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Question #1: 3D Space 
 
Describe in words the region of R3 represented by the equations or 
inequalities. 

(a) 𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐 ≤ 𝟒. 

(b) 𝒙𝟐 + 𝒛𝟐 ≤ 𝟗. 
(c) 𝒙 = 𝒛. 

(d) 𝒚𝟐 + 𝒛𝟐 = 𝟒,       𝒙 = 𝟏. 

 

Correct Answer: 

(a) All points on or inside a sphere with radius 2 and center (0,0,0). 
(b) All points on or inside a circular cylinder of radius 3 centered on 

the y-axis. 
(c) All points on the plane z = x. 
(d) All points on a circle with radius 2 with center on the x-axis. 

 

Explanation: 

(a) All points on or inside a sphere with radius 2 and center (0,0,0). 

(b) All points on or inside a circular cylinder of radius 3 centered on  
the y-axis. 

(c) All points on the plane z = x. 
(d)  All points on a circle with radius 2 with center on the x-axis. 
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Question #2: Vectors in Space 
 

Given the space vectors �⃑� = 〈2,1,2〉, 𝑣 = 〈0,3,4〉 and  �⃑⃑� = 〈3, −2,5〉. Find 

(a) the projection of �⃑⃑�  onto �⃑⃑� ,  
(b) the vector component of �⃑⃑�  orthogonal to �⃑⃑� , 
(c) the scalar component of �⃑⃑�  in the direction of �⃑⃑� . 
(d) a vector in the direction of �⃑�  with length 3. 

(e) the area of the parallelogram determined by �⃑�  and 𝑣 . 
(f) the volume of the parallelepiped determined by �⃑� , 𝑣  and �⃑⃑� .   

 

Correct Answer: 

(a) 𝑝𝑟𝑜𝑗�⃑⃑� 𝑣 = 〈0,
33

25
,
44

25
〉. 

(b) �⃑� − 𝑝𝑟𝑜𝑗�⃑⃑� 𝑣 = 〈2,
−8

25
,

6

25
〉. 

(c) |𝑝𝑟𝑜𝑗�⃑⃑� 𝑣 | =
11

5
= 2.2. 

(d)  
4

3
 �⃑� = 〈

8

3
,
4

3
,
8

3
〉. 

(e)  Area = |�⃑� × 𝑣 | = √104. 

(f) Volume =  40 

 

 

Explanation: 

�⃑� ∙ 𝑣 = (2)(0) + (1)(3) + (2)(4) = 11, �⃑� × 𝑣 = 〈−2, −8,6〉, 

|𝑣 | = √(0)2 + (3)2 + (4)2 = 5,    |�⃑� | = √(2)2 + (1)2 + (2)2 = 3.  

a) 𝑝𝑟𝑜𝑗�⃑⃑� 𝑣 = (
�⃑⃑� ∙�⃑� 

|�⃑� |2
)𝑣 =

11

25
〈0,3,4〉 = 〈0,

33

25
,
44

25
〉 

b)  �⃑� − 𝑝𝑟𝑜𝑗�⃑⃑� 𝑣 = 〈2,1,2〉 − 〈0,
33

25
,
44

25
〉 = 〈2,

−8

25
,

6

25
〉. 

c) |𝑝𝑟𝑜𝑗�⃑⃑� 𝑣 | = √(0)2 + (
33

25
)2 + (

44

25
)2 =

11

5
= 2.2 

d) The required vector is    
4

3
 �⃑� = 〈

8

3
,
4

3
,
8

3
〉. 

e) Area = |�⃑� × 𝑣 | = |�⃑� × 𝑣 | = √(−2)2 + (−8)2 + (6)2 = √104. 

f) Volume =  |�⃑� ∙ (𝑣 × �⃑⃑� )| = |
2 1 2
0 3 4
3 −2 5

| = 40. 



Question #3: Vectors in Space 

Find the angle (in degrees) between the two vectors �⃑⃑� = 𝒊 − 3𝒋 + 7�⃑⃑�   

and  �⃑⃑� = −2𝒊 + 𝒋 + 4�⃑⃑� . 

Correct Answer: 

𝜃 ≈ 49.2° 

 

Explanation: 

The angle between any two vectors �⃑⃑�   and  �⃑⃑�   is   𝜃 = 𝑐𝑜𝑠−1 (
�⃑⃑� ∙�⃑� 

|�⃑⃑� ||�⃑� |
) . 

For this problem,  �⃑⃑� ∙ �⃑⃑� = (1)(−2) + (−3)(1) + (7)(4) = 23,                           

  |�⃑⃑� | = √(1)2 + (−3)2 + (7)2 = √59,                                               

  |�⃑⃑� | = √(−2)2 + (1)2 + (4)2 = √21. 

