

Basic Chem	Components: ical properties	
Compound	Oxide Composition	Ratio ≈
Tricalcium silicate 3CaO.SiO2	C ₃ S	25 – 65
Dicalcium silicate 2CaO.SiO2	C ₂ S	10 – 50
Tricalcium aluminate 3CaO.Al2O3	NOS I	3 – 15
Tetracalcium aluminoferrite 4CaO.Al2O3.Fe2O3	C₄AF	5 – 15
Gypsum	CaSO₄	2 – 4
Alkalis	Na ₂ O, K ₂ O	0.5 – 1.5

	Basic Components: Effect on properties
Oxide	Effect on properties
C ₃ S	Responsible for strength at ages between 1 and 14 days
C ₂ S	Responsible for most strength late ages (after 14 days)
C ₃ A	Responsible for strength early ages (first 24 hours)
C₄AF	Minor effects
CaSO ₄ 2 - 4 %	Prevents flash set by forming Ettringite in amounts that do not harm concrete

	tineness	of ceme	nt	
Table 3.5:	Examples of measured by	f specific surfa / different met	ce of cement	
Cement	Specific surface (m ² /kg) measured by:			
	Wagner method	Lea and Nurse method	Nitrogen adsorption method	
A	180	260	790	
В	230	×415	1000	

Age	ASTINI C 150-05 (mortar cube), cement type (Table 2.3)))				
(days)	N.	IA	11#	IIA#	ш	HIA	IV	V
ļ		-	-	-	12.0	210.0	-	-
3	12.0 (1740)	10.0 (1450)	10.0 (450)	8.0 (1160)	24.0 (3480)	19.0 (2760)	-	8.0 (1160)
7	19.0 (2760)	16.0 (2320)	17.0 (2470)	14.0 (2030) (=	-		7.0 (1020)	15.0 (2180)
28	28.0ª (4060)	22.0 ^a (3190)	28.0 ^a (4080)	22.03	-	-	17.0 (2470)	21.0 (3050)

Direct tensile strength of cement using Briquette Method

- ASTM C 190. CRD 260-01
- Test cement mortar Briquettes.
- A minimum of 3 samples are required to obtain result.
- The strength of each is P/A.
- Take the average.
- Accepted values must be within 15% of the average.

13/10/2021

Corrected core strength to standard cylinder (textbook p 302)

Curing of Concrete

HISHAM QASRAWI

Principle

Curing is the process used to continue hydration of cement and block capillary pores to produce high quality concrete with

- High strengthHigh durability
- Low permeability

Importance of curing

 Approximate curing period for certain degree of hydration

w/c	Degree of hydration	Curing
0.40	50%	3 days
0.45	60 %	7 days
0.50	70 %	14 days
0.60	92 %	6 months
0.70	100%	1 year
> 0.70	100%	impossible

Curing Methods Sprinkle with water

• Special precautions must be considered

What are the main disadvantages?

Curing Concrete

Curing Methods

- Cover with wet sand.
 - Useful in hot weather.
 - Sand can be reused in construction
- Cover with sawdust (نشارة الخشب)
 - Make sure that it does not contain tanic acid or oxalic acid.
 - Not used in Jordan

Curing Concrete

Curing Methods Cover with wet hessian or burlap

Curing Concrete

Curing Methods Cover with impermeable membrane

Curing Compounds

- Curing admixtures.
 - Added to concrete mixtures.
- Curing paints
 - Form impermeable membranes on the surface of concrete.
 - Correct application is a must.

Curing Concrete

Keep formwork in-place

Keep concrete immersed in water

- Concrete samples.
- Precast concrete elements.

