
1.0 | 0.455 | 0.759 | 0.829 | 0.841 | 0.829 | 0.759 | 0.455



!its and Continuity

Values of g(x, y)

Table 2

& | =L0) [ =05 || =012 0 0.2 0.5 1.0
—7::6) 0.000 1  0.600 0.923] 1.000 0.923 0.600| 0.000
—0.5 | —=0.600 0.000 | 0.724 | 1.000 0.724 . 0.000 | —0.600
—0.2 | —0923 | —0.724 | 0.000| 1000 | 0.000 —0.724 | —0.923
0 = 1.000 | —=1.000 | —1.000 = 1,000 | —1.000 | —1.000
0.2 | =0.923 | —=0.724 0.000| 1.000 0.000 | —0.724 | —0.923
0.5 | —=0.600| 0.000 0.724 | 1.000 0.724 1 0.000 | —0.600
1.0 0.000 1  0.600 0923] 1.000 0.923 | 0.600 | 0.000




!its and Continuity

It appears that as (X, y) approaches (0, 0), the values of
f(X, y) are approaching 1 whereas the values of g(x, y)
aren’'t approaching any number. It turns out that these
guesses based on numerical evidence are correct, and we

write (e + v9)
: sin(x~ + y°
lim - -~ — | and
(x,v)—(0,0) x° + y°

il 2
X —y

[im — :
(61)—0.0 x* + y? does not exist




“its and Continuity

In general, we use the notation

[im f(x,y) =L
(x,v)—(a,b) ’

to indicate that the values of f(x, y) approach the number L
as the point (x, y) approaches the point (a, b) along any
path that stays within the domain of f.



!its and Continuity

In other words, we can make the values of f(X, y) as close

to L as we like by taking the point (X, y) sufficiently close to

the point (a, b), but not equal to (a, b). A more precise
definition follows.

1| Definition Let f be a function of two variables whose domain D includes
points arbitrarily close to (a. ). Then we say that the limit of f(x, y) as (x, y)

approaches (a, b) is L and we write

Iim f(x,y) =L

(v, v)—la. b)

if for every number & > 0 there is a corresponding number 6 > 0 such that

if (y)ED and 0<.(x—a) )+ (y—b? <8 then |f(x,y)—L|<e




“its and Continuity

Other notations for the limit in Definition 1 are

limf(x.9) =L ang

v—b

f(x,y) > Las (x,y) — (a, b)

For functions of a single variable, when we let x approach
a, there are only two possible directions of approach, from
the left or from the right.

We recall that if lim,_,_- f(x) = lim,_,_+ f(x), then lim,_._ f(X)
does not exist.



“its and Continuity

For functions of two variables the situation is not as simple
because we can let (X, y) approach (a, b) from an infinite
number of directions in any manner whatsoever

(see the figure below) as long as (%, y) stays within the
domain of f.

10



!its and Continuity

Definition 1 says that the distance between f(x, y) and L
can be made arbitrarily small by making the distance from
(X, y) to (a, b) sufficiently small (but not 0).

The definition refers only to the distance between
(X, y) and (a, b). It does not refer to the direction of
approach.

Therefore, if the limit exists, then f(Xx, y) must approach the
same limit no matter how (X, y) approaches (a, b).

11



!its and Continuity

Thus, if we can find two different paths of approach along
which the function f(x, y) has different limits, then it follows
that limy ) , @ b f(X, y) does not exist.

If f(x.y)— L,as (x,y)— (a, b)along a path C, and f(x,v) — L, as
(x, y) — (a, b) along a path C,, where L, # L., then lim(, y)—@.» f(xX. ¥) does
not exist.

12



qmple: Limits

. X y- _
Show that Iim ——— does not exist.
(x,y)—(0,0) x° + V-

o)

Solution:
Let f(x, y) = (X2 = y?)/(x* + y?).

First let’'s approach (0, 0) along the x-axis.

Theny =0 gives f(x, 0) = x?/x?> =1 for all x # 0, so

f(x,y) >1 as (X,y)— (0, 0) along the x-axis

13



qmple — Solution

cont’d

We now approach along the y-axis by putting x = 0.

Then £(0,y) = _'\;_ = —] forally =0, so
V-

f(x,y) > -1 as (X,y)— (0, 0) along the y-axis

(See Figure 4.)

f=-1

Figure 4 14



!mple — Solution

Since f has two different limits along two different lines, the
given limit does not exist. (This confirms the conjecture we
made on the basis of numerical evidence at the beginning
of this section.)

cont’d

15



qmple: Limits

EXAMPLE 6  Show that the function
2%y
x4 + y2

flx,y) =
(Figure 14.14) has no limit as (x, y) approaches (0, 0).

Solution  The limit cannot be found by direct substitution, which gives the indeterminate
form 0/0. We examine the values of f along curves that end at (0, 0). Along the curve y =
kx?, x # 0, the function has the constant value

fx.y) 2x%y 2x2(kx?) 2hex* 2k
x’ —_— p— = — 5
Y y=kx? x* + y2 y=kx? x* + (kx?)? x* + kA 1 + k2
Therefore,
; ; 2k
lim X,y) = lim { X, } — :
along y=kx?

This limit varies with the path of approach. If (x, y) approaches (0, 0) along the parabola
y = x2, for instance, k = 1 and the limit is 1. If (x, y) approaches (0, 0) along the x-axis,
k = 0 and the limit is 0. By the two-path test, f has no limit as (x, y) approaches (0, 0).

It can be shown that the function in Example 6 has limit 0 along every path y = mx

16



!its and Continuity

Now let’s look at limits that do exist. Just as for functions of
one variable, the calculation of limits for functions of two
variables can be greatly simplified by the use of properties
of limits.

The Limit Laws can be extended to functions of two
variables: The limit of a sum is the sum of the limits, the
limit of a product is the product of the limits, and so on.

In particular, the following equations are true.

2 lim x=ua lim y=25 lim c¢=c
(x, v)—(a. b) (x.y)—(a.b) ~ (x, v)—(a, b)

The Squeeze Theorem also holds. 17



!its and Continuity

THEOREM 1—Properties of Limits of Functions of Two Variables The fol-
lowing rules hold if L, M, and k are real numbers and

lim flx,y) =L and lim glx,y) = M.

(x, ) (x0, y0)
1. Sum Rule:

2. Difference Rule:

3. Constant Multiple Rule:

4. Product Rule:

5. Quotient Rule:
6. Power Rule:

7. Root Rule:

(x, »)—(x0, »0)

lim  (f(x,y) + gx,y) =L+ M
(x, »)—(x0, ¥0)

lim  (f(x,y) —gl,y) =L - M
(-xsy)'_)(-x()syﬂ)

lim kf(x,y) = kL (any number k)
(x, )= (x0, yo)

lim (f(x,y)g(x,y)) =L-M
(xs,V)_’(xost‘O)

fGey) L Mo 0

Iim = ’
(x!y)_>(x03y0) g(xﬂ y) M

lim  [f(x,y)]" = L", napositive integer
(x, ¥)—(x0, yo)

lim  Vf(xy) = VL= '
(x’ y) - (xo i y{}) ., . . . .
n a positive integer, and if n is even, we

assume that . > 0.

18



qmple: Limits

EXAMPLE 1  In this example, we can combine the three simple results following the limit
definition with the results in Theorem 1 to calculate the limits. We simply substitute the x and
y values of the point being approached into the functional expression to find the limiting

value.

g x—xy+3 0 — (0)(1) + 3
® ) lon ¥y + Sy — 7 (01 + 50)(1) — (1)

) lim Vx2+32=V0EB?+ (4> =V25=5

(x, )3, —4)

= -3

19



II!!IILT1pﬂen Limits

EXAMPLE 2 Find

2—xy

(x, v)—>(0 0) \/_ \/-

Solution  Since the denominator \/; - \/)_z approaches 0 as (x, y) — (0, 0), we cannot
use the Quotient Rule from Theorem 1. If we multiply numerator and denominator by
x + Vy, however, we produce an equivalent fraction whose limit we can find:

x% — xy - ( —xy)(\/_-i- \/_)
(x, v)—*(O 0 \Vx — \/_ @N=00 (Vx — Vi) (Vx + V)

x(x = y)(\/; + \/;)

Y o Ao
. Cancel the nonzero
= .hm x( \/'; + \/)_)) factor (x — y).
(x. ¥)—(0,0) 4

e 0(\/6 + \/6) =0 Known limit values

We can cancel the factor (x — y) because the path y = x (along which x — y = 0) is not
in the domain of the function

- 20



!mple: Limits

3x%y

Evaluate lim ——=
(%,y)—(0,0) *“+Y

Solution:
Using polar coordinates x = rcosf, y = rsinf, we have
that as (x,y) — (0,0), then r - 0. So we can find the limit
as follows:

lim 3x%y .. 3(rcos0)?(rsind) — lim 313(cos0)?(sinb)

(x,¥)~(0,0) x2+y*> 750 (rcosf)2+(rsind)?2 50 r2(cos?6+sin28)
= lim 3r(co0s0)?(sinf) = 0.
r—0

21



Continuity

22



qtinuity

Recall that evaluating limits of continuous functions of a
single variable is easy.

It can be accomplished by direct substitution because the
defining property of a continuous function is
lim,_,_ f(x) = f(a).

Continuous functions of two variables are also defined by
the direct substitution property.

4 | Definition A function f of two variables is called continuous at (a, b) if

lim  f(x,v) = fla, b)

(x, v)==la, h)

We say [ is continuous on D if f is continuous at every point (a, b) in D.

23



qtinuity

The intuitive meaning of continuity is that if the point (X, y)
changes by a small amount, then the value of f(x, y)
changes by a small amount.

This means that a surface that is the graph of a continuous
function has no hole or break.

Using the properties of limits, you can see that sums,
differences, products, and quotients of continuous functions
are continuous on their domains.

Let’s use this fact to give examples of continuous functions.
24



qtinuity

A polynomial function of two variables (or polynomial,
for short) iIs a sum of terms of the form cx™y", where c is a
constant and m and n are nonnegative integers.

Arational function is a ratio of polynomials.

For instance,
f(x,y) = x* + 5x3y2 + 6xy* — 7y + 6

IS a polynomial which is continuous everywhere, whereas
2xy + 1
(-\.~ \‘) == w- 2
. X"+ y°

IS a rational function which is continuous on
D ={(x,y)|(x,y) # (0,0)}.

25



!mple: Continuity

( 2xy .
Let f(x,y) =< x*+y? if (x,y)#(0,0)

0 if (x,y)=(0,0)

Here f is defined at (0, 0) but is still discontinuous there

because lim f(x,y) does not exist. To show this,
(x,y)—(0,0)

0
] = lim 2 =
cymogy T o) = S5 =0

Along x—axis

: e 2x%
(x,yl)lir%0,0) f(x,y) = chl_r)r(l) i 1.
Along y=x

Since f has two different limits along two different paths, the
given limit does not exist.

26



qtinuity

The limits in [2] show that the functions
f(X,y) =X, g(X, y) =y, and h(x, y) = ¢ are continuous.

Since any polynomial can be built up out of the simple
functions f, g, and h by multiplication and addition, it follows
that all polynomials are continuous on R”.

Likewise, any rational function is continuous on its domain
because it iIs a quotient of continuous functions.

27



qmple

Evaluate ( gin(lI (x%y® — x’y* + 3x + 2y).

X, v)—(1:2)
Solution:
Since f(x, y) = x2y°® — x3y? + 3x + 2y is a polynomial, it is
continuous everywhere, so we can find the limit by direct
substitution:

" llm1 ) (X33 = X3y2 + 3x +2y) =12 .23 - 1322+ 3.1
+2:2

=11

28



qtinuity

Just as for functions of one variable, composition is another
way of combining two continuous functions to get a third.

In fact, it can be shown that if f is a continuous function of
two variables and g is a continuous function of a single
variable that is defined on the range of f, then the
composite function h = g o f defined by h(x, y) = g(f(x, y)) Is
also a continuous function.

29



Functions of Three or More
Variables

30



-ctions of Three or More Variables

Everything that we have done in this section can be
extended to functions of three or more variables.

The notation
lim f(x,y,z) =L

(x,v.z2)—(a.b,c) "

means that the values of f(X, y, z) approach the number L
as the point (x, y, z) approaches the point (a, b, c) along
any path in the domain of f.

31



-ctions of Three or More Variables

Because the distance between two points (X, y, z) and
(abc)lnﬂ%lsgwenby\/\—-a + (y — b)2 + (z — ¢)?
we can write the precise definition as follows: For every
number € > 0 there Is a corresponding number & > 0 such
that

If (X,y, 2) is in the domain of f and
0<.(x—a)?+ (y—b)2+(z—¢c)* <0

then |f(Xx,y,2)—-L|<¢

32



-ctions of Three or More Variables

The function f is continuous at (a, b, c) If

l[im f(x, v, z) = f(a, b, c)

(x,v.2)—(a,b,c) "

For instance, the function

|
X, y,2) = — : ;
J1x 5,2 x2+ 92+ 22— 1

IS a rational function of three variables and so Is continuous

at every point in R’except where x, +y, + z, = 1. In other
words, it is discontinuous on the sphere with center the

origin and radius 1.
33



-ctions of Three or More Variables

We can write the definitions of a limit for functions of two or
three variables in a single compact form as follows.

5

If f is defined on a subset D of R", then lim,_., f(x) = L means that for

every number & > 0 there is a corresponding number 6 > 0 such that

if xXED and 0<|x—a|<é then |f(x) —L|<e

34
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“Partial Derivatives

On a hot day, extreme humidity makes us think the
temperature is higher than it really is, whereas in very dry
alr we perceive the temperature to be lower than the
thermometer indicates.

The National Weather Service has devised the heat index
(also called the temperature-humidity index, or humidex, in
some countries) to describe the combined effects of
temperature and humidity.

The heat index | is the perceived air temperature when the
actual temperature is T and the relative humidity is H.
So | is a function of T and H and we can write | = f(T, H).



!ial Derivatives

The following table of values of | is an excerpt from a table
compiled by the National Weather Service.

Relative humidity (%)

\?\ H' 50 55 60 65 70 75 80 85 90

B
=

90 96 98 | 100 | 103 | 106 | 109 | 112 | 115 119

02 100 103 105 108 112 115 119 123 128
Actual

temperature 94 104 | 107 111 114 | 118 | 122 127 132 137
(°F)

96 109 | 113 | 116 | 121 125 | 130 | 135 | 141 146

98 114 | 118 123 127 [t 138 144 | 150 | 157

100 119 124 | 129 135 141 147 154 | 16l 168

Heat index | as a function of
temperature and humidity

Table 1



-tial Derivatives

If we concentrate on the highlighted column of the table,
which corresponds to a relative humidity of H = 70%, we
are considering the heat index as a function of the single
variable T for a fixed value of H. Let’'s write g(T) = (T, 70).

Then g(T) describes how the heat index | increases as the

actual temperature T increases when the relative humidity
IS 70%.

The derivative of g when T = 96°F Is the rate of change of
| with respectto T when T = 96°F:

, 06 + h) — g(96 (96 + h,70) — £(96, 70
g'(96) = lim 9l ) — 9096) — Him S 1, 70) — f( )

h—0 h h—0 h




!ial Derivatives

We can approximate g'(96) using the values in Table 1 by
taking h = 2 and -2:

98) — g(96 (98, 70) — £(96,70) 133 — 125
g,(%)zg( )79( ) _ S )2f( ) _ : i

(96) ~ 409 —9(96) _ [(94,70) —[(96,70) _ 118 — 125 _
g - - -

3.5

Averaging these values, we can say that the derivative
g'(96) is approximately 3.75.



!ial Derivatives

This means that, when the actual temperature is 96°F and
the relative humidity is 70%, the apparent temperature
(heat index) rises by about 3.75°F for every degree that the
actual temperature rises!