Substituting, we have 

𝜃 = 𝑐𝑜𝑠−1 (
23

√59√21
) ≈ 49.2°. 

 
 

 

Question #4: Vector Functions 

Find a parametric representation of the curve of intersection of the 

cylinder 9x2 + y2 = 9 and the plane x + y + z = 7. 

Correct Answer: 

�⃑� (𝑡) = ⟨cost, 3sint, 7 – cost − 3sint⟩ 

 

 

Explanation: 

We can begin by rewriting the expression for the cylinder as follows 



9x2 + y2 = 9  ⇒  x2 + (y/3)2 = 1. 

This tells us that x = cost, y = 3sint.  Plugging this back into the 
equation for the plane x + y + z = 7 to find z = 7 – x – y = 7−cost−3sint. 

This gives us the representation of the curve of intersection as 

�⃑� (𝑡) = ⟨cost, 3sint, 7 – cost − 3sint⟩. 

 
 

Question #5: Vectors in Space 

Given that  �⃑⃑� = 〈3,2, −1〉 and �⃑⃑� = 〈6, 𝑘, −2〉 are orthogonal. Find the 

value of k. 

Correct Answer: 

𝑘 = −10 

 

Explanation: 

If �⃑⃑�  and �⃑⃑�  are orthogonal, then  �⃑⃑� ∙ �⃑⃑� = 0. In this case  

�⃑⃑� ∙ �⃑⃑� = 18 + 2𝑘 + 2 = 0.  

So, k = -10. 

 
Report an Error 

Question #6: Vectors in Space 

The angle (in degrees) between the two unit vectors �⃑⃑�   and  �⃑⃑�   is  𝟔𝟓°. 

Find  |�⃑⃑� ×�⃑⃑� |. 

Correct Answer: 

|�⃑⃑� ×�⃑⃑� | = 𝟎. 𝟗𝟎𝟔. 
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Explanation: 

To find |�⃑⃑� ×�⃑⃑� | we apply the formula  |�⃑⃑� ×�⃑⃑� | = |�⃑⃑� ||�⃑⃑� |𝒔𝒊𝒏𝜽.  

As �⃑⃑�   and  �⃑⃑�   are unit vectors we have  |�⃑⃑� | = 𝟏  and  |�⃑⃑� | = 𝟏.  

So,  |�⃑⃑� ×�⃑⃑� | = (𝟏)(𝟏)𝒔𝒊𝒏(𝟔𝟓
°
) = 𝟎. 𝟗𝟎𝟔. 

 

 
Question #7: Lines in Space 

Write the vector equation of the line that passes through the 

points P(−3, 4, 14) and Q(2, 10, −6). 

Correct answer: 

𝑟 (𝑡) = ⟨2 + 5t, 10 + 6t, −6 − 20t⟩ 

 

 

Explanation: 

Remember the general equation of a line in vector form: 

�⃑� (𝑡) =  𝒓0 + 𝑡�⃑⃑�  = ⟨x0, y0, z0⟩ + t ⟨a, b, c⟩, where ⟨x0, y0, z0⟩ is the starting 

point, and �⃑⃑�  is a vector in the direction of the line. We can take      

�⃑⃑� = 𝑃𝑄⃑⃑ ⃑⃑  ⃑ = 〈2 − (−3), 10 − 4,−6 − 14〉 = 〈5,6, −20〉.  

Let's apply this to our problem. 

�⃑� (𝑡) = ⟨2, 10, −6⟩ + t ⟨5, 6, −20⟩. 

This can be written as 

�⃑� (𝑡) = ⟨2 + 5t, 10 + 6t, −6 − 20t⟩. 

 
 
 
 
 



Question #8:  Planes 

Find the approximate angle (in radians) between the planes 4x−3y−2z=1, 

and 12x+2y−7z=16. 

Correct Answer: 

0.736 

 

Explanation: 

Finding the angle between two planes requires us to find the angle 
between their normal vectors. 

To obtain normal vectors, we simply take the coefficients in front 
of   x, y, z. 

𝒏𝟏⃑⃑ ⃑⃑  =  〈4, −3,−2〉,    𝒏𝟐⃑⃑ ⃑⃑  =  〈12,2, −7〉. 

The (acute) angle between any two vectors is 

𝜃 = 𝑐𝑜𝑠−1 (
�⃑� ∙�⃑� 

|�⃑� ||�⃑� |
) . 