Curing Concrete

Self curing concrete

- Self curing concrete allows 'internal curing' by allowing for curing 'from the inside to outside' through the internal reservcirs:
- saturated lightweight aggregates,
- super absorbent polymers, or
- saturated wood fibers (for special concretes)

Curing Concrete

Microwave curing

- A new method for precast concrete elements.
- Microwaves have the potential to deeply penetrate a material, which enables heating from within the material.
- The current technology is suitable for heating mediumthick products.
- concrete can be cured in less than six hours without the use of chemical accelerants. This is almost three times faster than conventional steam and other heating methods, which can take between 12-24 hours

Curing Concrete

- Contact some practicing engineers in Jordan and obtain the following information:
 - The methods of ouring used in.
 - The period of curing that prevail in local projects for footings, columns, walls and roofs (beams and slabs).

Curing Concrete

11/16/2021

then - for	A A A A A A A A A A A A A A A A A A A
Slump (mm)	Degree of workability
Less than 20	Very low
30 to 50	Low
80 to 100	Medium
120 to 150	High
Greater than 180	Very high

	Flo	w Ta	ble T	est	
		D	IN	Hish	
	Flo	w (%) = -	$D_f - D_f$	\$ x100%	
Percentage of flow	0 - 20%	15-60 %	50-100 %	90-120%	110-150%
Concrete		05			
consistency & workability	Ury Very low	low	normal	high	Sloppy very high

tean - h		A.	1º
the man with	and for the	A CONT	
and all and a	- State L	S /	Constant (
Consistency description	Slump, mm	Slump, in.	Vebe, s
Extremely dry	- 6	57 -	32 to 18
Very stiff			18 to 10
Stiff	0 to 25	0 to 1	10 to 5
Stiff plastic	25 10 75	1 to 3	5 to 3
Plastic	(25 to 125	3 to 5	3 to 0
Very plastic	125 to 190	5 to 7-1/2	

Sieve size		Percentage by mass passing sieve							
			Nominal size of g	Nominal size of graded aggregate					
mm	nm SI in.		40mm	25 mm	20 mm	12 mm			
	Fa		(جوریه) (۱۱۰)	(فوليه) (1 in)	(حمصيه) 3	(عدسیه) ()			
			$(1\frac{1}{2})$ m.)	(1)	$(\frac{-4}{4}$ in.)	$(\frac{1}{2}$ In.)			
51	50	2	100	-	-	-			
38	40	$1\frac{1}{2}$	80 - 100	100	-	-			
25.4	25	1	20 - 50	95 - 100	100	-			
19	20	$\frac{3}{4}$	10 - 30	40 - 80	95 - 100	100			
12.7	12-14	$\frac{1}{2}$	-	5 - 50	50 - 80	90 - 100			
9.5	10	$\frac{3}{8}$	0 - 10	0-15	25 - 60	80 - 100			
4.75	5	$\frac{3}{16}$	0 – 5	0-5	0 - 10	5 - 50			
2.36	2.4	#8	0-2	0-5	0 - 10	0 – 25			
0.075	#200	#200	0 – 2	0-2	0-2	0-2			

Grading requirements for coarse aggregate according to J.S. (Jordanian Standards)

Grading requirements for fine aggregate according to J.S. (Jordanian Standards)

Sieve size		Percentage by ma	Percentage by mass passing sieve				
		Nominal size of g	Nominal size of graded aggregate				
mm	No.	9.5 mm (خشن) (<mark>3</mark> in.)	4.75 mm (متوسط) (No. 4)	1.18 mm (ناعم) (No. 8)			
9.5mm	$\frac{3}{8}$ in.	95 - 100	100	-			
4.75 mm	4	80 - 100	90 - 100	-			
2.36 mm	8	50 - 80	75 - 100	100			
1.18 mm	16	20 - 70	55 - 90	90 - 100			
600 µm	30	10 - 35	35 - 59	60 - 90			
300 µm	50	5-15	8-30	20 - 60			
150 μm	100	0-5	0 – 10	0-20			
75 µm	200	0-5	0 – 5	0 - 10			

Main Steps of Mix Design Based on ACI 211.1 with Example

Absolute Volume Method

Hisham Qasrawi

Step 1: Choice of slump

- Generally, the slump depends on the main site conditions and requirements. – Usually, the slump is specified in the project requirements.
 - Take care for section sizes. Narrow sections (such as ribs in slabs) require high workability while wide sections (such as foundations) require low workability.
 - Take care for environmental conditions.