!ial Derivatives

Now let’s look at the highlighted row in Table 1, which
corresponds to a fixed temperature of T = 96°F.

Relative humidity (%)

NS =
50 | 55 | 60 | 65 | 70 | 75 | 80 | 85 [ 90

90 96 98 | 100 | 103 | 106 | 109 | 112 | 115 | 119

92 100 | 103 | 105 | 108 | 112 | 115 | 119 | 123 | 128

Actual
temperature 04 104 107 111 114 118 122 127 132 137

CE 96 [ 100 | 113 | 116 | 121 [125 | 130 | 135 | 141 | 146

98 114 | 118 123 127 | 133 138 144 | 150 | 157

100 119 124 | 129 135 141 147 154 | 16l 168

Heat index | as a function of
temperature and humidity

Table 1



!ial Derivatives

The numbers in this row are values of the function

G(H) = (96, H), which describes how the heat index
Increases as the relative humidity H increases when the
actual temperature is T = 96°F.

The derivative of this function when H = 70% is the rate of
change of | with respect to H when H = 70%:

G(70 + h) — G(70) £(96,70 + h) — £(96, 70)

G'(70) = lim ' = lim =
h—0 h h—0 h



!ial Derivatives

By taking h =5 and -5, we approximate G’(70) using the
tabular values:

G(75) — G(70)  £(96,75) — £(96,70) 130 — 125
5 5 5

l

G'(70) =

G(65) — G(70) (96, 65) — £(96,70) 121 — 125

G'(70) ~ = - = ————=1038

By averaging these values we get the estimate

G’'(70) = 0.9. This says that, when the temperature is 96°F
and the relative humidity is 70%, the heat index rises about
0.9°F for every percent that the relative humidity rises.

10



!ial Derivatives

In general, if f is a function of two variables x and vy,
suppose we let only x vary while keeping y fixed, say y = b,
where b Is a constant.

Then we are really considering a function of a single
variable x, namely, g(x) = f(x, b). If g has a derivative at a,
then we call it the partial derivative of f with respect to x
at (a, b) and denote it by f,(a, b). Thus

1 fila, b) = g'(a) where g(x) = f(x, b)

11



!ial Derivatives

By the definition of a derivative, we have

g'(a) = lim gla + k) — gla)

h—0 h

and so Equation 1 becomes

2 fi(a, b) = lim fla + h, b) — fla, D)

h—0 h




!ial Derivatives

Similarly, the partial derivative of f with respect to y at
(a, b), denoted by f,(a, b), is obtained by keeping x fixed
(x = a) and finding the ordinary derivative at b of the
function G(y) = f(a, y):

(a,. b+ h) — fla.l
3 fila, b) = }im AT ;) fla, 5)
1—>0) 1

With this notation for partial derivatives, we can write the
rates of change of the heat index | with respect to the
actual temperature T and relative humidity H when

T =96°F and H = 70% as follows:

f(96, 70)~3.75  f,(96, 70) ~ 0.9

13



!ial Derivatives

If we now let the point (a, b) vary in Equations 2 and 3,
f, and f, become functions of two variables.

4

If £ is a function of two variables, its partial derivatives are the functions f,
and f, defined by

" 4 + ! ’ e . .‘. .
filx,y) = lim fx + hy) — flxy)
l1—0 h

o w o w keY & B =10y
f(x.y) = lim I

14



!ial Derivatives

There are many alternative notations for partial derivatives.

For instance, instead of f, we can write f; or D,f (to indicate
differentiation with respect to the first variable) or of/ox.

But here df/ox can’t be interpreted as a ratio of differentials.

Notations for Partial Derivatives If z = f(x, y). we write

. A J dz . . .
i, y) =fi=——=—fx,y) =—=fi = D,f= D,f
ox ox ox

_ o a Jz | :
./\(.\'. _\') =‘/_\ = '_/(\ .\') — =./3 — [)3/ o [)\/
dy dy dy

15



!ial Derivatives

To compute partial derivatives, all we have to do is
remember from Equation 1 that the partial derivative with
respect to x is just the ordinary derivative of the function g
of a single variable that we get by keeping y fixed.

Thus we have the following rule.

Rule for Finding Partial Derivatives of z = f(x, y)

1. To find f, regard y as a constant and differentiate f(x, y) with respect to x.

2. To find f,, regard x as a constant and differentiate f(x, y) with respect to y.

16



!mple: Partial derivatives

If f(x, y) = x3 + x2y3 — 2y2, find (2, 1) and f,(2, 1).

Solution:
Holding y constant and differentiating with respect to x,

we get
f (X, y) = 3x2 + 2xy3

and so f(2,1)=3-22+2-2-13=16

Holding x constant and differentiating with respect to vy,
we get
f (X, y) = 3x?y% — 4y

f(2,1)=3-22.12-4.1=8 .



!mple: Partial derivatives

EXAMPLE 2  Find 9f/dy as a function if f(x, y) = ysinxy.

Solution = We treat x as a constant and f as a product of y and sin xy:

of _

(9 0
ay ( ysinxy) =y 3y sinxy + (sin xy) ( y)

= (ycos xy) (xy) + sinxy = xycosxy + sinxy.

18



!mple: Partial derivatives

If f(x,y) = sin (%) calculate Z—i and Z_f,'

Solution:

aof X d x o\ b 1
ax  P\1+y) ax\1+y)” “C\1+y) 1+y

aof X d b B X —X
oy P\1+y) ay\1+y) " “C\0+y) d+y)2

19



!mple: Implicit differentiation

Find g—i and g—i If z I1s defined implicitly as a function of x

and y by the equation x3 + y3 + z3 + 6xyz = 1.

Solution: To find g—i, we differentiate implicitly with respect to
X, being careful to treat y as a constant:
0z 0z

3x? +322a+6xya+6yz =0

Solving this equation for Z—i, we obtain

0z —3x*—6yz
dx  3z%2 + 6xy

20



!mple: iImplicit Differentiation

To find g—;, we differentiate implicitly with respect to y, being
careful to treat x as a constant:
0z

+3v2+6 —aZ+6 0
Z=
3y y Xy X

dy

0 + 322

Solving this equation for g—;, we obtain

0z —3y’ — 6xz
dy  3z%2+ 6xy

21



Interpretations of Partial Derivatives
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“rpretations of Partial Derivatives

To give a geometric interpretation of partial derivatives, we
recall that the equation z = f(x, y) represents a surface

S (the graph of f). If f(a, b) = c, then the point P(a, b, c) lies
on S.

By fixing y = b, we are restricting our attention to the curve
C, in which the vertical plane y = b intersects S. (In other
words, C, Is the trace of S in the planey = b.)

23



“rpretations of Partial Derivatives

Likewise, the vertical plane x = a intersects S in a curve C..

Both of the curves C, and C, pass through the point P.
(See the figure to the right)

Notice that the curve C; is the
graph of the function
g(x) = f(x, b), so the slope of its

tangent T, at Pis g'(a) = f (a, b). ‘/\\ J:x\

\\\y )
(@, b.0)
The curve C, is the graph of the o
. The partial derivatives of f at (a, b) are
function G(y) = f(a, y), so the the slopes of the tangents to C; and C,.

slope of its tangent T, at P Is
G'(b) =f,(a, b).

24



!rpretations of Partial Derivatives

Thus the partial derivatives f,(a, b) and f,(a, b) can be
Interpreted geometrically as the slopes of the tangent lines

at P(a, b, c) to the traces C, and C, of Sinthe planesy =Db
and x = a.

As we have seen In the case of the heat index function,

partial derivatives can also be interpreted as rates of
change.

If z = (X, y), then dz/ox represents the rate of change of z
with respect to x when vy is fixed. Similarly, 0z/dy represents
the rate of change of z with respect to y when x is fixed.

25



!mple: Interpretations of Partial Derivatives

If f(x, y) = 4 — x2—2y?, find f,(1, 1) and f (1, 1) and interpret
these numbers as slopes.

Solution:
We have
f (X, y) = —2X f,(x,y) = -4y

f(1,1)=-2 f(1,1) =4

26



!mple — Solution

cont’d

The graph of f is the paraboloid z = 4 — x? — 2y? and the
vertical plane y = 1 intersects it in the parabola z = 2 — X2,
y = 1. (As In the preceding discussion, we label it C, in the
given figure.)

JA z=4—x*— 2y’

The slope of the tangent line to
this parabola at the point
(1,1,1)isf(1, 1) =-2.

27



!mple 2 — Solution .

Similarly, the curve C, in which the plane x = 1 intersects
the paraboloid is the parabola z = 3 — 2y?, x = 1, and the
slope of the tangent line at (1, 1, 1) is f,(1, 1) = —4. (See the
figure below.)

28



Functions of More Than Two
Variables

29



qtions of More Than Two Variables

Partial derivatives can also be defined for functions of three

or more variables. For example, if f is a function of three
variables x, y, and z, then its partial derivative with respect

to x Is defined as

f(x+ hyz)— f(x,y,2)

f(x, vy, z) = lim -
: : h—( /Z

and it is found by regarding y and z as constants and
differentiating f(x, y, z) with respect to x.

30



!tions of More Than Two Variables

If w = f(Xx, y, ), then f, = ow/ox can be interpreted as the
rate of change of w with respect to x when y and z are held
fixed. But we can't interpret it geometrically because the
graph of f lies in four-dimensional space.

In general, if u is a function of n variables,

u = f(xy, X,,..., X,), its partial derivative with respect to the
Ith variable x; Is

out FARE iy« sy T X U K fvevany %) — (B vy Ko wiasy Xn)

— = lim -
0X; h—0 h

and we also write
du  Jdf

ox i ( X 31



!mple

Find f,, f,, and f, If f(x, y, ) = e¥ In .

Solution:

Holding y and z constant and differentiating with respect
to X, we have

f,=ye¥In z

Similarly,

ety

f,=xe¥Inz and f,=

Z

32



Higher Derivatives
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qner Derivatives

If f is a function of two variables, then its partial derivatives
f, and f, are also functions of two variables, so we can
consider their partial derivatives (f,),, (f,), (f,)x. and (f,),,
which are called the second partial derivatives of f.

If z = f(X, y), we use the following notation:

0

(s =fox =Jfu = — (

0X

P i 7 J [ of 0°f 0°z
xhy = Jey = J12 s F o e
e e dy \ ox dy ox  dy dx

af) L Pf 9z

- 9] - $
oX ox- ox-

34



‘ner Derivatives

C Jdf O*f 327
(B = foo=for =~ <?f>= o

ox \ dy ox dy ox dy
: , J ( of *f 0%z
(f\)\ = Jyy Zfl?. = . D o

dy \ dy dy~ dy~

Thus the notation f,, (or 9%f/dy dx) means that we first
differentiate with respect to x and then with respect to vy,
whereas in computing f,, the order Is reversed.

35



!mple: Second partial derivatives

Find the second partial derivatives of

f(x, y) = x3 + x2y3 — 2y?

Solution:
In Example 1 we found that

f (X, y) = 3x? + 2xy3 f (X, y) = 3x2y? — 4y

Therefore :
C

f, = —,)\_ (3x2 + 2xy?3)
i

= 6X + 2y3

36



!mple — Solution

cont’d

d
foy = e (3x2 + 2xy?3)

= BXy?

d
- 2\/2 _
Ty = 7o (3X%y* = 4y)

= BXy?

— 22 _
fyy o (3x%y< — 4y)

= 6x2y — 4

37



er Derivatives

Notice that f,, = f,, In the last example. This is not just a
coincidence.

It turns out that the mixed partial derivatives f,, and f,, are
equal for most functions that one meets in practice.

The following theorem, which was discovered by the
French mathematician Alexis Clairaut (1713-1765), gives
conditions under which we can assert that f,, = f,,.

Clairaut’s Theorem Suppose f is defined on a disk D that contains the point (a, b).
[f the functions f;, and f;, are both continuous on D, then

fn((l. b) = fixla, b)

38



!mple: Mixed Partial Derivatives

(.3 3
X" Yy—XYy .
Let f(x,y) =< x2+y? if (x,y)#(0,0)

0 if (x,y)=1(0,0)

(1) Find £,(0,0) and f£,(0,0).
(2) Show that f,,,(0,0) = -1 and f,,,(0,0) = 1.

(3) Does the result of part (2) contradict Clairaut’s
Theorem?

SOLUTION: Note that for (x,y) # (0,0), we have
4

x*y+4x?y3—y° x°—4x3y%—x
fo = BVt g f = y2oxyt
(x2+y2)? (x2+y2)2

39



qmple: Mixed Partial Derivatives

(1) £(0,0) = lim RSO0 — jim =2 — o,

h-0 h
_ piv FOOFR—-F(0,0) _ 4. 0-0 _
f,(0,0) = }ll_r>r(1) = illl_r)rcl) - 0.

e fx(0,04R)=£(0,0) _ 4. —h—0 _
(2) £y (0,0) = }ll_r)r(l) - = lim — =1,

h—0
IET fy(0+h;0)_fy(0»0) T ﬂ _
fyx(0,0) = ’111_r>r(1) = }lll_rg — = 1.

(3) No, since f,,, and f,, are not continuous.

40



!ner Derivatives

Partial derivatives of order 3 or higher can also be defined.

For instance,

i (f\\)\ _ '() ( o°f ): J°f

dy \ dy dx dy* 0x

and using Clairaut’s Theorem it can be shown that

fyy = fuxy = Tyyx If these functions are continuous.

41



!mple: Higher Derivatives

EXAMPLE 9  If f(x,y) = xcosy + ye’, find the second-order derivatives

O’ f o*f O’ f O*f
ox2’  oyax g2 ° axay

Solution  The first step is to calculate both first partial derivatives.

af_ a X af - a X
ax—ax(xcosy—t—ye) ay—ay(xcosy+ye)
= cosy + ye* = —xsiny + e*

Now we find both partial derivatives of each first partial:

2 2
F 2 (af) = —siny + e* v 2 <6f) = —siny + e*

dyox  dy \ox oxdy  ox \dy
°f o (f\_ f _ o (N _
a2 ox \ax ) ¢ oy? 0y \dy Y-

“+2



Partial Differential Equations
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-tial Differential Equations

Partial derivatives occur in partial differential equations that
express certain physical laws.

For instance, the partial differential equation

0’1 O°u
+

=0

ax> ay £

IS called Laplace’s equation after Pierre Laplace
(1749-1827).

Solutions of this equation are called harmonic functions;
they play a role in problems of heat conduction, fluid flow,
and electric potential.
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!mple 3

Show that the function u(x, y) = eXsin y is a solution of
Laplace’s equation.

Solution:

We first compute the needed second-order partial
derivatives:

U, =exsiny u, = eXcosy
U, = exsiny u, =—€e*siny
SO0 Uy + U, =€¥siny—eXsiny =0

Therefore u satisfies Laplace’s equation.
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!ial Differential Equations

The wave equation

2 &3
o u o

o> ox?
describes the motion of a waveform, which could be an

ocean wave, a sound wave, a light wave, or a wave
traveling along a vibrating string.
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!ial Differential Equations

For instance, if u(x, t) represents the displacement of a
vibrating violin string at time t and at a distance x from one
end of the string (as in the figure below), then u(x, t)
satisfies the wave equation.

/ u(x,t)

|4 & L.
| i

Here the constant a depends on the density of the string

and on the tension in the string.
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Tangent Planes



qgent Planes

Suppose a surface S has equation z = f(X, y), where f has
continuous first partial derivatives, and let P(X,, Yo, Z;) be a
pointon S.

Let C, and C, be the curves obtained by intersecting the
vertical planes y =y, and x = X, with the surface S. Then
the point P lies on both C; and C.,.