Here,  𝒏𝟏⃑⃑ ⃑⃑  ∙ 𝒏𝟐⃑⃑ ⃑⃑  = (4)(12) + (−3)(2) + (−2)(−7) = 56,                   

|𝒏𝟏⃑⃑ ⃑⃑  | = √(4)2 + (−3)2 + (−2)2 = √29,                                          

|𝒏𝟐⃑⃑ ⃑⃑  | = √(12)2 + (2)2 + (−7)2 = √197. 

Substituting, we have 

𝜃 = 𝑐𝑜𝑠−1 (
56

√29√197
) ≈ 0.736. 

 

 

Question #9: Equations Of Lines And Planes 

Find the point of intersection of the plane  2x + y + z = 9  and the line 

described by  �⃑� (𝑡) = 〈2t + 4, t − 1, −t〉. 

Correct Answer: 

 (5,−12,−12) 



 

Explanation: 

Substituting the components of the line into those of the plane, we 
have  

2(2t + 4) + (t − 1) + (−t) = 9  ⇒ 4t + 8 + t – 1 – t = 9  ⇒  t = 12. 

Substituting this value of t back into the components of the line gives 
us (5, −12, −12). 

 

Question #10:  Planes 

Show that the two planes are parallel  x + y + z = 2,   x + y + z =0. 

Correct Answer: 

Two planes are parallel if their normal vectors are parallel. 

 

Explanation: 

Two planes are parallel if their normal vectors are parallel. 

A vector normal to the first plane is  𝒏𝟏⃑⃑ ⃑⃑  =  〈1,1,1〉 

A vector normal to the second plane is  𝒏𝟐⃑⃑ ⃑⃑  =  〈1,1,1〉. 

We can verify that 𝒏𝟏⃑⃑ ⃑⃑  × 𝒏𝟐⃑⃑ ⃑⃑  = �⃑⃑�  and so 𝒏𝟏⃑⃑ ⃑⃑   and 𝒏𝟐⃑⃑ ⃑⃑   are parallel.  

Another way to solve this problem is to find the angle between the 
normal vectors, we have 

𝜃 = 𝑐𝑜𝑠−1 (
 𝒏𝟏⃑⃑ ⃑⃑  ∙  𝒏𝟐⃑⃑ ⃑⃑  

| 𝒏𝟏⃑⃑ ⃑⃑  || 𝒏𝟐⃑⃑ ⃑⃑  |
) = 𝑐𝑜𝑠−1 (

 3

√3√3
) = 𝑐𝑜𝑠−1(1) = 0. 

This means that the two planes are parallel. 

 
 
 
 



Question #11:  Planes 

Determine the equation of the plane that contains the points O(0,0,0), 

P(5,4,0), and Q(−3,−7,0). 

Correct Answer: 

z = 0 

 

Explanation: 

The equation of a plane is defined as 

𝐴(𝑥 − 𝑥0) + 𝐵(𝑥 − 𝑦0) + 𝐶(𝑥 − 𝑧0) = 0 

where  �⃑⃑� =  〈𝐴, 𝐵, 𝐶〉 is the normal vector of the plane and 

(𝑥0, 𝑦0, 𝑧0) is a point on the plane. 

To find the normal vector, we first get two vectors on the plane  

𝑶𝑷⃑⃑⃑⃑⃑⃑ =  〈5,4,0〉 and  𝑶𝑸⃑⃑⃑⃑ ⃑⃑ =  〈−3, −7,0〉  and find their cross product.  

So, �⃑⃑� = 𝑶𝑷⃑⃑⃑⃑⃑⃑ × 𝑶𝑸⃑⃑⃑⃑ ⃑⃑ = −23�⃑⃑� = 〈0,0, −23〉. 

Using the point O and the normal vector to find the equation of the 

plane yields 

0(𝑥 − 0) + 0(𝑦 − 0) − 23(𝑧 − 0) = 0. 

Simplified gives the equation of the plane  z = 0.  

 
 

 

Question #12:  Planes 

Find the equation of the plane containing the point (3, −2, 1), and is 

parallel to the plane with the equation 2x + 5y + z = 20. 

Correct Answer: 

2x + 5y + z = −3 



Explanation: 

We were given a point on the plane, and we need the normal vector 
to the plane. It is known that two planes that are parallel to each 

other have the same normal vector, so in this case �⃑⃑� =  〈2,5,1〉 (given 
by the equation of the other plane). To complete the problem, we use 
the equation 
𝐴(𝑥 − 𝑥0) + 𝐵(𝑥 − 𝑦0) + 𝐶(𝑥 − 𝑧0) = 0. 

Using the information we have, we get: 

2(x − 3) + 5(y + 2) + (z − 1) = 0.   

Through algebraic manipulation, we then get: 

2x + 5y + z = −3. 