Step 2: Choice of NMSA

- Take care for section sizes. Narrow sections (such as ribs in slabs) require small NMSA while large sections (such as foundations) require high NMSA.
- The higher the NMSA, the lower the costs.

Step 3: Determine the strength of

is the

Table 17.3:Required increase in strength for specified
compressive strength when no tests records
are available, according to ACI 318–05

Specified compr	Required increase in strength		
MPa	psi	MPa	psi
less than 21	less than 3000	7	1000
21 to 35	3000 to 5000	8.5	1200
35 or more	5000 or more	10.0	1400

- Assume that a concrete mix will be designed for concrete columns at HU campus. The cylinder strength is 25MPa at 28days and the
 - standard deviation is not known.
 - Then the margin is 8.5MPa.
 - The design strength is
 - 25+8.5=33.5MPa.

Step 4: Determine the w/c

ratio

The w/c ratio is the lowest of

. That required for strength (from table)

TABLE A1.5.3.4(a) — RELATIONSHIPS BETWEEN WATER-CEMENT RATIO AND COMPRESSIVE STRENGTH OF CONCRETE (SI)

	Water-cement ratio, by mass				
Compressive strength at 28 days, MPa*	Non-air-entrained concrete	Air-entrained concrete			
. 40	0.42				
35	0.47	0.39			
30	0.54	0.45			
25	0.61	0.52			
20	0.69	0.60			
15	0.79	0.70			

Step 4: Determine the w/c ratio if other requirements prevail.

- 2. That required for durability:
 - $W/C \le 0.5$ for moderate sulfate attack (use
 - SRPC or MSRPC)
 - W/C \leq 0.45 for severe sulfate attack (use SRPC)

Hisham Oas

- $W/C \le 0.5$ to resist severe cold weather.
 - Concrete must be air-entrained.
- 3. That required for permeability
 - $W/C \le 0.5$ for permeability.
- N.B: Although ACI allows the use of OPC and reduce w/c by 0.05, long term studies
- showed that concrete remains less durable

- For strength 28.5 MPa, then the w/c
 - ratio is between 0.54 and 0.47
- Interpolation will give that the w/c ratio is **approximately** 0.50
- Since there are no special
- durability requirements, the
- strength will control and the w/c is
- 0.50.

Step 5: Determine water content Step 6: Determine the air content

0

TABLE A1.533 – APPROXIMATE MIXING WATER AND AIR CONTENT REQUIREMENTS FOR DIFFEREI SLUMPS AND NOMINAL MAXIMUM SIZES OF AGGREGATES (SI)

Slump, mm	10	12	20	25	40	50	75	150
		Non	air-entrained	concrete	1028	5	10	
25 to 50 75 to 100 150 to 175 Approximate amount of entrapped air in non-air-entrained concrete, percent	207 228 243 3	199 216 228 2.5	190 205 216 2	179 193 202 1.5	166 181 190 1	154 169 178 0.5	130 145 160 0.3	113 124 0.2
2		A	ir-entrained co	ncrete				
25 to 50 75 to 100 150 to 175	181 202 216	175 193 205	168 184 197	160 175 184	150 165 174	142 157 166	122 133 154	107 119 —
Recommended average sotal air content, percent for level of exposure:		H	isha	mQ	asra	wi		
Mild exposure Moderate exposure Extreme exposure ‡‡	4.5 6.0 7.5	4.0 5.5 7.0	3.5 5.0 6.0	3.0 4.5 6.0	2.5 4.5 5.5	2.0 4.0 5.0	1.5**†† 3.5**†† 4.5**††	1.0** 3.0** 4.0**

A slump of 100mm will be suitable for the structure.

NMSA of 20mm will be chosen.