Let T, and T, be the tangent lines to the curves C; and C,
at the point P.



-gent Planes

Then the tangent plane to the surface S at the point P is
defined to be the plane that contains both tangent lines
T,and T,. (See Figure 1.)

The tangent plane contains the tangent lines T, and T,.

Figure 1



!gent Planes

If C Is any other curve that lies on the surface S and
passes through P, then its tangent line at P also lies in the
tangent plane.

Therefore you can think of the tangent planeto S at P as
consisting of all possible tangent lines at P to curves that lie
on S and pass through P. The tangent plane at P is the
plane that most closely approximates the surface S near
the point P. We know that any plane passing through the
point P(X,, Yo, Zp) has an equation of the form

AX—=Xo) +B(y—Yp) +C(z-25) =0



-gent Planes

By dividing this equation by C and letting a = —A/C and
b = -B/C, we can write it in the form

1 Z =2y =a(X=Xo) + by —Yo)

If Equation 1 represents the tangent plane at P, then its
intersection with the plane y =y, must be the tangent
line T,. Setting y =y, In Equation 1 gives

Z—2y=a(X—Xp) where y =y,

and we recognize this as the equation (in point-slope form)
of a line with slope a.



ent Planes

But we know that the slope of the tangent T, is f,(X,, Yo)-

Therefore a = f,(Xg, Yo)-

Similarly, putting x = X, In Equation 1, we get
Z -2, = b(y —y,), which must represent the tangent line T,,
S0 b = 1,(Xg, Yo)-

2

Suppose f has continuous partial derivatives. An equation of the tangent

plane to the surface z = f(x, v) at the point P(x, yo. Zo) 18

Z. —.2y = fx\Xo; .\’n)(.-\' — Xg) -+ /\(\n .\'n)(_\' = .\'())




!mple 1

Find the tangent plane to the elliptic paraboloid z = 2x2 + y?
at the point (1, 1, 3).

Solution:

Let f(X, y) = 2x? + y2.

Then
fu(X, y) = 4X f (X, y) =2y
f(1,1)=4 f,(1,1) =2

Then [2] gives the equation of the tangent plane at
(1, 1, 3) as

z—-3=4(x-1)+2(y-1)
or Z=4x+ 2y -3



ent Planes

Figure 2(a) shows the elliptic paraboloid and its tangent
plane at (1, 1, 3) that we found in Example 1. In parts (b)
and (c) we zoom in toward the point (1, 1, 3) by restricting
the domain of the function f(x, y) = 2x° + y2.

(b) (c)

The elliptic paraboloid z = 2x? + y? appears to coincide with its
tangent plane as we zoom in toward (1, 1, 3).

Figure 2
10



-gent Planes

Notice that the more we zoom in, the flatter the graph
appears and the more it resembles its tangent plane.

In Figure 3 we corroborate this impression by zooming Iin
toward the point (1, 1) on a contour map of the function

f(x, y) = 2x?% + y2.

Zooming in toward (1, 1) on a contour map of f(x, y) = 2x? + y?

Figure 3
11



-gent Planes

Notice that the more we zoom in, the more the level curves
look like equally spaced parallel lines, which is
characteristic of a plane.

12



-erentiability

THEOREM 3—The Increment Theorem for Functions of Two Variables  Suppose
that the first partial derivatives of f(x, y) are defined throughout an open region R

containing the point (xo, y9) and that f, and f, are continuous at (x¢, y9). Then
the change

Az = f(xo + Ax, yo + Ay) — f(xo, yo)

in the value of f that results from moving from (xo, o) to another point
(xo + Ax, yo + Ay) in R satisfies an equation of the form

Az = fxo, yo)Ax + f,(x0,y0)Ay + €;Ax + €Ay

in which each of €;, e, — 0 as both Ax, Ay — 0.

13




DEFINITION A function z = f(x, y) is differentiable at (x¢, yo) if f(xo, o)
and f,(xo, yo) exist and Az satisfies an equation of the form

Az = fu(xo, yo)Ax + f,(x0, y0)Ay + €,Ax + €Ay

in which each of €, € — 0 as both Ax, Ay — 0. We call f differentiable if it is
differentiable at every point in its domain, and say that its graph is a smooth surface.

8 | Theorem If the partial derivatives f, and f, exist near (a, ) and are continuous
at (a, b), then f is differentiable at (a, b).

14
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! Chain Rule

Recall that the Chain Rule for functions of a single variable
gives the rule for differentiating a composite function:

If y = f(x) and x = g(t), where f and g are differentiable
functions, then y is indirectly a differentiable function of t
and

dy dy dx

1 dr dx dr

For functions of more than one variable, the Chain Rule
has several versions, each of them giving a rule for
differentiating a composite function.



! Chain Rule

The first version (Theorem 2) deals with the case where
z = f(x, y) and each of the variables x and y is, in turn, a
function of a variable t.

This means that z is indirectly a function of t,

z = f(g(t), h(t)), and the Chain Rule gives a formula for
differentiating z as a function of t. We assume that f is
differentiable.



- Chain Rule

Recall that this is the case when f, and f, are continuous.

2 | The Chain Rule (Case 1) Suppose that z = f(x, y) is a differentiable function of
x and y, where x = g(1) and y = h(r) are both differentiable functions of 7. Then z
1s a differentiable function of ¢ and

dz  df dx N af dy

dt ax dt dy dt

Since we often write dz/ox in place of df/ox, we can rewrite
the Chain Rule in the form

dz 9z dx 0z dy

dt ox dt dy dt




qmple 1

If z = x°y + 3xy4, where x = sin 2t and y = cos t, find dz/dt
when t = 0.

Solution:
The Chain Rule gives

dz 0z dx 0z dy

— + -
dt ox dt dy dt

= (2xy + 3y*)(2cos 2t) + (x* + 12xy’)(—sin?)

It's not necessary to substitute the expressions for x and y
In terms of t.



qmple 1 — Solution

We simply observe that when t =0, we have x =sin0 =0
andy=cos0=1.

cont'd

Therefore

Iz
‘7 = (0 + 3)(2¢cos 0) + (0 + 0)(—sin 0) = 6
al | =0



! Chain Rule

We now consider the situation where z = f(x, y) but each of
X and y is a function of two variables s and t:

X=g(s, t),y=h(s, 1.

Then z is indirectly a function of s and t and we wish to find
dz/ds and oz/at.

Recall that in computing dz/ot we hold s fixed and compute
the ordinary derivative of z with respect to t.

Therefore we can apply Theorem 2 to obtain

0z 0z 0X dz dy

ot dx oty ot



- Chain Rule

A similar argument holds for 6z/ds and so we have proved
the following version of the Chain Rule.

3 | The Chain Rule (Case 2) Suppose that z = f(x, y) is a differentiable function of
x and y, where x = g(s, t) and y = h(s, t) are differentiable functions of s and 1.
Then

dz dz ox dz dy dz dz ox dz dy
- = - v + - v. - I - - + - -.
Js dx ds dy ds ot ox ot dy dt

Case 2 of the Chain Rule contains three types of variables:
s and t are independent variables, x and y are called
Intermediate variables, and z is the dependent variable.



- Chain Rule

Notice that Theorem 3 has one term for each intermediate
variable and each of these terms resembles the
one-dimensional Chain Rule in Equation 1.

To remember the Chain Rule, it's helpful to draw the tree
diagram in Figure 2.

ax \\ ax ay ‘\.\ ay

A \"v.\ At aJs “n\ ot
\I ‘\\

Figure 2

10



- Chain Rule: Tree Diagram

To remember the Chain Rule picture the
diagram below. To find dw/dt, start at w
and read down each route to 7, multiplying
derivatives along the way. Then add the
products.

Chain Rule

w = f(x, y) Dependent
variable

Intermediate
variables

Independent
variable

2
dw ow dx ow dy

dt ~ ox dr | ay dr 11



! Chain Rule

We draw branches from the dependent variable z to the
iIntermediate variables x and y to indicate that z is a
function of x and y. Then we draw branches from x and y to
the independent variables s and t.

On each branch we write the corresponding partial
derivative. To find 0z /gs, we find the product of the partial
derivatives along each path from z to s and then add these
products:

dz Jdz 0x dz dy

ads ox ds dy ods

12



! Chain Rule

Similarly, we find oz /ot by using the paths from z to t.

Now we consider the general situation in which a
dependent variable u is a function of n intermediate
variables x4, ..., X,,, each of which is, in turn, a function of m
iIndependent variables t,,..., t..

Notice that there are n terms, one for each intermediate
variable. The proof is similar to that of Case 1.

13



Chain Rule

4 | The Chain Rule (General Version) Suppose that u is a differentiable function of
the n variables x,, x. ..., x, and each x; is a differentiable function of the m vari-
ables t,, ta, ..., t,. Then u is a function of #,, t», ..., t,, and

dt; ox, ot dx, dt; ox, ot

ou du  dx, du o0x» ou  ox,
+ + -+

foreachi=1,2,..., m.

14



- Chain Rule

EXAMPLE 2  Find dw/dt if

w=xy + z X = Cost, y = sint, z =1

In this example the values of w(#) are changing along the path of a helix (Section 13.1) as ¢
changes. What is the derivative’s value at ¢ = 0?

Solution  Using the Chain Rule for three independent variables, we have

dw _ ow dx + ow dy + ow dz
dt ox dt dy dt 0z dt

- (y)(—sm t) + (x)(COS t) + (1)(1) Substitute for the
= (sin#)(—sint) + (cost)(cost) + 1 intermediate

) ) variables.
= —sin“t + cos“t + 1 =1 + cos 2t,

SO

(d_w) =1+ cos(0) = 2.
t=0

15



- Chain Rule

EXAMPLE 3  Express ow/dr and dw/ds in terms of  and s if

w=x+2y+zz, x=§, y=r2+lns, z = 2P

Solution  Using the formulas in Theorem 7, we find

ow _ dwdx dw 90y L Ow oz
ar ox or  dy or 0z or

- (1)(%) + (2)2r) + (22)(2)

1 1 Substitute for intermediate

=3 + 4r + (41”)(2) =g + 12r variable z.

ow _ dwadx w0y . owdz
as 0x ds dy ds 0z 0s

(1)(—52) ¥ (2)(%) + (22)(0) = 2 - 5

16



Implicit Differentiation
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nlicit Differentiation

The Chain Rule can be used to give a more complete
description of the process of implicit differentiation.

We suppose that an equation of the form F(x,y) =0
defines y implicitly as a differentiable function of x, that is,
y = f(x), where F(x, f(x)) = 0 for all x in the domain of f.

If F is differentiable, we can apply Case 1 of the Chain Rule
to differentiate both sides of the equation F(X, y) = 0 with
respect to x.

Since both x and y are functions of x, we obtain
oF dx oF dy
S — + o—

x dx dy dx

18



“Iicit Differentiation

But dx/dx = 1, so if dF/ox # 0 we solve for dy/dx and obtain

or
6 (l_\ _ox  F
dx oF 2

Jy

To derive this equation we assumed that F(x, y) = 0 defines
y implicitly as a function of x.



qlicit Differentiation

The Implicit Function Theorem, proved in advanced
calculus, gives conditions under which this assumption is
valid:

It states that if F is defined on a disk containing (a, b),
where F(a, b) =0, F(a, b) # 0, and F, and F, are
continuous on the disk, then the equation F(x, y) =0
defines y as a function of x near the point (a, b) and the
derivative of this function is given by Equation 6.

20



qmple 38

Find y' if x3 + y3 = 6xy.

Solution:
The given equation can be written as

F(X,y)=x3+y3—-6xy =0

so Equation 6 gives

@ _ L5
dx E,
o 3x* — 6y B x*— 2y
3y* — 6x y* = Py

21



qlicit Differentiation

Now we suppose that z is given implicitly as a function
z = f(X, y) by an equation of the form F(x, y, z) = 0.

This means that F(x, vy, f(x, y)) = 0 for all (x, y) in the
domain of f. If F and f are differentiable, then we can use
the Chain Rule to differentiate the equation F(x, y, z) =0 as

follows:

doF ox dF dy oF oz

ox o0x Jdy ox Jdz ox

=0

22



“Iicit Differentiation

] "
But "(— (}_X_) = ] and (—) (\)) = {)
ox ax

so this equation becomes

oF dF 0z
J— + R —

0X 0z 0X

If oF/0z # 0, we solve for dz/ox and obtain the first formula

In Equations 7.

The formula for 9z/dy is obtained in a similar manner.



qlicit Differentiation

oF dF
0z ax dz dy
e e s
ox oF ay oF

0z 0z

Again, a version of the Implicit Function Theorem
stipulates conditions under which our assumption is valid:

If F is defined within a sphere containing (a, b, c), where
F(@,b,c)=0,F,(a, b,c)#0,and F,, F, and F, are
continuous inside the sphere, then the equation

F(X, VY, z) = 0 defines z as a function of x and y near the

point (a, b, ¢) and this function is differentiable, with partial
derivatives given by [7].

24
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-tional Derivatives and the Gradient Vector

In this section we introduce a type of derivative, called a
directional derivative, that enables us to find the rate of
change of a function of two or more variables in any

direction.



Directional Derivatives



qctional Derivatives

Recall that if z = f(x, y), then the partial derivatives f, and f,
are defined as

- . f(xo + h,yo) — f(xo0, Yo)
f.\-(.\'(). \"()) = |[im
. ’ h—0 /I

f(\ vo) = lim f(.\‘o. Vo + /IA) = _f(,,\-”’ .\,U)
Jy\Xo, Yo fim 5

and represent the rates of change of z in the
X- and y-directions, that is, in the directions of the unit

vectors | and |.



qctional Derivatives

Suppose that we now wish to find the rate of change of z at
(X0, Vo) in the direction of an arbitrary unit vector u = (a, b).

(See Figure 2.)

To do this we consider the surface S with the equation
z = f(x, y) (the graph of f) and we let z, = f(X,, Y,)- Then the
point P(X,, Yo, Zp) lies on S.

|
g |
: sin

& |
y) ___i___
cos

0

A unit vector u = (a, b) = (cos ¢, sin 8)

Figure 2



!ctional Derivatives

The vertical plane that passes through P in the direction of
u intersects S in a curve C. (See Figure 3.)

Figure 3



qctional Derivatives

The slope of the tangent line T to C at the point P is the
rate of change of z in the direction of u. If Q(X, y, 2) Is
another point on C and P’, Q' are the projections of P, Q
onto the xy-plane, then the vector pf_Q?is parallel to u and
SO

po’ = hu = (ha, hb)

for some scalar h. Therefore x — x, = ha, y —y, = hb,
SO X=X, + ha,y =y, + hb, and

Az Z — Zo f(xo + ha, yo + hb) — f(xo0, Yo)

h h h



!ctional Derivatives

If we take the limit as h — 0, we obtain the rate of change
of z (with respect to distance) in the direction of u, which is
called the directional derivative of f in the direction of u.

2 | Definition The directional derivative of f at (xo, yo) in the direction of a unit
vectoru = {(a, b) is

(x0 + ha, vo + hb) — f(x0, V.
D, f(x0. ) = llill‘]) ST S0 ; ) — f1x%0, Yo)
1— 1

if this limit exists.




qctional Derivatives

By comparing Definition 2 with Equations [1], we see that if
u=1i=(1,0), then D;f =f, and if u =j =(0, 1), then D;f = {,.

In other words, the partial derivatives of f with respect to
X and y are just special cases of the directional derivative.

10



!mple 1

Use the weather map in Figure 1 to estimate the value of
the directional derivative of the temperature function at
Reno in the southeasterly direction.

Q"

L i 1 {3 ]
0 S50 100 150 200
(Distance in miles)

50_
e Reno

V. 9
eSan FrancisQ
60
( 70 e
( Las Vegase
70 0
« Los Angeles

Figure 1

11



!mple 1 — Solution

The unit vector directed toward the southeast is
u = (i — j)/+/2.but we won't need to use this expression.