 
 

 

Question #13: Equations Of Lines And Planes 

Write the equation of the plane passing through (2, 4, 2) and orthogonal 

to the line through (3, −1, 2) and (4, 6, 1). 

Correct Answer: 

−13x+5y+22z=40 

 
Explanation: 

The vector �⃑⃑� = 𝑃𝑄⃑⃑ ⃑⃑  ⃑ = 〈1,7, −1〉 is in the direction of the line 

through P(3, −1, 2) and Q(4, 6, 1) which in turn is normal to the plane 
in question. The equation of the plane is found by taking the point   

(2, 4, 2), and the normal vector �⃑⃑� = 〈1,7, −1〉 and plugging them into 
the equation 

𝐴(𝑥 − 𝑥0) + 𝐵(𝑥 − 𝑦0) + 𝐶(𝑥 − 𝑧0) = 0. 

We get,   (x − 2) + 7(y − 4) − (z − 2) = 0, 

which simplified becomes  −13x + 5y + 22z = 40. 

 



Question #14: Lines in Space 

Give the parametric equations of the line through the point (−7, 2, 4) and 
parallel to the line given by x = 5 − 8t, y = 6 + t, z = −12t. 

 

Correct Answer: 

𝒙 = −𝟕 − 𝟖𝒕, 𝒚 = 𝟐 + 𝒕, 𝒛 = 𝟒 − 𝟏𝟐𝒕. 

 

 

Explanation: 

We know that the coefficients of the t’s in the equation of the line 

forms a vector parallel to the line. So, �⃑⃑� = 〈−8,1, −12〉 is a vector 

parallel to the given line. Now, if �⃑⃑�  is parallel to the given line and the 

requested line must be parallel to the given line then �⃑⃑�  must also be 
parallel to the requested line.  

Using the point (-7, 2, 4) and the directional vector �⃑⃑� = 〈−8,1, −12〉 
we can write the parametric equations of the new line as 

 x = −7 − 8t, y = 2 + t, z = 4 − 12t. 

 

Question #15: Lines in Space 

Is the line through the points P(2, 0, 9) and Q(−4, 1, −5) parallel, 

orthogonal or skew to the line given by �⃑� (𝑡) = 〈5,1 − 9𝑡, −8 − 4𝑡〉. 

Correct Answer: 

The two lines are skew. 

 

 

 

 



Explanation: 

A directional vector to the first line is  𝒅𝟏
⃑⃑ ⃑⃑  = 𝑷𝑸⃑⃑⃑⃑⃑⃑ = 〈−6,1, −14〉 and a 

directional vector to the second line is  𝒅𝟐
⃑⃑ ⃑⃑  = 〈0, −9, −4〉. 

Now,  𝒅𝟏
⃑⃑ ⃑⃑  × 𝒅𝟐

⃑⃑ ⃑⃑  ≠ �⃑⃑� . This in turn means that the two lines can’t 

possibly be parallel. Next, 𝒅𝟏
⃑⃑ ⃑⃑  ∙ 𝒅𝟐

⃑⃑ ⃑⃑  = −47. The dot product            

𝒅𝟏
⃑⃑ ⃑⃑  ∙ 𝒅𝟐

⃑⃑ ⃑⃑  ≠ 0  and so these vectors aren’t orthogonal and this in turn 
means that the two lines are not orthogonal. We arrive to the 
conclusion that the two lines are skew. 

 
 

 

Question #16: Planes 

Show that the two planes are orthogonal 

𝑝1: 4𝑥 − 9𝑦 − 𝑧 = 2,      𝑝2: 𝑥 + 2𝑦 − 14𝑧 = −6  

 

Correct Answer: 

The two planes are orthogonal. 

 

 

Explanation: 

Two planes are orthogonal if their normal vectors are orthogonal. 

A normal vector to the first plane is  𝒏𝟏⃑⃑ ⃑⃑  = 〈4, −9, −1〉 and a normal 

vector to the second plane is  𝒏𝟐⃑⃑ ⃑⃑  = 〈1,2, −14〉. 

Now,  𝒏𝟏⃑⃑ ⃑⃑  ∙ 𝒏𝟐⃑⃑ ⃑⃑  = (4)(1) + (−9)(2) + (−1)(−14) = 0  and so these 
vectors are orthogonal and this in turn means that the two planes 
are orthogonal.  

 

 



Question #17: Lines in Space 

Find the distance from the point (1, -3, 2) to the line 

x = 1 + t,  y = 2 − t,  z = -1 + 2t. 

 

Correct Answer: 

𝐷 =
|𝑃𝑆⃑⃑⃑⃑  ⃑×�⃑� |

|�⃑� |
=

√83

√6
= 3.719. 