The water content is 205kg/m³

The air content is 2%

10

Step 7: Cement content

weight of cement = weight of water wlc

Example:

 Cement content = 205/0.50=410kg/m³

Step 8: The coarse aggregate content

TABLE A1.5.3.6 — VOLUME OF COARSE AGGREGATE PER UNIT OF VOLUME OF CONCRETE (SI)

Nominal maximum size	Volume of dry-rodded coarse aggregate* per unit volume of concrete for different fineness moduli† of fine aggregate					
of aggregate, m m	2.40	2.60	2.80	3.00		
10	0.50	0.48	0.46	0.44		
12.5	0.59	0.57	0.55	0.53		
20	0.66	0.64	0.62	0.60		
25	0.71	0.69	0.67	0.65		
40	0.75	0.73	0.71	0.69		
50	0.78	0.76	0.74	0.72		
75	0.82	0.80	0.78	0.76		
150	0.87	0.85	0.83	0.81		

Amount of coarse dry aggregate (kg/m³) = Volume x density= $V \times \rho_{bulk}$

17

- Assume that the FM of sand is 2.5.
- Then Volume of coarse aggregate = $0.65m^3$.
- Assume that the dry rodded unit weight is
 - 1400kg/m³
- Then the weight of coarse aggregate is
 - $0.65 \times 1400 = 910 \text{ kg/m}^3$

Step 9: Fine Aggregate Content

- Apply absolute volume method
- Note that y% air is written as y/100 in the equation. Note that $\rho_W = 1000$ kg/m³

$$\sum V_{Concrete} = 1 = V_{W} + V_{C} + V_{CA} + V_{FA} + V_{AIR}$$

$$V_{FA} = 1 - \left(\frac{M_{W}}{1 \times 1000} + \frac{M_{C}}{3.15 \times 1000} + \frac{M_{CA}}{S.G_{CA} \times \rho_{W}} + AIR\%\right)$$

$$FA = V_{FA} \times S.G_{FA} \times \rho_{W}$$

Hisham Qasrawi

Assume that the SG of CA is 2.5

and that of FA is 2.8.

 Then
 Hisham Qasrawi

 410 205 910 W_{FA}
 3.15×1000 1×1000 2.5×1000 2.8×1000

Then

W_{FA} is 786 kg/m³.

Step 10: Adjustment for absorption

- Required water= free water+ absorption moisture
- =free Water+(CA×abs_{CA}+FA×abs_{FA}) -
 - $(CA \times m_{CA} + FA \times m_{FA})$
- Where: Hisham Qasrav
- CA: coarse aggregate content
- FA: Fine aggregate content
- Abs: absorption

16

m: moisture content

Assume Hisham Qasr

- AbsorptionMoisture contentCA2%FA3%
- Then the adjusted water will
- approximately be
- 205 + (910x0.02 + 786x0.03) -
- (910x0.04+786x0.01)

Step 11: Adjust for practical values

- 1) Add 2 kg of water to increase slump by 1 cm and vice versa
- 2) Add 3 kg of water to reduce air by 1% and vice
 - USE THE HIGHER OF 1 or 2.
- After adjustment of water you have to recalculate
 - cement content according to step 9 and then fine
 - aggregate content as described in steps

Note that the coarse aggregate does not change.

- Assume that slump is 70mm and air content is 3.5%
 - Then Then
 - For slump, add (10-7)x2 = 6kg
 - For air, add (3.5-2)x3 = 4.5 kg
 - Choose 6 kg.
 - New water will be 205+6=211kg
 - New cement will be 211/0.50=422kg

- The coarse aggregate will not change
- (910kg) Hisham Oas
- The fine aggregate will be calculated
 - using the absolute volume method.
 - ΣV= 1 m³

Approximate density of concrete

using the amounts per cubic meter of

concrete

- Approximate density of the trial mix
 - can be calculated using the relationship

- Approximate Density =
- $W_w + W_c + W_{coarse} + W_{fine} + W_{any other ingredient}$