We start by drawing a line through Reno toward the
southeast (see Figure 4).

.’/. —
v‘//
60
1
| N\
’ N I‘.\ F
,—j ' //
o San Francisco. /
I/ - ‘-\ ,
70 \ =
‘\\\ \"\ ’ \
1 o < 3 >
\ \ (T Las Vegas o
L 70 {
X 4 80 |
! . 3 1 | K‘——_\_>
0 S0 100 150 200 o Lok Angtl&s

(Distance i miles)

Figure 4



qmple 1 — Solution

We approximate the directional derivative D, T by the
average rate of change of the temperature between the
points where this line intersects the isothermals
T=50and T = 60.

cont’d

The temperature at the point southeast of Reno is T = 60°F
and the temperature at the point northwest of Reno is
T = 50°F.

The distance between these points looks to be about
75 miles. So the rate of change of the temperature in the
southeasterly direction is

60 — 50 10
D, T = = ~ ().13°F/mi
15 75 /

13



!Ctional Derivatives

When we compute the directional derivative of a function

defined by a formula, we generally use the following
theorem.

3

Theorem If f is a differentiable function of x and y, then f has a directional

derivative in the direction of any unit vector u = (a, b) and

D,f(x,y) = filx,y)a + fi(x,y) b

14



!ctional Derivatives

If the unit vector u makes an angle @ with the positive

x-axis (as in Figure 2), then we can write u = {cos 6, sin 8)
and the formula in Theorem 3 becomes

6 D, f(X, y) = f,(X, y) cos 6+ 1,(X, y) sin &

I
o I
:sinH
& |
XosYo) R, (g

cos

0

Figure 2
A unit vector u = (a, b) = (cos 6, sin &)



The Gradient Vectors
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! Gradient Vectors

Notice from Theorem 3 that the directional derivative of a
differentiable function can be written as the dot product of
two vectors:

1

D f(x, y) = f,(X, y)a + fy(x, y)b
= {f,(x, y), f,(x, y)) - (&, b)
=(f,(x, y), f,(x, y)) - u

The first vector in this dot product occurs not only Iin
computing directional derivatives but in many other
contexts as well.

So we give it a special name (the gradient of f) and a
special notation (grad f or Vf, which is read “del f").

17



- Gradient Vectors

Definition If f is a function of two variables x and y, then the gradient of f is

the vector function Vf defined by

Vilx, y) = (filx, ), flx, y >——\-l —()LJ

r)\

18



!mple 3

If f(x, y) =sin x + &%, then
Vi(x, y) = (f,, f,)
= (COS X + yeY, xew)

and V{0, 1) = (2, 0)

19



! Gradient Vectors

With this notation for the gradient vector, we can rewrite the
expression (7) for the directional derivative of a
differentiable function as

9 Duf(x,y) =Vf(x,y) - u

This expresses the directional derivative in the direction of
u as the scalar projection of the gradient vector onto u.

20



- Example

EXAMPLE 2  Find the derivative of f(x, y) = xe” + cos (xy) at the point (2, 0) in the
direction of v = 3i — 4j.

Solution  The direction of v is the unit vector obtained by dividing v by its length:

v~ 5 5" 5)

The partial derivatives of f are everywhere continuous and at (2, 0) are given by
f(2,0) = (¢¥ = ysin ()0 =" — 0 =1
£(2,0) = (xe” — xsin (xp))p0) = 2¢* —2:0 = 2.
The gradient of f at (2, 0) is
Vileo = f(2,0)i + £,(2,0)j = i + 2j
(Figure 14.28). The derivative of f at (2, 0) in the direction of v is therefore
(Duf)|20 = Vfleo-u Eq. (4)



Functions of Three Variables
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-Ctions of Three Variables

For functions of three variables we can define directional
derivatives in a similar manner.

Again D f(x, y, z) can be interpreted as the rate of change
of the function in the direction of a unit vector u.

10| Definition The directional derivative of f at (x¢, yo, zo) in the direction of a
unit vector u = {(a, b, ¢) is

.'+/.‘u+ll.: +/)—:'
l)uf(.\'n- Yo, ) = lim .f(\n a, y 10 /() ¢ .f(\(, Yo, Z )
1

10

if this limit exists.

23



-ctions of Three Variables

If we use vector notation, then we can write both
definitions (2 and 10) of the directional derivative in the
compact form

I D f(xo) = tim L2 hz) — f(x0)

where Xy = (X, Yo) if N = 2 and X, = (Xq, Yo, Zo) if N =

This is reasonable because the vector equation of the line
through X, in the direction of the vector u is given by

X = Xq + tu and so f(x, + hu) represents the value of f at a
point on this line.

24



-ctions of Three Variables

If f(x, y, 2) is differentiable and u = {a, b, c), then

12 D,f(X, Y, 2) = (X, ¥y, Z)a + (X, y, )b + 1,(X, y, Z)C

For a function f of three variables, the gradient vector,
denoted by Vfor grad f, is

VEx,y, 2) = (X Y, 2), f (%, v, 2), T(%, ¥, 2))

or, for short,

13 V= (i f) = SEi Ly L

25



-ctions of Three Variables

Then, just as with functions of two variables, Formula 12 for
the directional derivative can be rewritten as

14 D,f(x,y,z2) = Vf(x,y,2) - u




!mple 5

If f(x, y, z) = x sin yz, (a) find the gradient of f and (b) find
the directional derivative of f at (1, 3, 0) in the direction of
V=1+2]-Kk.

Solution:
(a) The gradient of f is

Vix, y, 2) = (% Y, 2), f (%, v, 2), T(x, ¥, 2))

= (sin YZ, XZ COS yZ, Xy COS yz)

27



!mple 5 — Solution

(b) At (1, 3, 0) we have Vi(1, 3, 0) = {0, 0, 3).

cont’d

The unit vector in the directionof v =1+ 2] - K Is

| 2 I
N T I
u \/al \/EJ \/(Tk

Therefore Equation 14 gives

D,f(1, 3,0) = Vf(1, 3,0) - u

I 2 I
== IR jok j= Kk
<J€' N J(‘)

) 3(‘%) S
28



Maximizing the Directional
Derivatives
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*imizing the Directional Derivatives

Suppose we have a function f of two or three variables and
we consider all possible directional derivatives of f at a
given point.

These give the rates of change of f in all possible
directions.

We can then ask the questions: In which of these directions
does f change fastest and what is the maximum rate of
change? The answers are provided by the following
theorem.

15| Theorem Suppose fis a differentiable function of two or three variables. The
maximum value of the directional derivative D, f(x) is | Vf(x)| and it occurs when
u has the same direction as the gradient vector Vf(x).

30



Properties of the Directional Derivative D,f = Vf-u = |Vf|cos 6

1. The function f increases most rapidly when cos @ = 1 or when § = 0 and u
is the direction of Vf. That is, at each point P in its domain, f increases most
rapidly in the direction of the gradient vector Vf at P. The derivative in this
direction 1s

Duf =|Vf|cos(0) =|Vf].
2. Similarly, f decreases most rapidly in the direction of —Vf. The derivative in
this direction is Dyf = |Vf|cos (7) = —| Vf|.
3. Any direction u orthogonal to a gradient Vf # 0 is a direction of zero change
in f because 6 then equals 77/2 and

Dyf = |Vf|cos (m/2) =[Vf]-0 = 0.

31



!mple 6

(@) If f(x, y) = xeY, find the rate of change of f at the point
P(2, 0) in the direction from P to (3. 2)

(b) In what direction does f have the maximum rate of
change? What is this maximum rate of change?

Solution:
(a) We first compute the gradient vector:

Vi(x, y) = (f, £,) = (e, xe)

vi(2, 0) = (1, 2)

32



!mple 6 — Solution

The unit vector in the direction of PQ = (1.5, 2) is

u = (-2 ), so the rate of change of f in the direction from P
toQis

cont’d

D,f(2, 0) = Vf(2, 0) - u
= {1,2) *4-3.3)
= 1(—3) +2(3) = 1

(b) According to Theorem 15, f increases fastest in the
direction of the gradient vector V{(2, 0) = (1, 2).

The maximum rate of change is

[Vi(2, 0)| = K1, 2)| = V5

‘|
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!mple

Suppose that the temperature at a point in space is given
by T(x,y,z) =80/(1+ x% + 2y% + 3z%), where T is
measured in degrees Celsius and x, y, z in meters. In
which direction does the temperature increase fastest at
the point (1, 1, -2)? What is the maximum rate of increase?

Solution:
(a) We first compute the gradient vector:

VT(X, Y Z) — (,fx:.fy:fz) —

—160x —320y —480z
(1+x242y2+322)2" (1+x24+2y2+322)2 " (1+x2+2y2+322)2

At the point (1, 1, -2) the gradient vector Is

34



!mple: Solution

—-5 =10 30>

\7T(1,1,—2)=<8, 10 20)

By Theorem 15 the temperature increases fastest in the

direction of the gradient vector VT (1,1, —2) = <;5,_;O,380>.

The maximum rate of increase is the length of the
gradient vector:

VT(1,1,—2)| = \/(‘?5)2 + (‘710)2 (3—8")2 = 4°C/m.
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Tangent Planes to Level Surfaces
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qgent Planes to Level Surfaces

Suppose S is a surface with equation F(Xx, y, z) =k, that is,
It IS a level surface of a function F of three variables, and let
P(Xo: Yo, Zp) be a pointon S.

Let C be any curve that lies on the surface S and passes
through the point P. Recall that the curve C is described by

a continuous vector function r(t) = {x(t), y(t), z(t)).

Let t, be the parameter value corresponding to P; that is,
r(ty) = (X, Yo, Zo)- Since C lies on S, any point (x(t), y(t),
z(t)) must satisfy the equation of S, that is,

16

F(x(t), y(t), z(t)) =K 37



!gent Planes to Level Surfaces

If X, y, and z are differentiable functions of t and F is also
differentiable, then we can use the Chain Rule to
differentiate both sides of Equation 16 as follows:

oF dx oF dy oF d:z
— —— — + = ()

17 - : : =
ox dt dy dt dz dt

But, since VF =(F,, F,, F,) and r'(t) = (x'(t), y'(t), Z'(t)),
Equation 17 can be written in terms of a dot product as

VE-r'(t)=0

38



-gent Planes to Level Surfaces

In particular, when t = t, we have r(ty) = (X, Yo, Zo), SO

18 VF(Xo, Yor Zg) = I'(tp) = O

Equation 18 says that the gradient vector at P, VF(X,, Yo,
Z,), Is perpendicular to the tangent vector r'(t;) to any curve
C on S that passes through P. (See Figure 9.)

Figure 9 39



qgent Planes to Level Surfaces

If VF(Xq, Yo, Zo) # 0, it is therefore natural to define the
tangent plane to the level surface F(x, y, z) = k at
P(Xo, Yo, Zp) a@s the plane that passes through P and has
normal vector VF(X,, Yo, Zp)-

Using the standard equation of a plane, we can write the
equation of this tangent plane as

19 F\(xo, Yo, zo)(x — xp) + Fy(xo, Yo, :n)(‘_\’ — Yo) + F-(xo. Yo, 20)(z — 20) =0

40



-gent Planes to Level Surfaces

The normal line to S at P is the line passing through P
and perpendicular to the tangent plane.

The direction of the normal line is therefore given by the
gradient vector VF(X,, Yo, Zp) and so, its symmetric
equations are

X — X¢ YV — Vo zZ — 20
20 ‘ — - = —_ =
Fx( xo, Vo, Z0) F v (X0, Vo, Z0) F-(xo, Yo, Z0)

41



“gent Planes to Level Surfaces

In the special case in which the equation of a surface S is
of the form z = (X, y) (that is, S is the graph of a function f
of two variables), we can rewrite the equation as

F(X,y,2)=1f(X,y)—z=0
and regard S as a level surface (with k = 0) of F. Then

F(Xor Yor Zo) = £,(X0: Yo)
Fy(Xos Yo Zo) = 1,(Xos Yo)
F,(Xo, Yor Z9) =1

so Equation 19 becomes
fx(Xo Yo)(X — Xg) + 1,(Xos Yo)(Y —Yo) = (2 —20) =0 45



!mple 38

Find the equations of the tangent plane and normal line at
the point (-2, 1, —3) to the ellipsoid

Solution:
The ellipsoid is the level surface (with k = 3) of the function

43



Significance of the Gradient
Vectors

44



!mple 8 — Solution

Therefore we have

cont’d

2z
9

FGY, D=5 R =2y Ry 2=
Fo(-2,1,-3)=-1 F/(-2,1,-3)=2 F,(-2,1,-3)=—:

Then Equation 19 gives the equation of the tangent plane
at (-2, 1,-3) as

“1(x+2) +2(y—1)—3(Z +3) =0

which simplifies to 3x — 6y + 2z + 18 = 0.
By Equation 20, symmetric equations of the normal line are
xstZ y—1 - 0

_ o o, 2
! . 3 45



!ﬂficance of the Gradient Vectors

We now summarize the ways in which the gradient vector
IS significant.

We first consider a function f of three variables and a point
P(Xo, Yo: Zp) IN Its domain.

On the one hand, we know from Theorem 15 that the

gradient vector VI(X,, Yo, Zg) gives the direction of fastest

Increase of f. J VE (2o, 3. 26)

tangent plane

On the other hand, we know that 4
Vi(Xo, Yo, Zo) is orthogonal to the f
level surface S of f through P. g
(Refer to Figure 9.) 4

Figure 9
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“Signhificance of the Gradient Vectors

These two properties are quite compatible intuitively
because as we move away from P on the level surface S,
the value of f does not change at all.

So it seems reasonable that if we move in the
perpendicular direction, we get the maximum increase.

In like manner we consider a function f of two variables and
a point P(X,, Yp) In its domain.

Again the gradient vector Vi(X,, Y,) gives the direction of
fastest increase of f. Also, by considerations similar to our
discussion of tangent planes, it can be shown that Vf(x,, Y,)
IS perpendicular to the level curve f(X, y) = k that passes
through P. 47



!}ificance of the Gradient Vectors

Again this is intuitively plausible because the values of f
remain constant as we move along the curve.
(See Figure 11.)

4 Vf(-\'u- Yo)

level curve ~
flx,y)=k
0 X

Figure 11
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qmcance of the Gradient Vectors

If we consider a topographical map of a hill and let f(x, y)
represent the height above sea level at a point with

coordinates (X, y), then a curve of steepest ascent can be
drawn as in Figure 12 by making it perpendicular to all of

the contour lines.

300
200

curve of
steepest
ascent

100

Figure 12
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qmicance of the Gradient Vectors

Computer algebra systems have commands that plot
sample gradient vectors.

Each gradient vector Vf(a, b) is plotted starting at the point
(a, b). Figure 13 shows such a plot (called a gradient vector
field) for the function f(x, y) = x?2 — y? superimposed on a
contour map of f.

As expected, the gradient
vectors point “uphill” and
are perpendicular to the
level curves.

\\\\\\\\\\\\\\\\

Figure 13
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“dmum and Minimum Values

In this section we see how to use partial derivatives to
locate maxima and minima of functions of two variables.

Look at the hills and valleys in the graph of f shown in
Figure 1.

absolute
. maximum

local
maximum

local
absolute minimum

minimum ¥

Figure 1



“dmum and Minimum Values

There are two points (a, b) where f has a local maximum,
that is, where f(a, b) is larger than nearby values of f(x, y).

The larger of these two values is the absolute maximum.

Likewise, f has two local minima, where f(a, b) is smaller
than nearby values.

The smaller of these two values is the absolute minimum.