 

Explanation: 

Distance from a point S to a line through P parallel to 𝑣  is  

𝐷 =
|𝑃𝑆⃑⃑⃑⃑  ⃑×�⃑� |

|�⃑� |
. 

Here, S(1, -3, 2), P(1,2,-1), 𝑣 = 〈1, −1,2〉, 𝑃𝑆⃑⃑ ⃑⃑  = 〈0, −5,3〉, 𝑃𝑆⃑⃑ ⃑⃑  × 𝑣 =

〈−7,3,5〉, |𝑃𝑆⃑⃑ ⃑⃑  × 𝑣 | = √(−7)2 + (3)2 + (5)2 = √83, |𝑣 | = √6.  

Then plugging into the formula, we get 

𝐷 =
|𝑃𝑆⃑⃑ ⃑⃑  × 𝑣 |

|𝑣 |
=

√83

√6
= 3.719. 

 

 

Question #18: Planes 

Find the distance between the given parallel planes 

p1: 2x - 3y + z = 4,    p2: 4x - 6y + 2z = 3. 

 

Correct Answer: 

𝐷 = 0.668. 



 

Explanation: 

Distance from a point P(x1, y1, z1) to the plane ax + by + cz + d = 0 is   

𝐷 =
|𝑎𝑥1+𝑏𝑦1+𝑐𝑧1+𝑑|

√𝑎2+𝑏2+𝑐2
. 

First we find a point on the first plane by letting x = 0 and y = 0 in the 
plane equation to get z = 4 and so (0, 0, 4) is a point on the first 
plane. Next, we find the distance from P(0, 0, 4) to the second plane 
4x - 6y + 2z – 3 = 0. Finally, plugging into the formula, we get 

𝐷 =
|𝟒(𝟎) − 𝟔(𝟎) +  𝟐(𝟒) −  𝟑|

√(4)2 + (−6)2 + (2)2
=

5

√56
= 0.668. 

 
 
 

Question #19: Vector Functions 

Find the unit tangent vector for the curve at (e, 1, 1) 

�⃑� (𝑡) = (𝑡𝑒𝑡)𝒊 + (𝑡2)𝒋 + (𝑡3)�⃑⃑� .              

Possible Answer: 

 𝑻(𝑡) =
(𝑒𝑡+𝑡𝑒𝑡)𝒊 +(2𝑡)𝒋 +(3𝑡2)�⃑⃑� .

√𝑒2𝑡(1+2𝑡+𝑡2)+4𝑡2+9𝑡4
             

 

 

Explanation: 

To find the unit tangent vector 𝑻(𝑡) for a given curve, we use that  

𝑻(𝑡) =
𝑟 ′(𝑡)

|𝑟 ′(𝑡)|
=

(𝑒𝑡+𝑡𝑒𝑡)𝒊 +(2𝑡)𝒋 +(3𝑡2)�⃑⃑� .

√𝑒2𝑡(1+2𝑡+𝑡2)+4𝑡2+9𝑡4
 . 

At the point (e, 1, 1) we have t = 1. So, 

 𝑻(1) = (
2𝑒

√4𝑒2+13
) 𝒊 + (

2

√4𝑒2+13
) 𝒋 + (

3

√4𝑒2+13
) �⃑⃑�   



Question #20: Arc Length 

Find the length of the curve  �⃑� (𝑡) = (𝑒2𝑡)𝒊 + (𝑒−2𝑡)𝒋 + (2√2𝑡)�⃑⃑� , 
from     t = 0  to  t = 5. 

Correct Answer: 

𝑒10 − 𝑒−10 

 

Explanation: 

The formula for the length of a parametric curve in 3-dimensional 

space is   𝐿 = ∫ |𝑟 ′(𝑡)|𝑑𝑡
𝑏

𝑎
. 

Taking derivatives, we have  

𝑟 ′(𝑡) = (2𝑒2𝑡)𝒊 + (−2𝑒−2𝑡)𝒋 + (2√2)𝒌.⃑⃑  ⃑ 

So, 

|𝑟 ′(𝑡)| = √(2𝑒2𝑡)2 + (−2𝑒−2𝑡)2 + (2√2)
2
= √4𝑒4𝑡 + 4𝑒−4𝑡 + 8. 