Maturity of Concrete

Hisham Qasrawi

Maturity of Concrete

• Reference

• Textbook: Chapter 10

MATURITY OF CONCRETE

- The maturity method is a technique for approximately predicting concrete strength based on the temperature history of the placed concrete
- Strength increases as cement hydroies.
- Higher curing temperatures accelerates hydration and results in higher strength at early ages.
- Maturity is a measure of how far hydration has progressed.
- Maturity is a time-age relationship
- Important to determine when to strike formwork

The simplest common expression for maturity is

$$M(t) = \sum \left(T_a - T_0\right) \Delta t$$

where:

- *T_a* = average concrete temperature during each time interval
- T_o = temperature below which cement hydration is ceases (stops); mostly taken (-11 C°) DATUM.
- Δt = time intervals, days or hours
- Σ = summation of all the intervals of time multiplied by temperature.

The simple relation between compressive strength and maturity

Strength = A+B log M Where:

A: y-intercept,

B: slope,

M: maturity

A and B are constants that value vary according to concrete

Example1:

- A. Assume that the relationship between strength and maturity of concrete is f'_c= -33+21 log M
- B. If the concrete is cured at 27°C, calculate the age when strength reaches 17MPa.
- Calculate the standard strength.
- Assume the cement hydration will cease at -11°C.

Solution:

A. $f_c^* = -33+21 \log M$ $17=-33+21 \log_{10} M$ M=240.4 °C.days M= Σ (Ta-Datum) Δt 240.4=(27-(-11))× Δt $\Delta t=6.32 days$

B. M=(22+11) ×(28)= 924 °C.days It is acceptable to use 20 instead of f'_c= -33+21 log 924= 29.28MPa

Example2:

1-Calculate the strength when the concrete is cured at 30°C for the days.

- 2-What temperature is required to reach a strength of 30MPa at 28 days?
 - $f'_{c} = -33 + 21 \log M$

Solution:

<u>1-Strength</u>

- f'_c=-33+21 log₁₀ M
- M=7(30+11) =287 C° days
- f'_c=-33+21 log₁₀ 287=18.6 MPa

2- Temperature

- f'_c=-33+21 log₁₀ M
- 30= -33+21 log₁₀ ₩
- M=1000 C $^{\circ}$ days
- M=28(Ta+11) =1000 C° days
- Ta=24.7 C° ~25 C°

When to strike formwork?

- In addition to maturity, depends on type of structural element (column, footing, slaps and beams, walls,....etc)
- Unless special recommendations are required, ordinary formwork can be stripped when the following are satisfied:
 - The strengthes at least n% of the standard strength.
 - The shrinkage is at least m% of the fina shrinkage.

Curing condition	Type of cement	Minimum period of curing and protection (days) for average surface temperature of concrete:			
		between 5 and 10 °C (41 and 50 °F)	any temperature, t [*] between 10 and 25 °C (50 and 77 °F)		
<i>Good</i> : damp and protected (relative humidity > 80 per cent, protected from sun and wind)	All types	No special requ	irements		
Average: between good and poor	Portland, class 42.5 or 52.5 and Sulfate- resisting Portland, class 42.5	4	$\frac{1}{60/(t+10)}$		
	All types except those above	6	$\frac{80}{(t + 10)}$		
<i>Poor</i> : dry or unprotected (relative humidity < 50 per cent, not protected	Portland, class 42.5 or 52.5 and Sulfate- resisting Portland, class 42.5	6 00 E	$\frac{1}{80/(t+10)}$		
from sun and wind)	All types except those above	10	140/(t + 10)		

* t = temperature (°C) in the formula to calculate the minimum period of protection in days

11

TABLE A1.533 APPROXIMATE MIXING WATER AND AIR CONTENT REQUIREMENTS FOR DIFFERENT SLUMPS AND NOMINAL MAXIMUM SIZES OF AGGREGATES (SI)