“dmum and Minimum Values

1

Definition A function of two variables has a local maximum at (a. b) if

f(x,y) = f(a. b) when (x, y) is near (a, b). [This means that f(x, y) = f(a, b) for
all points (x, y) in some disk with center (a, b).] The number f(a, b) is called a
local maximum value. If f(x, v) = f(a, b) when (x, y) is near (a, b), then f has a
local minimum at (a, ) and f(a. b) is a local minimum value.

If the inequalities in Definition 1 hold for all points (X, y)
In the domain of f, then f has an absolute maximum
(or absolute minimum) at (a, b).

2

Fermat's Theorem for Functions of Two Variables If f has a local maximum or

minimum at (a, b) and the first-order partial derivatives of f exist there, then
fila, b) = 0 and f.(a, b) = 0.




ndmum and Minimum Values

A point (a, b) is called a critical point (or stationary point)
of fiff,(a, b) =0 and f,(a, b) = 0, or if one of these partial
derivatives does not exist.

Theorem 2 says that if f has a local maximum or minimum
at (a, b), then (a, b) is a critical point of f.

However, as in single-variable calculus, not all critical
points give rise to maxima or minima.

At a critical point, a function could have a local maximum or
a local minimum or neither.



!mple 1

Let f(x, y) = X2 + y?>— 2x — 6y + 14,

Then

f.(X,y) =2x -2 fy(X,y) =2y -6

These partial derivatives are equal to O when x =1 and
y = 3, so the only critical point is (1, 3).

By completing the square, we find that

f(x,y) =4+ (x-1)*+(y-3)°



!mple 1

Since (x—1)? >0 and (y — 3)> > 0, we have f(x, y) = 4 for all
values of x and .

cont’'d

Therefore (1, 3) = 4 is a local minimum, and in fact it is the
absolute minimum of f.

This can be confirmed geometrically

from the graph of f, which is the |
elliptic paraboloid with vertex

(1, 3, 4) shown In Figure 2.

0

B
.\.
P, 5

Z=x2+y?-2x—-6y+ 14
Figure 2



EXAMPLE 1  Find the local extreme values of f(x, y) = x> + y*> — 4y + 9.

Solution  The domain of f is the entire plane (so there are no boundary points) and the
partial derivatives f, = 2x and f, = 2y — 4 exist everywhere. Therefore, local extreme

values can occur only where
fr=2x=0 and =2y —4=0.

The only possibility is the point (0, 2), where the value of f is 5. Since f(x,y) =
x2 + ( 3 — 2)? + 5 is never less than 5, we see that the critical point (0, 2) gives a local

minimum (Figure 14.43).



“dmum and Minimum Values

The following test, is analogous to the Second Derivative
Test for functions of one variable.

3| Second Derivatives Test Suppose the second partial derivatives of f are contin-
uous on a disk with center (a, b), and suppose that fi(a, b) = 0 and fi(a, b) = 0
[that is, (a, b) 1s a critical point of f]. Let

D = D(a, b) = f.(a.b) fi(a. b) — [ fis(a, b)]

(a) If D = 0 and f..(a, b) = 0. then f(a. b) is a local minimum.

(b)y If D = 0 and f..(a, b) < 0, then f(a, b) is a local maximum.

(c) If D < 0, then f(a, b) is not a local maximum or minimum.

In case (c) the point (a, b) is called a saddle point of f and
the graph of f crosses its tangent plane at (a, b).

10



EXAMPLE 3 Find the local extreme values of the function
flx,y) =xy —x2 —y? — 2x — 2y + 4.

Solution  The function is defined and differentiable for all x and y and its domain has no
boundary points. The function therefore has extreme values only at the points where f, and
f, are simultaneously zero. This leads to

fx=3— 26— 2.=1), Jy E B—2p —2 = 0
or
x=y=—2.

Therefore, the point (—2, —2) is the only point where f may take on an extreme value. To
see if it does so, we calculate

Jo=—2, fi=-2, fu=1L1
The discriminant of f at (a, b) = (=2, —2) is
Fafwy — For=(—2)(—2) — (1)) =4—1=3,
The combination
f =0 and Jfolu—Js =0

tells us that f has a local maximum at (—2, —2). The value of f at this point is
f(=2,-2) = 8.

11



!mple

Find the shortest distance from the point (1, O, -2) to the
plane x + 2y + z = 4.

SOLUTION The distance from any point (x, y, z) to the
point (1, O, -2) is
d=+J(x—12+(y—0)2+ (z+2)2

butif (x,y,z) liesonthe plane x + 2y +z=4,thenz =4
— x — 2y and so we have

d=yJ(x—12+(@y—-0)2+4—x—2y+2)?
We can minimize d by minimizing the simpler expression

d?> = f(x,y) = (x = 1) + y* + (6 — x — 2y)?
By solving the equations

12



!mple

[, =2(x—1)—-2(6—x—2y)=4x+4y — 14 =0,
fr =2y —4(6—x—2y) =4x + 10y — 24 = 0,

we find that the only critical point is (?1 —) Since f,., = 4,

fxy = 4, fyy = 10, we have D = fxxfyy — (fxy) =24 > ()
and f,, > 0, so by the Second Derivatives Testf has a

local minimum at (%g) Intuitively, we can see that this

local minimum is actually an absolute minimum because
there must be a point on the given plane that is closest to

(1, 0, -2). At this point we get d = E\/E. So, the shortest
distance from the point (1, 0, -2) tothe plane x + 2y + z = 4
. 5

IS g\/g

13



Absolute Maximum and Minimum
Values

14



!}Iute Maximum and Minimum Values

For a function f of one variable, the Extreme Value
Theorem says that if f is continuous on a closed interval
[a, b], then f has an absolute minimum value and an
absolute maximum value.

According to the Closed Interval Method, we found these
by evaluating f not only at the critical numbers but also at
the endpoints a and b.

There is a similar situation for functions of two variables.
Just as a closed interval contains its endpoints, a closed
set in R’ Is one that contains all its boundary points.

15



-)Iute Maximum and Minimum Values

[A boundary point of D is a point (a, b) such that every disk
with center (a, b) contains points in D and also points not
in D.]

For instance, the disk
D ={(x, y)| x* +y? < 1}

which consists of all points on and inside the circle

X? +y2=1,is a closed set because it contains all of its
boundary points (which are the points on the circle

X2 +y2=1).

16



-)Iute Maximum and Minimum Values

But if even one point on the boundary curve were omitted,
the set would not be closed. (See Figure 11.)

Closed sets Sets that are not closed
Figure 11(a) Figure 11(b)

A bounded set In R2Is one that Is contained within some
disk.

17



!}Iute Maximum and Minimum Values

In other words, it is finite in extent.

Then, In terms of closed and bounded sets, we can state
the following counterpart of the Extreme Value Theorem in

two dimensions.

8 | Extreme Value Theorem for Functions of Two Variables If f is continuous on a
closed, bounded set D in R, then f attains an absolute maximum value f(x;, ;)
and an absolute minimum value f(x-, y,) at some points (x;, v;) and (x,. y») in D.

18



-)Iute Maximum and Minimum Values

To find the extreme values guaranteed by Theorem 8, we
note that, by Theorem 2, if f has an extreme value at

(X1, Y1), then (X4, y,) Is either a critical point of f or a
boundary point of D.

Thus we have the following extension of the Closed Interval
Method.

91 To find the absolute maximum and minimum values of a continuous function
Jon a closed, bounded set D:

1. Find the values of f at the critical points of f in D.
2. Find the extreme values of f on the boundary of D.

3. The largest of the values from steps 1 and 2 is the absolute maximum value;
the smallest of these values is the absolute minimum value.

19



!mple 14

Find the absolute maximum and minimum values of the
function f(X, y) = x? — 2xy + 2y on the rectangle
D={(X Vy)|[0<x<£3,0<y<2}.

Solution:

Since f is a polynomial, it is continuous on the closed,
bounded rectangle D, so Theorem 8 tells us there is both
an absolute maximum and an absolute minimum.

According to step 1 in (2], we first find the critical points.
These occur when

f,=2x-2y=0 fp=-—2x+2=0
20



!mple [/ — Solution

so the only critical point is (1, 1), and the value of f there is
f(1, 1) = 1.

cont’d

In step 2 we look at the values of f on the boundary of D,
which consists of the four line segments L4, L,, L3, L,
shown in Figure 12.

0.2) 2 g0y

(0,0) ts (3,0) X

Figure 12

21



!mple [/ — Solution

On L, we have y = 0 and

cont’d

f(x, 0) = x? 0<x<3

This Is an increasing function of x, so its minimum value is
f(0, 0) = 0 and its maximum value is (3, 0) = 9.

On L, we have x = 3 and
f(3,y) =9 -4y 0<y<?2

This Is a decreasing function of y, so its maximum value Is

f(3, 0) = 9 and its minimum value is f(3, 2) = 1. -



!mple [/ — Solution

On L; we have y = 2 and

cont’d

f(X,2) =x°—4x + 4 0<x<3

Simply by observing that f(x, 2) = (x— 2)?, we see that the
minimum value of this function is f(2, 2) = 0 and the
maximum value is f(0, 2) = 4.

23



!mple [/ — Solution

Finally, on L, we have x = 0 and

cont’d

f(0,y) =2y 0<y<?2

with maximum value f(0, 2) = 4 and minimum value
f(0, 0) =0.

Thus, on the boundary, the minimum value of f is 0 and the
maximum is 9.

24



!mple / — Solution

In step 3 we compare these values with the value

f(1, 1) = 1 at the critical point and conclude that the
absolute maximum value of fon D is f(3, 0) = 9 and the
absolute minimum value is f(0, 0) = (2, 2) = 0.

cont’d

Figure 13 shows the graph of f.

N

o

f(X, y) = X2 — 2xy + 2y
Figure 13 25



!mple 38

Find the absolute maximum and minimum values of

flx,y) =2+ 2x + 2y — x% — y?
on the triangular region in the first quadrant bounded by the
inesx=0,y=0,y=9 — x.

y

A

> X
O y =20 A(9, 0)

FIGURE 14.46 This triangular region is
the domain of the function in Example 5. 26



qmple 8 — Solution

Since f is differentiable, the only places where f can
assume these values are points inside the triangle where
fx = f,, = 0 and points on the boundary.

cont’d

(a) Interior points. For these we have

fr=2—-2x=0,f,=2—-2y =0,
yielding the single point (X, y) = (1, 1). The value of f there
s f(1,1) = 4.
(b) Boundary points. We take the triangle one side at a
time:
1) On the segment OA, y = 0. The function

f(x,y) =f(x,0) =2+ 2x — x?

27



!mple 8 — Solution

may now be regarded as a function of x defined on the
closed interval [0, 9]. Its extreme values may occur at the
endpoints

cont’d

x=0 where f(0,0) =2
x=9 where f(9,0) = -61
and at the interior points where f'(x,0) =2 — 2x = 0. The
only interior point where

f'(x,0) =0 isx =1, where f(1,0) = 3.

1) On the segment OB, x =0 and f(x,y) =f(0,y) =2 + 2y -
y2. We know from the symmetry of f in x and y and from the
analysis we just carried out that the candidates on this

segment are: £(0,0) = 2, f(0,9) = —61, f(0,1) = 3. -



qmple 8 — Solution .

111) We have already accounted for the values of f at the
endpoints of AB, so we need only look at the interior points
of AB. Withy = 9 — x, we have
f(x,9—x)=2+4+2x+2(9—x) —x?— (9 — x)*
= —61 + 18x — 2x~2.

Setting f'(x,9 —x) =18 —4x = 0 gives x = 9/2.
At this value ofx,y=9—x=9—§=9/2 and

0 2) = 41/2
f(m)—‘ /=

We list all the candidates: 4, 2, — 61, 3, —41/2. The
maximum is 4, which f assumes at (1, 1). The minimum is
— 61, which f assumes at (0, 9) and (9, 0).

29



15 Multiple Integrals
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“ated Integrals

Suppose that f is a function of two variables that is
iIntegrable on the rectangle R =[a, b] x [c, d].

We use the notation [ f(x, y) dy to mean that x is held fixed
and f(x, y) Is integrated with respecttoy fromy =ctoy =d.
This procedure is called partial integration with respect to y.
(Notice its similarity to partial differentiation.)

Now j'(‘_’ f(x, y) dyis a number that depends on the value of
X, SO It defines a function of x:

A(x) = “'_df(.\'. y) dy



“ated Integrals

If we now integrate the function A with respect to x from
X =atox=Db, we get

‘/)

1 A(x) dx = “h [’wf(.\'. y) d_\'] dx

v

The integral on the right side of Equation 1 is called an
iterated integral. Usually the brackets are omitted. Thus

2 (‘ : J:flf(.x‘. y)dy dx = J: [ j‘:]f(.\‘. y) d_\v] dx

means that we first integrate with respect to y from c to d
and then with respect to x from a to b.




“ated Integrals

Similarly, the iterated integral

3 ’(d J:Ihf(.\‘. y) dx dy = ’(d [J‘“hf(.\'. y) d.\':| dy

means that we first integrate with respect to x (holding y
fixed) from x = a to X = b and then we integrate the
resulting function of y with respecttoy fromy=ctoy =d.

Notice that in both Equations 2 and 3 we work from the
Inside out.



!mple 1

Evaluate the iterated integrals.
3 2 2 T\ ~ 2 ~3 2 ' /TY 7
(a) L J.I x*y dy dx (b) L JO x“ydxdy

Solution:
(a) Regarding x as a constant, we obtain

B .\‘=2
12 = 2 .)’—
x*ydy= | x*—

Ji 7T 2 |-




!mple 1 — Solution

Thus the function A in the preceding discussion is given
by A(x) = ;x?in this example.

cont’d

We now integrate this function of x from O to 3:

32, 3l r2 .,
f [ x‘ydydx = ’ [ J Xy a'_\’] dx
JO JI JO I

s
- ~1 ’)
= ‘ X dx
JO



!mple 1 — Solution

(b) Here we first integrate with respect to x:

"2 3 *2 3
’ ‘ x’ydxdy = ’ [ ‘ X7y dx] dy
JI JO J1 JO

cont’d

— "12 9y di\?
_— ] oz
2 |, 2



q{ted Integrals

Notice that in Example 1 we obtained the same answer
whether we integrated with respect to y or x first.

In general, it turns out (see Theorem 4) that the two iterated
Integrals in Equations 2 and 3 are always equal, that is, the
order of integration does not matter.

4 | Fubini’s Theorem If f is continuous on the rectangle
R={(x,y) | as x<b,c<y=<d} then

H flx,y)dA = ‘,/ “f/f(.\'. y)dy dx = "‘l “/)f(.r. v)dxdy

R

More generally, this is true if we assume that f is bounded on R, f is discontin-
uous only on a finite number of smooth curves, and the iterated integrals exist.




!mple 2

Evaluate [[, ysin(xy)dA, where R = [1,2] x [0, ].

SOLUTION: It is easier to integrate with respect to x first

JI, ysin(xy)dA = fon flz ysin(xy)dxdy = f: [flz ysin(xy)dx] dy

— fﬂ (y —cos(xy)]%) dx = — Jn(cos(Zx) — cos(x))dx
0 y 0

o (sin(Zx)

T sin(x)]g) =0

If we reverse the order of integration, flz f: ysin(xy)dydx,

we get hard integrals. 10



“ated Integrals

In the special case where f(X, y) can be factored as the
product of a function of x only and a function of y only, the
double integral of f can be written in a particularly simple

form.

To be specific, suppose that f(x, y) = g(x)h(y) and
R =[a, b] x [c, d].