Substituting leads to 

𝐿 = ∫√4𝑒4𝑡 + 4𝑒−4𝑡 + 8  𝑑𝑡

5

0

= ∫√4(𝑒4𝑡 + 𝑒−4𝑡 + 2)  𝑑𝑡

5

0

= 2∫√(𝑒2𝑡 + 𝑒−2𝑡)2  𝑑𝑡

5

0

= 2∫(𝑒2𝑡 + 𝑒−2𝑡) 𝑑𝑡 = 2 (
1

2
𝑒2𝑡 −

1

2
𝑒−2𝑡)]

0

5

= 𝑒10 − 𝑒−10

5

0

 

 

 

 

 



Question #21 : Curvature 

Determine the curvature of the vector  �⃑� (𝑡) = 〈3𝑡2, 5𝑡, 0〉 at t = 0. 

Correct Answer: 

𝜅 =
30

(36𝑡2 + 25)
3
2

 

 

Explanation: 

To find the curvature, we use the formula   𝜅 =
|�⃑� ′(𝑡)×�⃑� ′′(𝑡)|

|�⃑� ′(𝑡)|3
. 

We compute �⃑� ′(𝑡) = 〈6𝑡, 5,0〉, �⃑� ′′(𝑡) = 〈6,0,0〉,  

�⃑� ′(𝑡) × �⃑� ′′(𝑡) = 〈0,0, −30〉, |�⃑� ′(𝑡) × �⃑� ′′(𝑡)| = 30, and 

|�⃑� ′(𝑡)| = √36𝑡2 + 25.  Then plugging into the formula, we get   

𝜅 =
30

(36𝑡2+25)
3
2

. At t = 0, 𝜅 =
6

25
= 0.24. 

 

Question #22: Curvature 

Determine the curvature of the ellipse    
𝒙𝟐

𝟗
+

𝒚𝟐

𝟏𝟔
= 1 at the point (3, 0, 0). 

 

 

Correct Answer: 

𝜅 =
3

16
 

 

Explanation: 

Parametrizing the ellipse in space gives 



𝑥 = 3𝑐𝑜𝑠𝑡,   𝑦 = 4𝑠𝑖𝑛𝑡,    𝑧 = 0,       0 ≤ 𝑡 ≤ 2𝜋. 

The vector function can be written as   �⃑� (𝑡) = 〈3𝑐𝑜𝑠𝑡, 4𝑠𝑖𝑛𝑡, 0〉. 

To find the curvature, we use the formula   𝜅 =
|𝑟 ′(𝑡)×𝑟 ′′(𝑡)|

|𝑟 ′(𝑡)|3
. 

We compute 𝑟 ′(𝑡) = 〈−3𝑠𝑖𝑛𝑡, 4𝑐𝑜𝑠𝑡, 0〉, 𝑟 ′′(𝑡) = 〈−3𝑐𝑜𝑠𝑡, −4𝑠𝑖𝑛𝑡, 0〉,  

𝑟 ′(𝑡) × 𝑟 ′′(𝑡) = 〈0,0,12〉,   |𝑟 ′(𝑡) × 𝑟 ′′(𝑡)| = 12, and 

|𝑟 ′(𝑡)| = √9𝑠𝑖𝑛2𝑡 + 16𝑐𝑜𝑠2𝑡.  Then plugging into the formula, we get   

𝜅(𝑡) =
12

(9𝑠𝑖𝑛2𝑡+16𝑐𝑜𝑠2𝑡)
3
2

. 

The point (3, 0, 0) can be achieved when t = 0 and so 

𝜅(0) =
3

16
. 

 
 
 

 

Question #23: Normal Vectors 

Find the unit normal vector of  �⃑� (𝑡) = (5𝑐𝑜𝑠𝑡)𝒊 + (5𝑠𝑖𝑛𝑡)𝒋 + (2)�⃑⃑� . 

 

Correct Answer: 

𝑵(𝑡) = (−𝑐𝑜𝑠𝑡)𝒊 + (−𝑠𝑖𝑛𝑡)𝒋  

 

 

Explanation: 

To find the unit normal vector, you must first find the unit tangent 

vector. The equation for the unit tangent vector, is   𝑻(𝑡) =
�⃑� ′(𝑡)

|�⃑� ′(𝑡)|
. 



Then, the equation for the unit normal vector, is  𝑵(𝑡) =
𝑇′(𝑡)

|𝑇′(𝑡)|
. 

For this problem 

�⃑� (𝑡) = (−5𝑠𝑖𝑛𝑡)𝒊 + (5𝑐𝑜𝑠𝑡)𝒋 + (0)�⃑⃑�  , |�⃑� ′(𝑡)| = √25𝑠𝑖𝑛2𝑡 + 25𝑐𝑜𝑠2𝑡 = 5.  