Water, Kg/m ³ of concrete for indicated nominal maximum sizes of aggregate								
Slump, mm	10	12	20	25	40	50	75	150
		Nor	n-air-entrained	concrete				
25 to 50 75 to 100 150 to 175 Approximate amount of entrapped air in non-air-entrained concrete, percent	207 228 243 3	199 216 228 2.5	190 205 216 2	179 193 202 1.5	166 181 190 1	154 169 178 0.5	130 145 160 0.3	113 124 0.2
		• 	Air-entrained co	oncrete	E.			
25 to 50 75 to 100 150 to 175	181 202 216	175 193 205	168 184 197	160 175 184	150 165 174	142 157 166	122 133 154	107 119 —
Recommended average \$otal air content, percent for level of exposure:								
Mild exposure Moderate exposure Extreme exposure ‡‡	4.5 6.0 7.5	4.0 5.5 7.0	3.5 5.0 6.0	3.0 4.5 6.0	2.5 4.5 5.5	2.0 4.0 5.0	1.5**†† 3.5**†† 4.5**††	1.0**†† 3.0**†† 4.0**††

Table 17.3: Required increase in strength for specified compressive strength when no tests records are available, according to ACI 318–05

Specified compr	Required in streng	increase th	
MPa	psi	MPa	psi
less than 21	less than 3000	7	1000
21 to 35	3000 to 5000	8.5	1200
35 or more	5000 or more	10.0	1400

TABLE A1.5.3.4(a) — RELATIONSHIPS BETWEEN WATER-CEMENT RATIO AND COMPRESSIVE STRENGTH OF CONCRETE (SI)

	Water-cement ratio, by mass		
Compressive strength at 28 days, MPa*	Non-air-entrained concrete	Air-entrained concrete	
. 40	0.42		
35	0.47	0.39	
30	0.54	0.45	
25	0.61	0.52	
20	0.69	0.60	
15	0.79	0.70	

 $F_{MD} = F_{STRUC} + 1.34 \text{ s}$ MPa

 $F_{MD} = F_{STRUC} + 2.33 \text{ s} - 3.5 \text{ MPa}$

TABLE A1.5.3.6 — VOLUME OF COARSE AGGREGATE PER UNIT OF VOLUME OF CONCRETE (SI)

Nominal maximum size	Volume of dry-rodded coarse aggregate* per unit volume of concrete for different fineness moduli† of fine aggregate				
of aggregate, m m	2.40	2.60	2.80	3.00	
10	0.50	0.48	0.46	0.44	
12.5	0.59	0.57	0.55	0.53	
20	0.66	0.64	0.62	0.60	
25	0.71	0.69	0.67	0.65	
40	0.75	0.73	0.71	0.69	
50	0.78	0.76	0.74	0.72	
75	0.82	0.80	0.78	0.76	
150	0.87	0.85	0.83	0.81	

3

Water for Concrete

Hisham Qasrawi

Uses

- Mixing water
- Curing water Hisham Qasrawi

Types of Water

- Municipal (ماء البلدية) water is suitable.
 - Drinking water
 - Ground water Hisham Qasrawi
 - Wells water
 - Desalinated water
 - Distilled water

DISCUSSION: Which one is the best for concrete?

Can we use seawater?

Hisham Qasrawi

Hisham Qasi

ADMIXTURES

Hisham Qasrawi

What are admixtures?

Materials added to concrete to improve one or more of its properties.

Basic Types of Admixtures

Retarding admixtures

delays setting time of concrete.

Accelerators

Reduces setting time and accelerates hardening or the development of early strength of concrete

Water-reducing admixtures

reduces amount of water for the same workability

High-range Water-reducing admixtures

highly reduces amount of water for the same workability

Basic Types of Admixtures

Plasticizers

Increases workability for the same water content.

Super plasticizers

highly increases workability for the same water content. Collapse slump may be observed..

Air-entraining agents

increase resistance to frost. Reduces strength

Water-proofing agents

Reduces movement of water through concrete. Some helps to block capillary pores

...Basic Types of Admixtures

- Coloring admixtures
- Bonding agents

Bonds old concrete to new one. Example plastering.

Bonds steel bars to concrete.