Then Fubini’'s Theorem gives

H flx,y) dA = “d "h g(x)h(y) dx dy = "‘/ [’, g(x)h(y) (/-\‘] dy
"I\‘,' Je Ja ve

)
i

11



q{ted Integrals

In the inner integral, y is a constant, so h(y) is a constant
and we can write

d | [P “d . *h ‘5 '
’ ‘ g(x)h(y) dx | dy = ‘ h(y) .’” g(x)dx | | dy = ““ g(x) dx ‘ h(y) dy

since [” g(x) dx is a constant.

Therefore, In this case, the double integral of f can be
written as the product of two single integrals:

5] ([ g)n(y)da=|"g)dx [ h(»)dy  whereR = [a,b] X [c.d]
Ilel v WO

12



Volumes and Double Integrals

13



-Jmes and Double Integrals

In a similar manner we consider a function f of two
variables defined on a closed rectangle

R=[a,b]x[c,d]={(X,y) e R?’|la<x<b,c<Ly<d}
and we first suppose that f(x, y) = 0.

»
' o

Z = .I't.\_‘. v) “
: 3
The graph of fis a surface /

with equation z = f(x, y). s ——

Let S be the solid that lies B

b R
above R and under the =

graph of f, that Is, Figure 2
S={(x,v,2) € R*|0<z<f(X,y), (X,¥) € R}
(See Figure 2.)

14



“Jmes and Double Integrals

Our goal is to find the volume of S.

volume can be written as a double integral

If f(x.y) = 0, then the volume V of the solid that lies above the rectangle R and
below the surface z = f(x, y) is

V= ([ 7(x,» da

R

15



!mple 1

Find the volume of the solid that lies above the square R = [0,2]
x [0,2] and below the elliptic paraboloid z = 16 — x? — 2y~

SOLUTION:

Volume = ff_ (16 — x* — 2y?)dA
2 2 2[ 2

= f f (16 — x? — 2y?)dydx =f U (16 — x?% — 2y2)dy] dx
0 Jo o LJo

2 (80 80 2
(— — ZxZ) dx = —x —=x3]3

2 2
= 16—2——32d=j
jo[yxy 3y]ox 3 3 3

0

= 48. 16



!mple 1 — Solution

cont’d

The solid in Example 1 is shown in the Figure below.

17



!mple 2

Find the volume of the solid that lies above the rectangular
region R = [0, 2] x [0, 1] and below the plane z =4 — x-.

SOLUTION:

Volume = [f, (4 —x —y)dA

=fozfolu_x—y)dydx=f02[j01<4—x—y>dy]dx

2 2 ' 18



!mple 2 — Solution

cont’d

The solid in Example 2 is shown in the Figure below.

.

X

FIGURE

y =1
A =] _@—x—ya

15.4 To obtain the cross-

sectional area 4A(x), we hold x fixed and
integrate with respect to y.

19



!mple 3

Find the volume of the solid in the first octant bounded by
the cylinder z = 16 — x* and the plane y = 5.
SOLUTION: The cylinder intersects the xy-plane when

0 = 16 — x? or x = +4. Since the solid lies in the first
octantwe have 0 <x <4 and 0 <y <5.

Volume = [[ (16 — x?)dA = [ [*(16 — x*)dydx

AT (5 4
- j U (16 — xz)dy] dx = f [(16 — x?)y]5dx
0 L0 0

640

4
1
= J 5(16 — x%)dx = 5(16x — =x3)]5 = —.
. 3 3

20



Properties of Double Integrals
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-perties of Double Integrals

We list here three properties of double integrals. We

assume that all of the integrals exist. Properties 7 and 8 are
referred to as the linearity of the integral.

7

IJ 10, v) + 9y dA =[] 1x, ) dA + [[g(x, y) oA

-

8 H cf(x,y)dA=c H f(x, y) dJA where c is a constant

o I

R

If f(X, y) =2 g(Xx, y) for all (x, y) in R, then

9] [ f(x,y) dA= || g(x, y) dA

22
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!ble Integrals over General Regions

For single integrals, the region over which we integrate is
always an interval.

But for double integrals, we want to be able to integrate a
function f not just over rectangles but also over regions D of
more general shape, such as the one illustrated in Figure 1.

VA

=Y

0

Figure 1



uble Integrals over General Regions

We suppose that D is a bounded region, which means that
D can be enclosed in a rectangular region R as in Figure 2.

D

Figure 2

Then we define a new function F with domain R by

0 if (x,v)isin R but not in D

\ -

.,_{ﬂxﬂ if (x,y)isinD



!ble Integrals over General Regions

If F is integrable over R, then we define the double
integral of f over D by

2 H f(x,y)dA = H F(x,y) dA where F'is given by Equation 1
D R

Definition 2 makes sense because R is a rectangle and so

HR F(X, y) dA has been previously defined.



qble Integrals over General Regions

The procedure that we have used is reasonable because
the values of F(x, y) are 0 when (X, y) lies outside D and so
they contribute nothing to the integral.

This means that it doesn’t matter what rectangle R we use
as long as it contains D.

In the case where f(X, y) = 0, we can still interpret

ﬁD f(x, y) dA as the volume of the solid that lies above D
and under the surface z = f(x, y) (the graph of f).



uble Integrals over General Regions

You can see that this is reasonable by comparing the
graphs of f and F in Figures 3 and 4 and remembering that

HR F(X, y) dA is the volume under the graph of F.

P __gruph of f 4 | 8r lph of F

Y - >\ .

I | N J

| | |

| Pe—
I
I

h

0 4\4_\»
/ | 5 Y A Z > ¥
X

Figure 3 Figure 4

D




_ble Integrals over General Regions

Figure 4 also shows that F is likely to have discontinuities
at the boundary points of D.

Nonetheless, if f is continuous on D and the boundary
curve of D is “well behaved”, then it can be shown that

ﬂR F(X, y) dA exists and therefore ﬂD f(Xx, y) dA exists.

In particular, this is the case for type | and type Il regions.



-ble Integrals over General Regions

A plane region D is said to be of type | if it lies between the
graphs of two continuous functions of x, that is,

D={xy)lasx<Db, g;(x) <y <g,(X);

where g, and g, are continuous on [a, b]. Some examples
of type | regions are shown in Figure 5.

V4
y =g:{X} Y=(X) Y=g.1x|

D

D D

I
I
| Y=g, x)
|
|

y=aqx y=g,(x) |

f~ e e

-~

= —— e —

= -

o — — — —
o> -

> —————

0

Figure 5
Some type | regions



!ble Integrals over General Regions

In order to evaluate HD f(x, y) dA when D is a region of

type |, we choose a rectangle R = [a, b] x [c, d] that
contains D, as in Figure 6, and we let F be the function
given by Equation 1; that is, F agrees withfon D and F is O

outside D.

y=g,(x)

D

Figure 6 10



!ble Integrals over General Regions

Then, by Fubini’'s Theorem,

‘Lff(.\._\)(m [[ Feyaa = [ {* Fexy) dy dy

R

Observe that F(x, y) =0 ify < g,(x) or y > g,(x) because
(X, y) then lies outside D. Therefore

.

J(d F(x,y)dy = J

g2 x) *ga(x)

F(x,y)dy = j f(x,y)dy

gilx) guLV)‘

because F(x, y) = (X, y) when g,(x) <y < g,(X).
11



!ble Integrals over General Regions

Thus we have the following formula that enables us to
evaluate the double integral as an iterated integral.

then H flx,y) dA = ‘ |

q()

3| If fis continuous on a type I region D such that

D = {(.x‘. V]asxsb gx) sy= g;(.\')}

JH.

, v) dy dx

The integral on the right side of

3

IS an iterated integral,

except that in the inner integral we regard x as being
constant not only in f(x, y) but also in the limits of

Integration, g,(x) and g,(x).

12



!ble Integrals over General Regions

We also consider plane regions of type Il, which can be

expressed as

4

D={(x,y) | c<y=<d, hy(y) <x<hyy)}

where h, and h, are continuous. Two such regions are
llustrated in Figure 7.

Va

dp—————

VA

d

b — — — —

0

0

\

Figure 7
Some type Il regions

" — — — — — —

13



-ble Integrals over General Regions

Using the same methods that were used in establishing [3

we can show that

“hy(y)

5 H[ (x,y)dA = ‘, ‘
p Je

flx,y) dxdy

fr(y)

where D is a type Il region given by Equation 4.

14



. EXAMPLE 1 Find the volume of the prism whose base is the triangle in the xy-plane

— bounded by the x-axis and the lines y = x and x = 1 and whose top lies in the plane E—
z= f(x,y) =3 —x — y.

Solution  See Figure 15.12. For any x between O and 1, y may vary from y = Otoy = x
(Figure 15.12b). Hence,

1 fFx 1 y2 y=x
V=//(3—-x—y)dydx=/ [3y—xy—7:| dx
0 .Jo 0 y=0
[ (=) -5
= i ——lde= |V5—— 5% = 1.
0 2 2 2 Ji=0
When the order of integration is reversed (Figure 15.12c¢), the integral for the volume is
1 1 1 e x=1
V=//(3—x—y)dxdy=/ [Bx—i—xy] dy
0 Jy 0 xX=y
1 2
_ I ' 2
= ,/0 (3 5 Ty 3z - 5 + y )a’y

1 39y=1
_ 3 _ 3 2 — (2, 2 4P —
—/(; (2 4y + 5 )dy [2y 2y° + 5 :|y=0 1.

15

The two integrals are equal, as they should be.



(3,0,0)

z=flx.y)=3—-x—y

(1.0,2)

(a)

(b) (c)

FIGURE 15.12 (a) Prism with a triangular base in the xy-plane. The volume of this prism is defined
as a double integral over R. To evaluate it as an iterated integral, we may integrate first with respect
to y and then with respect to x, or the other way around (Example 1). (b) Integration limits of

x=1 fy=x
/ A f(x, y) dy dx.

= y=

If we integrate first with respect to y, we integrate along a vertical line through R and then integrate
from left to right to include all the vertical lines in R. (c) Integration limits of

y=| pe=|
/ flx, y) dx dy.

g =) =y

If we integrate first with respect to x, we integrate along a horizontal line through R and then inte-
grate from bottom to top to include all the horizontal lines in R.

16



!mple 2

Evaluate HD (x + 2y) dA, where D is the region bounded by
the parabolasy = 2x?2andy = 1 + x2.

Solution:

The parabolas intersect when 2x2 = 1 + x4, that is, x2 = 1,
SO X = 1.

We note that the region D,
sketched in the Figure, Is a
type | region but not a type Il D
region and we can write

D={(X,y)|-1<x<1,2x?<y<1+x?%



!mple 2 — Solution

cont'd
Since the lower boundary is y = 2x? and the upper
boundary isy = 1 + x?, Equation 3 gives
” (x + 2y) dA = ’ J"f‘ (x + 2y) dy dx
D
j [\\ + vy ]:_l:ﬂ Ix
= ’_II [x(1 + x%) + (1 + x?)* — x(2x%) — (2x*)*]dx

18



!mple 1 — Solution

==le(-3x4-—-x3-+ 2x* + x + 1) dx

cont’d

5 o 3 2 '
e e P e T o
5 4 * 4
»
15

19



!mple 3

Find the volume of the solid that lies under the paraboloid
z = x* + y?and above the region in the xy-plane bounded by

the line y = 2x and the parabola y = x?.

From the Figure below we see that D is a type | region and
D={(x,y) |0<x<2,x*?<y<2x}

20



!mple 3 - Solution

Thus,
Volume = ff (x? +y*)dA = f02 fxzzx(x2 + y2)dydx

21 f2x 2 1
= f f (x? + y3)dy|dx = j x%y + =y3]%5dx
0 X 0 3 *

2

2 x° 14
=f (———x4+—x3)dx
o\ 3

21



qmple 4

Evaluate the iterated integral f01 fxl sin(y?)dydx.

If we try to evaluate the integral as it stands, we are faced with
the task of first evaluating [ sin(y?)dy. But it's impossible to do

so in finite terms since Is not an elementary function. So we
must change the order of integration. This is accomplished by
first expressing the given iterated integral as a double integral.

We have
1 1
f fsin(yz)dydxsz sin(y?) dA
0 Jx D

where D ={(x,y) |0<x<1,x<y<1}.

22



!mple 4

We sketch this region. Then from the Figure below we see that
an alternative description of D as type Il region is
—{(xy) I0<y<10<x<y}-

sin(y?)dA = Sm(yz)dxdy xsin(y?)]ydy
I [ f [

f ysin(y2)dy = — = cos(y2)]}
0 2

= (1 — cos1)

23



Properties of Double Integrals
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-perties of Double Integrals

We assume that all of the following integrals exist. The first
three properties of double integrals over a region D follow
Immediately from Definition 2.

6 H [ f(x,y) + g(x,y)] dA = H f(x,v)dA + j ’ g(x,y) dA
D D D

7 || erteyyda=clf foy) da

If f(x, y) =2 g(x, y) for all (X, y) in D, then

8 JJ f(x,y)dA = H g(x,y) dA

D D

25



-perties of Double Integrals

The next property of double integrals is similar to the
property of single integrals given by the equation

["f(x)dx = [ f(x) dx + ["f(x)dx. 4 i
If D=D,; UD,, where D, and D, e D,
don’t overlap except perhaps on -
their boundaries (see Figure 17),
then Figure 17

9 H‘f(-\'. y)dA = [ fx.y) dA + || f(x.y) dA

26



-perties of Double Integrals

Property 9 can be used to evaluate double integrals over
regions D that are neither type | nor type Il but can be
expressed as a union of regions of type | or type II.
Figure 18 illustrates this procedure.

VA VA

D,

D D,
0 T 0 T
D is neither type I nor type II. D =D, uD,, D, is type |, D, is type II.
Figure 18(a) Figure 18(b)

27



-perties of Double Integrals

The next property of integrals says that if we integrate the
constant function f(x, y) = 1 over a region D, we get the
area of D:

10 U | dA = A(D)

D




-perties of Double Integrals

Figure 19 illustrates why Equation 10 is true: A solid
cylinder whose base is D and whose height is 1 has
volume A(D) - 1 = A(D), but we know that we can also write

its volume as ”D 1 dA.

Figure 19
Cylinder with base D and height 1 29
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!ble Integrals in Polar Coordinates

Suppose that we want to evaluate a double integral
J [ f(x, y) dA, where R is one of the regions shown in

Figure 1. In either case the description of R in terms of
rectangular coordinates is rather complicated, but R is
easily described using polar coordinates.

YA VA

R

- Y

0

\

0
@R={r,0)|0=sr<1,0<60<2mw} b)R={(r,0)|1=sr<2,0s6< 7}

Figure 1



-ble Integrals in Polar Coordinates

Recall from Figure 2 that the polar coordinates (r, 8) of a
point are related to the rectangular coordinates (X, y) by the
equations

7 g 8l .
ro=x"+y X =rcos 6 y = rsin 6

P(r, 0) = P(x, y)

=

Figure 2



-ble Integrals in Polar Coordinates

The regions in Figure 1 are special cases of a polar
rectangle

R={(r, 0)|asr<b, af 0L p}

which is shown in Figure 3.
VA VA r=h
3 =
\ 4+ :I \':'*‘_\' :4
R
R = y
0 : // r=a \ O i
. FB~T
M 22452=i * ol
Polar rectangle
@R={r,0)|0<r<1,0<6=<27} OR={r.0)|lsrs2,0s6osmz}

Figure 3

Figure 1



!ble Integrals in Polar Coordinates

In order to compute the double integral | [ f(x, y) dA, where
R Is a polar rectangle, we use the following theorem:

2 | Change to Polar Coordinates in a Double Integral If f is continuous on a polar
rectangle Rgivenby0 =as=r=>b,a= 0= 3, where ) = 8 — a = 2, then

([ £Cx.y) aa = ‘B .[,I’.f(r cos 0, rsin 6) rdrd@

R




!ble Integrals in Polar Coordinates

The formula in

2

says that we convert from rectangular to
polar coordinates in a double integral by writing

X =rcos dandy =r sin 6, using the appropriate limits of
Integration for r and &, and replacing dA by r dr dé.