𝑻(𝑡) =
�⃑� ′(𝑡)

|�⃑� ′(𝑡)|
= (−𝑠𝑖𝑛𝑡)𝒊 + (𝑐𝑜𝑠𝑡)𝒋 + (0)�⃑⃑� , 

𝑻′(𝑡) = (−𝑐𝑜𝑠𝑡)𝒊 + (−𝑠𝑖𝑛𝑡)𝒋 + (0)�⃑⃑� ,   |𝑻′(𝑡)| = √𝑐𝑜𝑠2𝑡 + 𝑠𝑖𝑛2𝑡 = 1. 

𝑵(𝑡) =
𝑇′(𝑡)

|𝑇′(𝑡)|
= (−𝑐𝑜𝑠𝑡)𝒊 + (−𝑠𝑖𝑛𝑡)𝒋 + (0)�⃑⃑� . 

 

 

Question #24: Normal Vectors 

If  �⃑� (𝑡) ≠ 0, show that  
𝒅

𝒅𝒕
|�⃑⃑� (𝑡)| =

1

|�⃑⃑� (𝑡)|
 �⃑⃑� (𝑡) ∙ �⃑⃑� ′(𝑡) 

 

Explanation: 

We know that   |�⃑� (𝑡)|2 = �⃑� (𝑡)  ∙  �⃑� (𝑡). 

Differentiate both sides with respect to t to get 

𝑑

𝑑𝑡
|�⃑� (𝑡)|2 =

𝑑

𝑑𝑡
(�⃑� (𝑡)  ∙  �⃑� (𝑡)) 

2|�⃑� (𝑡)|
𝑑

𝑑𝑡
|�⃑� (𝑡)| = �⃑� (𝑡)  ∙  �⃑� ′(𝑡) + �⃑� ′(𝑡) ∙  �⃑� (𝑡) 

But  �⃑� (𝑡)  ∙  �⃑� ′(𝑡) =  �⃑� ′(𝑡) ∙  �⃑� (𝑡), so 

2|�⃑� (𝑡)|
𝑑

𝑑𝑡
|�⃑� (𝑡)| = �⃑� (𝑡)  ∙  �⃑� ′(𝑡) + �⃑� (𝑡)  ∙  �⃑� ′(𝑡) 

2|�⃑� (𝑡)|
𝑑

𝑑𝑡
|�⃑� (𝑡)| = 2 (�⃑� (𝑡)  ∙  �⃑� ′(𝑡)) 

𝑑

𝑑𝑡
|�⃑� (𝑡)| =

1

|�⃑� (𝑡)|
 �⃑� (𝑡)  ∙  �⃑� ′(𝑡) 





























Lesson 1.2 
Vectors in Space 

 
In this lesson we will look at vectors in a three dimensional space. So far we 
looked at vectors in the x-y plane defined by x and y axes. A space is 
defined by three axes, x, y and z. In a right handed system, the three axes 
will look like the diagram below. 
 

1 2 3 4 5 

-1 -2 -3 -4 

1 
2 

3 

-1 
-2 

-3 
-4 

-1 

-2 

-3 

1 

2 

3 

x 

y 

z 

(1, -3, 1) 
. 

. (2, 2, -1) 

. (-3, 4, 2) 

 
 

1 2 3 4 5 

-1 -2 -3 -4 

1 
2 

3 

-1 
-2 

-3 
-4 

-1 

-2 

-3 

1 

2 

3 

x 

y 

(1, -3, 1) 
. 

. (2, 2, -1) 

y 

z 

x-y plane 

y-z plane 

x-z plane 
x 

y 

z 

. (x,y,z) 

x 
 

 
The x and y axes define the x-y plane, the y and z axes define the y-z plane 
and the x and z axes define the x-z plane. A point P in space is determined 
by an ordered triple (x,y,z) where x is the directed distance of P from the y-z 



plane, y is the directed distance of P from the x-z plane and z is the directed 
distance of P from the x-y plane.  
The three planes namely x-y plane, y-z plane and the x-z plane divide the 
space into eight octants. In the first octant, all three coordinates are positive.  
The distance between two point P(x1,y1,z1) and Q(x2,y2,z2) in space is given 
by 

  2 2 2

2 1 2 1 2 1( ) ( ) ( )d x x y y z z= − + − + −  

 
A sphere in space with center (xo,yo,zo) has the standard equation 
 
  2 2 2 2( ) ( ) ( )o o ox x y y z z r− + − + − =  
 

1 2 3 4 5 

-1 -2 -3 -4 

1 
2 

3 

-1 
-2 

-3 
-4 

-1 

-2 

1 

2 

3 

(1, -3, 1) 
. 