- Admixtures with combined effect: Examples
 - > Plasticizing retarding
 - > Plasticizing accelerating
 - > Plasticizing air-entraining
 - > Plasticizing waterproofing
 - > Plasticizing waterproofing-retarding
 - Accelerating air-entraining

...Basic Types of Admixtures

Viscosity modifying agents

These are used in self compacting concrete with high quality superplasticizers..

Bacteria for self-healing concrete

Suitability of Admixtures for Use in Concrete

ASTM

Ensure that the admixture used satisfies the minimum requirements specified in ASTM C494.

BS

Ensure that the admixture used satisfies the minimum requirements specified in BS 5075: Part 1.

What to check before use

- 1- Method of Use
- 2- Expiry date
- 3- Dosage
- 4- Chloride free (don't use CaCl₂ in reinforced concrete)
- 5- Alkalis → if there is free silica Should be Alkali-free admixtures.

Mineral Additives

- Pozzolanic materials
- Steel slags
- Silica fume (microsilica)
- Copper slags

Silica fume

- Silica fume is a byproduct of producing silicon metal or ferrosilicon alloys.
- Silica fume consists primarily of amorphous (non-crystalline) silicon dioxide (SiO2).
- The individual particles are extremely small, approximately 1/100th the size of an average cement particle.
- It is used in concrete in 5% to 25%. Most common dosage 7.5% to 15% of weight of cement.
- □ Important in high strength and high performance concrete.
- The quality of silica fume is specified by ASTM C 1240 and AASHTO M 307.

S	Shape Classification	
Classification	Effect on properties of concrete	
Rounded	Higher workability, low cohesion, low abrasion resistance	
Irregular	Medium workability, medium cohesion, medium abrasion resistance	
Angular	Low workability, high cohesion, higher abrasion resistance	
Flaky	Usually not used	
Elongated	Usually not used	
Flaky & Elongated	Usually not used HISHAM QASRAWI 3	

5

6

	Basic s	tandard sieves
IS Sieve (mm)	ASTM (inches)	Comments
150	6	Largest acceptable size for concrete works
75	3	
40	1.5	
20	3/4	
`0	3/8	
5	3/16 (#4)	End of coarse aggregate
2.4	#8	
1.2	# 16	
0.6	# 30	
9,3	# 50	
0,15	# 100	Smallest acceptacle size for concrete works
		HISHAM QASRAWI

Sieve Analysis						
Sieve	Weight retained	Percent retained	Cumulative % retained	Cumulative % passing		
10 mm	0	0	0	100		
5 mm	50	5	≥ 5	100 - 5 = 95		
2.4 mm	80	8	≥ 13	87		
1.2 mm	100	10	→ 23	77		
0.6 mm	320	32	55	45		
0.3 mm	350	35	90	10		
0.15 mm	50	5	95	5		
0.075 (# 200)	30	3	98	2		
Pan	20	2	100	0		
Total	1000			16		

Sieve	ASTM	BS Overall	BS C	Cumulative % passing
10 mm	100	100	- 1	100
5 mm	95-100	89-100	-	100 - 5 = 95
2.4 mm	80-100	60-100	60-100	87
1.2 mm	50-85	30-100	30-90	77
0,6 mm	25-60	15-100	15-54	45
0.3 mm	10-30	5-70	5-40	10
0.15 mm	2-10	0-15†	-	5
0.075 (# 200)				2

Sieve	Weight retained	Percent retained	Cumulative % retained	Cumulative % passing
40 mm (1.5")	0	0	0	100-0=100
25 mm (1")	50	5	5	100 - 5 = 95
20 mm (3/4")	350	35	40	60
10 mm (3/8")	460	46	86	14
5 mm (#4)	50	5	91	9
2.4 mm (#8)	40	4	95	5
0.075 (# 200)	30	3	98	2
Pan	20	2	100	0
Total	1000	100		