Be careful not to forget the additional factor r on the right

side of Formula 2.

A classical method for remembering
this is shown in Figure 5, where the
“Infinitesimal” polar rectangle can be
thought of as an ordinary rectangle

with dimensions r d@ and dr and

therefore has “area” dA =r dr dé.

Figure 5



!mple 1

Evaluate | |, (3x + 4y2) dA, where R is the region in the
upper half-plane bounded by the circles x? + y2 =1 and
X2 +y2=4.

Solution:
The region R can be described as

R={(X,y)|y=0,1<x?+y?2<4} R
It is the half-ring shown in Figure 1(b), | vaypoy
and in polar coordinates itis given by  p_(,. ¢, 11<,<2.0= 9=
13!’32, OS HS 7L. Figure 1(b)



!mple 1 — Solution

Therefore, by Formula 2,

cont'd

ﬂ (x + dy?) dA — ’0” T (3rcos @ + 4r*sin®0) r dr do
R‘ LY LY
- O’T I" (3r°cos 6 + 4r’sin’0) dr df

i 4 :n2p]=2
= r’-cos @ + rsin“6|,_, do
JO

= "0'”(7 cos 6 + 15sin’6) d6

o/

= ["[7cos 0+ 51 = cos 26)] a6
g 1561 .29“ 157
= 7 sIn - S1n — T 5




qmple 2

Find the volume of the solid bounded by the plane z =0
and the paraboloid z =1 - x? - y2.

SOLUTION: If we put z = 0 in the equation of the
paraboloid, we get x? + y? = 1. This means that the plane
intersects the paraboloid in the circle x2 + y2 = 1, so the
solid lies under the paraboloid and above the circular disk
D given by x? + y? < 1. In polar coordinates D is given by
0<r<1,0<6<2mSincez=1-x?-y?>=1-r?the
volume is

_ 2 2 — 7 1 2
Volume = [[, (1 —x*—y*)dA= [~ | (1 —r?)rdrdf

o lod® = o 4 2

2 4 10



!ble Integrals in Polar Coordinates

What we have done so far can be
extended to the more complicated .
type of region shown in Figure 7. o
In fact, by combining Formula 2 AT e
with e
Figure 7
H f X, \ (/A — ’d ‘/,h((\:)~ ' > o) .\,) dx ([.\f' D={(r,0)|a=0=pB.h(0)=r=h(0)]

Where D is a type Il region, we obtain the following formula.

[ﬂ If f is continuous on a polar region of the form
D={r,0)|a<0=<pg nO)<r

HH

uu‘
D

< hy(6)}

then H f(x.y) dA = | ‘ (rcos 6, rsin 6) rdrdf

11



!ble Integrals in Polar Coordinates

In particular, taking f(x, y) =1, h,(8) =0, and h,(€) = h(8) in
this formula, we see that the area of the region D bounded
by 6=, 6= p,and r=h(0) Is

A(D)zﬂldA

B (h()
= rdrd0

a JO

B h(6)
B 2
- |! %] L
0

= | "m0 d6

12



!mple 3

Find the volume of the solid that lies under the paraboloid
Z = X% + y? above the xy-plane, and inside the cylinder
X? + y2 = 2X.

SOLUTION: The solid lies above the disk D whose boundary
circle has equation x? + y? = 2x or, after completing the square
(x — 1)? + y? = 1, In polar coordinates the boundary circle
becomes r? = 2rcosf, or r = 2cos8. Thus the disk D is given
by
D = {(r,9)| _z <60 <E,O <r< 26059}
2 T2~

_ 2 2 _ (T2
Volume = [f (x? +y*)dA = f_n/z

/2 7,.4 /2 31T
= j —]2¢0s9qp = 4j (cos0)* df = —
—17/2 4 —1/2 2

) OZCOSH (r?) rdrd6

13



!mple 4

Change the Cartesian integral into an equivalent
polar integral.

(a)fl f\/\}z(xz + y2)dydx = fznfl(rz)rdrdH

(b) f f (xy)dydx = f f (rcosOsin®)rdrdf
() J, IW(H\/;T)dydx —fn/zf ( )rdrd@

(d)f: Jy =a e~ Y dxdy =f0n/2 fOB(e"'z)rdrdH
(e) f_ll ffm(x + 2)dxdy = f;n fol(rcose + 2)rdrd0

14



!mple 5

Consider the integral [~ [~ e~(**+¥*)dxdy.

In polar coordinates the boundaries become
D={(r0)|0<60<m/2,0<r< o}

N e 2 412 w2 e,
j j e~ (*+¥%) dxdy =j j e " rdrdd
o Jo o Jo

2

Note that, foooe T rdr = llmf e " rdr

a—0oo
1 1
—Cll_r)gc——(e —1) =3

/21

Sof f e~ (*+¥%) dxdy = Jy dH——

15



!mple 5

cont’d

Let | = foooe‘xzdx, then

(o) o) [
0 0 0 0 4

16



15 Multiple Integ_rals

Copyright © Cengage Learning. All rights reserved.



Triple Integrals

Copyright © Cengage Learning. All rights reserved.



qle Integrals

We have defined single integrals for functions of one
variable and double integrals for functions of two variables,
so we can define triple integrals for functions of three
variables.

Let’s first deal with the simplest case where fis defined on
a rectangular box:

1 B={(x,y,z)|asx<b,c<y<d, r<z<s}

The first step is to divide B into sub-boxes. We do this by
dividing the interval [a, b] into | subintervals [x; _;, x] of
equal width Ax, dividing [c, d] into m subintervals of width
Ay, and dividing [r, s] into n subintervals of width Az.



qle Integrals

The planes through the endpoints of
these subintervals parallel to the
coordinate planes divide the box B
Into Imn sub-boxes

Ijk [X| -1 |] [yj—li yj] X [Zk -1 Zk] P

which are shown in Figure 1. ) T

Each sub-box has volume
AV = AX Ay Az.

Figure 1



qle Integrals

Then we form the triple Riemann sum

m n

[
2 > f (X, Yije, zije) AV

i=1 j=1 k=1

where the sample point (x/%, yi¥, z%) is in By,

By analogy with the definition of a double integral, we
define the triple integral as the limit of the triple Riemann
sumsin|2].




“Ie Integrals

3 | Definition The triple integral of f over the box B is

[ f0ey.2)av = lim S
)l e

m
i=| y=

> Flxk, yi%. zi%) AV

| k=1

if this limit exists.

Again, the triple integral always exists if f is continuous. We
can choose the sample point to be any point in the sub-
box, but if we choose it to be the point (x; y;, z,) we get a
simpler-looking expression for the triple integral:

m n

san /
m f(x,y,z)dV= 1lim 2 2 2 f(xi, v, zx) AV
B

[, m, n—o i=1 1:1 k=1




qle Integrals

Just as for double integrals, the practical method for
evaluating triple integrals is to express them as iterated
Integrals as follows.

4 | Fubini’s Theorem for Triple Integrals If f is continuous on the rectangular box
B = [a, b] X [¢.d] X [r, s], then

I reyezyav =" flx v 2) dx dy d:

B

The iterated integral on the right side of Fubini’'s Theorem
means that we integrate first with respect to x (keeping

y and z fixed), then we integrate with respect to y (keeping
z fixed), and finally we integrate with respect to z.



“Ie Integrals

There are five other possible orders in which we can
Integrate, all of which give the same value.

For instance, if we integrate with respect to y, then z, and
then x, we have

ALl
.

H‘ f(x,y,2)dV = ’uh ‘,\ ‘(‘/f (x,y,2z) dydzdx

B



!mple

Evaluate the triple integral mB xyz? dV, where B is the
rectangular box given by

B={(X,y,2)|0<x<1,-1<y<2,0<Lz2L3}

Solution:
We could use any of the six possible orders of integration.

If we choose to integrate with respect to x, then y, and
then z, we obtain

*e N 4 '.\’ \2 - l 5

’ ’ ‘ xyz°-dV = ‘ ‘ ‘ xyz°-dx dy dz
Ve . ” Y= l . ()

B



cont’d

!mple — Solution
3 2 xz_VZ?' = -
- J‘O J‘—I [ 5 :|-\.=O (1')" dz

10



qle Integrals

Now we define the triple integral over a general bounded
region E in three-dimensional space (a solid) by much the
same procedure that we used for double integrals.

We enclose E in a box B of the type given by Equation 1.
Then we define F so that it agrees with f on E but is O for
points in B that are outside E.

By definition,

m f(x,y,z)dV = ‘H F(x,y,z)dV
E

B

This integral exists if f is continuous and the boundary of E
IS “reasonably smooth.”

11



qle Integrals

The triple integral has essentially the same properties as
the double integral.

We restrict our attention to continuous functions f and to
certain simple types of regions.

12



“Ie Integrals

A solid region E is said to be of type 1 if it lies between the
graphs of two continuous functions of x and y, that is,

5 E={(xy,2) | (X,y) € D, uy(x, y) £z < uy(X, y)}

where D is the projection of E onto the xy-plane as shown
In Figure 2. N

2= Uy (X5 Y)

E 2

| M z=u (x,V)
S 1

|

|

|
D | y

A type 1 solid region
Figure 2

13



qle Integrals

Notice that the upper boundary of the solid E is the surface
with equation z = u,(X, y), while the lower boundary is the

surface z = u,(x, y).

By the same sort of argument, it can be shown that if E is a
type 1 region given by Equation 5, then

6 H‘ f(x,y,2)dV = H ['-,..(.\-./,(L Y, Z) (l:] dA
o Ju v

The meaning of the inner integral on the right side of
Equation 6 is that x and y are held fixed, and therefore

u;(X, y) and u,(x, y) are regarded as constants, while

f(X, Yy, 2) Is integrated with respect to z. 14



“Ie Integrals

In particular, if the projection D of E onto the xy-plane is a
type | plane region (as in Figure 3),

I= X V)

I J.

1

0 __L' |

a T —t—
B == Ty
l//\/ql XNy D: 3

Y= sX)

A type 1 solid region where the projection D is a type | plane region

Figure 3

15



“Ie Integrals

In particular, if the projection D of E onto the xy-plane is a
type | plane region (as in Figure 3), then

E={X,y,2) [asx<Dh, gi(x) Sy <gy(X), Uus(X, y) £ Z < Ux(X, y)}
and Equation 6 becomes

*ua(x, v)

7 J}U f(x,v,2)dV ‘ _LM ’,.l f(x, v, z) dz dy dx

) Juyla vl




“Ie Integrals

If, on the other hand, D is a type Il plane region (as in
Figure 4), then

E={xy,2) | c<y=d, hy(y) < x<hy(y), uy(x, y) <z < uy(x, y)}
and Equation 6 becomes

s
ZA
' Z=150N,0Y)
L z = 1y(x, ¥)
4
e g N
0L \J'r Jl ”
//: | 'lt\ —
x } D | | :
3 x=haiy)

A type 1 solid region with a type Il projection
Figure 4



qle Integrals

A solid region E is of type 2 if it is of the form

E=1X%Y,2) [ (¥, 2) € D, uy(y, 2) =X < Uy(y, 2)}

where, this time, D Is the projection
of E onto the yz-plane (see Figure 7).

The back surface is x = uy(y, 2),
the front surface is X = u,(y, 2),
and we have

A type 2 region
Figure 7

.

us( v, z)

10 ‘H f(x,y,z)dV = H |: ‘ f(x,y,z) dx:| dA
E D

Ju(v, z)

18



qle Integrals

Finally, a type 3 region is of the form
E={(X,Y,2) | (X,2) € D, uX, 2) Ly < u,(X, z)}

where D is the projection of E onto the xz-plane, y = u,(X, z)
IS the left surface, and y = u,(X, z) is the right surface
(see Figure 8).

y=U(x, z)

/ .\’ — “ll“ :] .\'
X

A type 3 region
Figure 8



“Ie Integrals

For this type of region we have

1 mf X, v,z)dV = H [‘”“ * f(x, .\’,:)cl.\'] dA

ulx, z)°

In each of Equations 10 and 11 there may be two possible
expressions for the integral depending on whether D is a
type | or type Il plane region (and corresponding to

Equations 7 and 8).

20



!mple

Evaluate [ff. vx2+ z% dV where E is the region bounded
by the paraboloid y = x% + z* and the plane y = 4.
SOLUTION: If we regard it as a type 1 region, then we
need to consider its projection onto the xy-plane:

The trace of y = x? + z% in the z = 0 plane is y = x? and
the trace of the planey =4 is the line y = 4.

This Is the parabolic region

21



!mple - Solution

From y = x? + z? we obtain z = +/y — x2, so the lower
boundary surface of E is z = —/y — x2 and the upper
surface is z = \/y — x2. Therefore the description of as
a type 1 region is

128
jﬂ\/x2+zz dV = f j j \/x2+zzdzdydx——n
A x? Jy—x2 15

22



Applications of Triple Integrals

23



“Applications of Triple Integrals

Recall that if f(x) > 0, then the single integral [” f(x) dx
represents the area under the curve y = f(x) from a to b,
and if f(x, y) = 0, then the double integral HD f(x, y) dA
represents the volume under the surface z = f(x, y) and
above D.

The corresponding interpretation of a triple integral

mE f(x,y, z) dV, where f(x, y, z) 2 0, is not very useful
because it would be the “hypervolume” of a
four-dimensional object and, of course, that is very difficult
to visualize. (Remember that E is just the domain of the
function f; the graph of f lies in four-dimensional space.)

24



qm:ations of Triple Integrals

Nonetheless, the triple integral mE f(x, y, z) dV can be
interpreted in different ways in different physical situations,
depending on the physical interpretations of x, y, z and

f(x, Yy, 2).

Let’'s begin with the special case where f(Xx, y, z) = 1 for all
points in E. Then the triple integral does represent the
volume of E:

12 VE) = ||| av

25



qm:ations of Triple Integrals

For example, you can see this in the case of a type 1
region by putting f(x, y, z) = 1 in Formula 6:

[ v = [ = bt - o
E D o D

and we know this represents the volume that lies between
the surfaces z = u,(x, y) and z = u,(x, y).

26



qmple

Use a triple integral to find the volume of the tetrahedron T
bounded by the planesx+ 2y +z=2,x=2y,x =0, and
z =0.

Solution:
The tetrahedron T and its projection D onto the xy-plane

are shown in the Figures below.

410.0,2)

27



!mple — Solution

The lower boundary of T is the plane z = 0 and the upper
boundary is the plane x + 2y + z = 2, thatis, z =2 — x — 2y.

cont’d

Therefore we have
V(1) = ||| av
v?]'_t

"] Ll=x)/2 P2=x-2y
. ‘ dz dvy dx
. () Y \/2 ( i

(U2 1
jo L/z (2 —x — 2y)dydx 3

(Notice that it is not necessary to use triple integrals to
compute volumes. They simply give an alternative method
for setting up the calculation.)

JO

28



!mple

Find the volume of the region D enclosed by the surfaces
z=x*+3y?andz =8 — x?% — y*

Solution The volume is

Volume = jffl av
E

To find the limits of integration for evaluating the

Integral, we first sketch the region. The surfaces intersect
on the elliptical cylinder x% + 3y? =8 — x? — y2 or

x? + 2y% = 4, z > 0. The projection of E onto the xy-plane,
is an ellipse with the same equation: x? + 2y* = 4.

29



mple - Solution

J(4—x2)/2 Jx2+3y2

2 J(4—x2)/2 8-—x%-y?
Volume = jff 1dV =f f 1dzdydx
_2 —_
E

= 821

L.eaves at
z = 8 — x?