T	. Pushi				1003				
Sleve slate		Percentage by m	ass passing BS sleve						
		Nominal size of graded aggregate			Nominal size of single-sized aggregate				
mm	iŋ.	40 to 5 mm $(\frac{1}{2} \text{ in. to } \frac{3}{16} \text{ in.})$	20 to 5 mm $\left(\frac{3}{4} \text{ in. to } \frac{3}{2^{n}} \text{ in.}\right)$	14 to 5 mm $(\frac{1}{2}$ in, to $\frac{3}{16}$ in.)	40 mm (1½ in.)	20 mm (¹ / ₄ in,)	14 mm (‡ in.)	10 mm (³ / ₄ in.)	5 mm (<u>å</u> in.
50.0	2	100			100				
37.5	15	90-100	100		85 100	100			
20.0	ì	35-70	90-100	100	H 25	85 100	100		
14.0	÷			90-100			\$5-100	100	
10.0	ž	10-40	30-60	SII 85	41.5	0 25	U 50	85 100	104
5.00	4	0 5	0-11	11-111	-	0-5	11-10	11-25	50-10
2.36	No. 7							0.5	0 30

					Sieve	Cumulative % passing
Table 3	.9: Gradir	ng requirements for	coarse aggregate ace	cording to BS 882: 1	40 mm (1.5")	100
Sieve si	ze	Percentage by m	ass passing BS sieve		25 mm (1")	100 - 5 = 95
		Nominal size of ;	graded aggregate		20 mm (3/4")	60
mm	in.	-40 to 5 nm (¹ / ₂ in, to ¹ / ₁₆ in,)	20 to 5 nun (¹ / ₄ in. to ¹ / ₁₆ in.)	14 to 5 mm (¹ / ₅ in. to ³ / ₁₆ in.)	10 mm (3/8")	14
50.0 37.5	2 14	100- 90-100	100		5 mm (#4)	9
20.0	÷	35-70	90-100	100	2.4 mm (#8)	5
10.0	-	10-40	30-60	50 85	0.075 (# 200)	2
5.00 2.36		05 -	0 10	010	Pan	0
				<u> </u>	Total	

						0	
Table	3.10: So AS	nne of the gradii STM C 33–03	ig requirements	for coarse agg	regate acco	ording to	
Sieve	size	Percentage by	mass passing :	jiete	• ••		
		Nominal size	of graded aggre	gate	Nominal of single- aggregate	size sizel P	
mm	in.	37.5 to 4.75 mm (1½ to ½ in.)	19.0 to 4.75 mm (³ / ₄ to ³ / ₁₆ in.)	12.5 to 4.75 mm $(\frac{1}{2}$ to $\frac{1}{16}$ in.)	63 mm (2 ¹ / ₂ in.)	37.5 mm (1 ¹ / ₇ in.)	
75	3				100		
63.0	$2\frac{1}{2}$			-	90-100	-	
50.0	2	100			35 70	100	
38.1	Ę	95 100			0-15	90100	
25.0	1		100			20 55	
19.0	á .	.15 /0	90 100	100	0.5	0-15	
12.5	÷.			ya tun	-		
9.5	ż	10.30	20-55	40 70		05	
4.75	16	0 5	0 10	0 15			
2.36	No. 8	-	05	0.5			

LA(Gen	%)= <u>Wei</u> Origina e rally, fc	ght of 11 weig 0 1 CO	Calculations the material that passed the material after sievin tht of material after sievin	$\frac{1}{9} \frac{1}{9} \frac{1}$	100%	
	Value		Quality of concrete	Strength (MPa)		
	> 45	all	- Do not use	-		
	35 to 45		Low	<20		
	25 to 35		Medium	25 to 40		
	15 to 25		High	45 to 65		
	< 15		Very and ultra high	> 70		
HISHAM QASRAWI						

Sieve	ASTM	BS Overall	Cumulative % passing	
10 mm	100	100	0	100
5 mm	95-100	89-100	5	95
2.4 mm	80-100	60-100	20	80
1.2 mm	50-85	30-100	20	80
0,6 mm	25-60	15-100	20	80
0.3 mm	10-30	5-70	90	10
0.15 mm	2-10	0-15†	95	5
0.075 (# 200)	2-10		98	2