2.0, 4 F
Enters at
z=x2+ 3y2 ——

Enters at T e (—2. 0. 0)
= V(@4 — x2)y2 —

(2,0, 0)

X / \
Leaves at 8 y
y= V(@4 — x2)2

FIGURE 15.30 The volume of the region enclosed by two paraboloids,
calculated in Example 1.
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!mple

Find the volume of the tetrahedron in the accompanying

figure.

1.1, 0)

FIGURE 15.32 The tetrahedron in
Example 3 showing how the limits of

integration are found for the order dz dy dx.

31



!mple - Solution

Volume = fﬂl av
E

First we find the z-limits of integration. A line parallel to the
z-axis through a typical point (X, y) in the xy-plane “shadow’
enters the tetrahedron at z = 0 and exits through the

upper plane where z =y - x.

Next we find the y-limits of integration. On the xy-plane,
where the sloped side of the tetrahedron crosses the plane
along the line y = x. Aline through (X, y) parallel to the y-
axis enters the shadow in the xy-plane at y = x and exits at

y =1.

32



!mple - Solution

Finally we find the x-limits of integration. As the line parallel
to the y-axis in the previous step sweeps out the shadow,
the value of x varies from x =0 to x = 1.

Thus,

1 1 ry—Xx 1
Volume = fﬂ 1dV = j j j 1dzdydx =
i 0 Yx YO 6

33
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Triple Integrals in Cylindrical
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“e Integrals In Cylindrical Coordinates

In plane geometry the polar coordinate system is used to
give a convenient description of certain curves and regions.

Figure 1 enables us to recall the connection between polar
and Cartesian coordinates.

VA

P(r.0)=P(x,y)

=Y

0 X

Figure 1



qe Integrals In Cylindrical Coordinates

If the point P has Cartesian coordinates (x, y) and polar
coordinates (r, 8), then, from the figure,

X=rcosfd y=rsind

2= x2+y? tan@%
In three dimensions there is a coordinate system, called
cylindrical coordinates, that is similar to polar coordinates
and gives convenient descriptions of some commonly
occurring surfaces and solids. As we will see, some triple
Integrals are much easier to evaluate in cylindrical
coordinates.



Cylindrical Coordinates



qndrical Coordinates

In the cylindrical coordinate system, a point P in
three-dimensional space is represented by the ordered
triple (r, 6, z) where r and @ are polar coordinates of the
projection of P onto the xy-plane and z is the directed
distance from the xy-plane to P. (See Figure 2.)

¢ P(r.0.z)

vx‘\\%
Vv
X y (1, 6,0)

The cylindrical coordinates of a point

Figure 2



qndrical Coordinates

To convert from cylindrical to rectangular coordinates, we
use the equations

1 X = rcos 6 y=rsin

L]
|
]

whereas to convert from rectangular to cylindrical
coordinates, we use




!mple 1

(a) Plot the point with cylindrical coordinates (2, 27/3, 1)
and find its rectangular coordinates.

(b) Find cylindrical coordinates of the point with rectangular
coordinates (3, -3, —7).

Solution:

(a) The point with cylindrical coordinates (2, 27/3, 1) Is
plotted in Figure 3.

Figure 3



!mple 1 — Solution

cont’d

From Equations 1, its rectangular coordinates are

=9 ﬁ—z _l = —1]
X COS 3 5

2 3
y = 2sin—77= 2<£) = /3

3 2

L
|
—

Thus the pointis (-1,./3, 1) in rectangular coordinates.



!mple 1 — Solution

(b) From Equations 2 we have

r=+32+ (=32 =32

—3 T
tan f = —= —1 SO O =—+ 2nm
3 4

cont’d

z= —7

Therefore one set of cylindrical coordinates is
(32, 7xl4, =7). Another is (32, —xl4, =T7).

As with polar coordinates, there are infinitely many choices.
10



!mple 2

Describe the surface whose equation in cylindrical
coordinates is

(@ z-=r.

By converting the equation into rectangular coordinates, we
get

This Is a circular cone whose axis Is the z-axis.

11



!mple 2

(b) r=2.
Converting the equation into rectangular coordinates, yields

This is a circular cylinder whose axis is the z-axis.

12



!mple 2

(C)z=4-—r1r°
Converting the equation into rectangular coordinates, yields

z=4—(x*+y?%
This Is a paraboloid whose axis is the z-axis.

(d) 2r2 4+ z% = 1.
Converting the equation into rectangular coordinates, yields
2(x2 +yH) +z2 =1
XZ 2
n y
1/2  1/2

This is an ellipsoid

+z¢=1

13



Evaluating Triple Integrals with
Cylindrical Coordinates

14



-ating Triple Integrals with Cylindrical Coordinates

Suppose that E is a type 1 region whose projection D onto
the xy-plane is conveniently described in polar coordinates

(see Figure 6).
1 Z=UH(N, )

A3
\

!
\
|
l
[z=u,(x, V)
I

|
Sell——rbe
J

.‘v

r=nh(0) o

r=h,(0)

Figure 6

15



-ating Triple Integrals with Cylindrical Coordinates

In particular, suppose that f is continuous and

E={(X,y,2)[|(X,y) € D, uy(X, y) £Z < uy(X, y)}

where D Is given in polar coordinates by

D={(r, §)|a< 0<B, hy(0) <1 < h,(8)}

We know

3 m}‘ X, y,z)dV = ” [’l:'((\l\l) flx:¥;.2) d:] dA

16



-ating Triple Integrals with Cylindrical Coordinates

But to evaluate double integrals in polar coordinates, we
have the formula

*N,(6) "u:(r cos B, rsin#l)

4 H’ f(x,y,2)dV = ‘f ’ f(rcos @, rsinf,z) rdzdrdf
;

h(8) Jurcos 6. rsin@) "

Formula 4 is the formula for triple integration in
cylindrical coordinates.

17



-ating Triple Integrals with Cylindrical Coordinates

It says that we convert a triple integral from rectangular to
cylindrical coordinates by writing X =r cos 6,y =r sin 6,
leaving z as it Is, using the appropriate limits of integration

for z, r, and @, and replacing dV by r dz dr dé.
(Figure 7 shows how to remember this.)

ZA

Volume element in cylindrical
coordinates: dV =r dz dr d@

Figure 7

18



‘ting Triple Integrals with Cylindrical Coordinates

It is worthwhile to use this formula when E is a solid region
easily described in cylindrical coordinates, and especially
when the function f(x, y, z) involves the expression x? + y2.

19



!mple 3

Evaluate [ff_ y/x% + y? dV, where E is the solid lies within

the cylinder x?2 + y2 = 1, below the plane z = 4, and above
the paraboloid z =1 — x? —y2. (See Figure 8.)

=4 l
(. (0.0, 4)

JRSLE
(1,0, 0)

Figure 8

20



!mple 3 — Solution

SOLUTION: In cylindrical coordinates the cylinderisr=1
and the paraboloid is z = 1 — r?, so we can write

E={(, 62)|0<60<27r,0<r<1,1-r°<z<4}

ﬂj\/x2+y2 dv = jznjjlrzx/_rdzdrde

r 2T
:Jo . fl zr dzdrdo —j j r?z] 1 -2 drdf
-Tr

an r1 21 5 1
= (3r +1r*) drdf = f (r3+—)
Jo Jo 0 5

21



!mple 4

e

Evaluate f | == f Nezare: (x% + y?%) dzdydx.

SOLUTION: This iterated integral is a triple integral over
the solid region
={@ydl-2sx<2,—Ja-2<y<Va—x2fx?+y2?<z<4]

and the projection of E onto the xy-plane is the disk
x% 4+ y% < 4. The lower surface of E is the cone

z = /x2 + y? and its upper surface is the plane z = 4.
This region has a much simpler description in cylindrical

coordinates:

E={(r0,2]0<0<2n,0<r<2,r<z<2}
22



!mple 4

Therefore we have

j j\/4 szx2+y (x? +y%) dZdydx_Jf (x2 + y2)dV

T N 16m
— f f f TZ rdzdrdf = f j j 7"3 dzdrdf = —
0 0 Jr 0 o Jr c

23
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Triple Integrals in Spherical
15.9 Coordinates
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Qe Integrals in Spherical Coordinates

Another useful coordinate system in three dimensions is
the spherical coordinate system.

It simplifies the evaluation of triple integrals over regions
bounded by spheres or cones.



Spherical Coordinates



qerical Coordinates

The spherical coordinates (p, 6, ¢ of a point P in space
are shown in Figure 1, where p = |OP| is the distance from
the origin to P, #is the same angle as in cylindrical
coordinates, and ¢ is the angle between the positive z-axis
and the line segment OP.

y P(p. 0. &)

The spherical coordinates of a point

Figure 1



Qerical Coordinates

Note that

The spherical coordinate system is especially useful in
problems where there is symmetry about a point, and the
origin is placed at this point.



Qerical Coordinates

For example, the sphere with center the origin and radius c
has the simple equation p = ¢ (see Figure 2); this is the
reason for the name “spherical” coordinates.

p = C, a sphere

Figure 2



Qerical Coordinates

The graph of the equation &= c is a vertical half-plane
(see Figure 3), and the equation ¢ = c represents a
half-cone with the z-axis as its axis (see Figure 4).

A

6 = c, a half-plane ¢ = ¢, a helf-cone

Figure 3 Figure 4



qerical Coordinates

The relationship between rectangular and spherical
coordinates can be seen from Figure 5.

From triangles OPQ and OPP’ we have

Z=pCOS ¢ r=psin ¢

PNz
Pip, 6. ¢)

\

-\ !

P'(x,y.0)

Figure 5



qerical Coordinates

Butx =r cos dandy =r sin 6, so to convert from spherical
to rectangular coordinates, we use the equations

= pCoS ¢

1 X = psin ¢ cos 0 y = psin ¢ sin 0

Also, the distance formula shows that

We use this equation in converting from rectangular to
spherical coordinates.

10



!mple 1

The point (2, /4, =/3) is given in spherical coordinates.

Plot the point and find its rectangular coordinates.

Solution:
We plot the point in Figure 6.

» (2, /4, 7/3)

Figure 6

11



!mple 1 — Solution

cont’d

From Equations 1 we have

, LT T V3
xX=psingp cosf =2sin— cos— = 2
3 4

-

, ; 3 _

y = psind¢ sin 0 =25in1r-sinz =9 £ L - l
3 4 2 2 )

z = pcosdo =2cos%=2(£)=l

Thus the point (2, /4, z/3) is (\/3/2,./3/2. 1) in rectangular

coordinates.
12



!mple 2

Describe the surface whose equation in spherical
coordinates is p = sing sinf.

SOLUTION: Using that y = psing sinf we get
y = ,DSln(P sinf = pZ — xz +y2 _I_ZZ
x? +y2 —y+22 =0

1 1
2 2 - = 2 _
X< +y y+42 4+Z 0
1 1
2 _ = 2 _ _
X +(y 2) + z 2

This is a sphere with center (O,%, O) and radius % .

13



Evaluating Triple Integrals with
Spherical Coordinates

14



_ating Triple Integrals with Spherical Coordinates

In the spherical coordinate system the counterpart of a
rectangular box is a spherical wedge

E={(p, 0,4 |a<p<b, a<d<B c<p<d)

where a>0and f— a<2x, and d — c < 7. Although we
defined triple integrals by dividing solids into small boxes, it
can be shown that dividing a solid into small spherical
wedges always gives the same result.

15



-ating Triple Integrals with Spherical Coordinates

We have the following formula for triple integration in
spherical coordinates.

2 [[renaar

where E is a spherical wedge given by

E={(p.0.(/))|a-<ép$b. a= 0= p, ('Sd)‘éd}

16



-ating Triple Integrals with Spherical Coordinates

Formula 3 says that we convert a triple integral from
rectangular coordinates to spherical coordinates by writing

X = psin ¢ cos 4 y=psin gsin 4 Z = pCOS ¢

using the appropriate limits of integration, and replacing dv
by p?sin gdp dodg.

17



‘ting Triple Integrals with Spherical Coordinates

This is illustrated in Figure 8.

Volume element in spherical
coordinates: dV = p? sin ¢dp d@d¢

Figure 8

18



-ating Triple Integrals with Spherical Coordinates

This formula can be extended to include more general
spherical regions such as

E={(0. 6, ) | a<0<fc<$p<d, :(6, P < p< 90 A}

In this case the formula is the same as in [3] except that the
limits of integration for p are g,(6, ) and g,(é, ¢).

Usually, spherical coordinates are used in triple integrals
when surfaces such as cones and spheres form the
boundary of the region of integration.

19



!mple 3

3/2
Evaluate [ff, e(*+¥*+2°)"" gy where E is the unit ball:
E={(xy2|x*+y*+2z* <1}

SOLUTION: Since the boundary of E is a sphere, we use
spherical coordinates:

E={(p0,9)0<p<10<0<2r0<¢<m}.
Thus,

(x2+y? 2)3/2 et 5 .
fff e\ X"ty rzt) o qy =f f f eP” pcsing dpdOdg
E o Jo Jo

4
=—m(e — 1).
3 20



!mple 4

Evaluate [ff. (x* +y* + z?) dV, where E is the hemisphere
E={(xy2)|x*+y*+2z*2?<9,z> 0}

SOLUTION: Since the boundary of E is a part of a sphere,
we use spherical coordinates:

E={(p0,0)|0<p<30<60<2m0<¢<m/2}.
Thus,

m/2 21 (3
ff (x?+y%+2z%)dV = f f f p? p?sing dpdfdg
E o Jo Jo

21



!mple 5

Evaluate [ff, (x*+y?) dV, where E lies between the
spheres x?+y%+2z% <9 and x%+y* + z% < 4.

SOLUTION: We use spherical coordinates:
E={(p0,p)|2<p<30<60<2m0<¢<mn}.
Note that
x2+y? = p?sin®¢pcos?0 + p?sinpcos?O = p?sin’e

Thus,
T 2T 3 1688
fff (x%+y2)dV = f f f p*sin®¢ dpdfdep = ——n
E o Jo J2 5

22



!mple 6

Use spherical coordinates to find the volume of the solid
that lies above the cone z = +/x2 + y2 and below the
sphere x? + y? + 72 = z. (See Figure 9.)

N x4+ '\'2 + 7=z

I((). 0. 1)

( \

, : 1 —

-

\ § '

\ \ ] -4-»- ',7'/ / = |
3 % . Pre— - A

N -

~ |/

X

Figure 9

x2+ y?

23



!mple 6 — Solution

Notice that the sphere passes through the origin and has
center (O, O, %). We write the equation of the sphere in

spherical coordinates as

p% = pCoS ¢ or p = pCOS ¢

The equation of the cone can be written as

pcos ¢ = /p?sin¢ cos26 + p?sin¢ sin26

= psin ¢
24



!mple 6 — Solution

cont’d

This gives sin ¢ = cos ¢, or ¢ = /4. Therefore the
description of the solid E in spherical coordinates is

E={(p, 6,9 |0<60<L27, 0L 4L 4,0< p<LcCos ¢

25



!mple 6 — Solution

cont’d

Figure 11 shows how E is swept out if we integrate first with
respect to p, then ¢, and then 6.

/ .
. /
el /
“‘,“7‘*{:\
xa Ty

p varies from 0O to cos ¢

while ¢ and @ are constant.

¢ varies from O to /4
while @is constant.

Figure 11

@varies from 0to 2 .

26



!mple 6 — Solution

cont’'d
The volume of E is
27w (*7w/4 [cosd ., .
V(E)=J~J]~ dV=J:) f“ ! p-sin¢ dp dd db
E
" 7% 3 p=cos ¢
=" do r sinc!)[p—:l dop
0 0 3
p=0
29w/ 27T cos’ ¢ Ll
__ = e 3 oy SR | .
2 U; sin ¢ cos ¢ do 3 |: 2 ]0 .

27