. (2, 2, -1) 

z 

v 

v1 
v2 

v3 

x 

y 

 
 
A vector in space has three components, an x component (v1), a y 
component (v2) and a z component (v3). A vector v in the component form 
can be written as 
  v = 〈v1,v2,v3〉  = v1 i + v2 j + v3 k 
where i, j , k are unit vectors in the x, y and z directions respectively. 
The magnitude of vector v is given by: 
 

  2 2 2

1 2 3v v v v= + +  

 
The unit vector in the direction of v is given by:  
 

  1 2 3

2 2 2

1 2 3

, ,v v v v
n

v v v v

〈 〉= =
+ +

 

 
Example 1:   



Plot the point (a) (3, -2, 5) and (b) (3/2, 4, -2) on the same three dimensional 
coordinate system. 
 
Solution: 

1 2 3 4 5 

-1 -2 -3 -4 

1 
2 

3 

-1 
-2 

-3 
-4 

-1 

-2 

-3 

1 

2 

3 

x 

y 

z 4 

5 

. (3, -2, 5) 

. (3/2, 4, -2) 
 

 
Example 2:   
Find the coordinates of the point located on the y-z plane, three units to the 
right of the x-z plane and two units above the x-y plane. 
 
Solution: 
 

1 2 3 4 5 

-1 -2 -3 -4 

1 
2 

3 

-1 
-2 

-3 
-4 

-1 

-2 

1 

2 

3 

(1, -3, 1) 
. 

. (2, 2, -1) 

z 

x 

y 

. (0, 3, 2) 

 
 
Example 3:   
Find the lengths of the sides of the triangle with the vertices P(5, 3, 4), Q(7, 
1, 3), R(3, 5, 3) and determine whether the triangle is a right triangle, an 
isosceles or neither. 
 
Solution: 



1 2 3 4 5 

-1 -2 -3 -4 
1 

2 
3 

-1 
-2 

-3 

-1 
-2 

-3 

1 

2 

3 

x 

y 

z 4 

5 

4 5 
6 

7 
8 

.  

Q(7, 1, 3) . 
. R(3, 5, 3) 

P(5, 3, 4) 

 
 

2 2 2

2 2 2

2 2 2

(7 5) (1 3) (3 4) 9

(3 7) (5 1) (3 3)

(3 5) (5 3)

3

3

3 4)

2

( 9 3

PQ

QR

PR

= − + − + − = =

= − + − + − =

= − + − + − = =

 

 
Since the lengths of two sides are equal, this is an isosceles triangle. 
 
Example 4:   
Find the midpoint of the line segment joining P(4, 0, -6) and Q(8, 8, 20). 
 
Solution: 
Midpoint is given by: 

( )

1 2 1 2 1 2, ,
2 2 2

8 4 8 0 20 6
, ,

2 2
6 ,

2
,4 7

x x y y z z+ + + 
 
 

+ + − = = 
 

 

 
Example 5:   
Find the general form of the equation of the sphere with its center at (4, -1, 
1) and radius r = 5 units. 
 
Solution: 
The standard equation of the circle is:  



2 2 2 2

2 2 2 2

2

2 2 2

2 2

( ) ( ) ( )

( 4) ( 1) ( 1) 5

8 16 2 1

8 2 2

1

7

2 25

0

o o ox x y y z z r

x y z

x x y y z

x y z x z

z

y

− + −

+ + −

+ − =
− + + + − =
− + + +

+
−

−
+ =

−
+

=
+

 

 
Example 6:   
Find the center and the radius of the sphere given by the general equation 
4x2 + 4y2 + 4z2 - 4x - 32 y + 8z + 33 = 0 
 
Solution: 
4x2 + 4y2 + 4z2 - 4x - 32 y + 8z + 33 = 0 
4x2 - 4x + 4y2 - 32y + 4z2 + 8z = -33 
4(x2 - x) + 4(y2 - 8y) + 4(z2 + 2z) = -33 
We complete square on this 
4(x2 - x +(1/2)2) + 4(y2 - 8y + 42) + 4(z2 + 2z + 12) = -33 + 1 + 64 + 4 
4(x - ½)2 + 4(y - 4)2 + 4(z + 1)2 = 36 
 (x - ½)2 + (y - 4)2 + (z + 1)2 = 9 
The center is (1/2, 4, -1) and r = 3 units. 
 
Example 7:   
The initial point of a vector is (2, -1, -2) and its terminal point is (-4, 3, 5). 
(a) Sketch the directed line segment, (b) find the component form of the 
vector, and (c) sketch the vector with its initial point at the origin. 
 
Solution: 
 
(a) 



1 2 3 4 5 

-1 -2 -3 -4 

1 
2 

3 

-1 
-2 

-3 
-4 

-1 

-2 

-3 

1 

2 

3 

x 

y 

z 4 

5 

. (2, -1, -2) 

. (-4, 3, 5) 

 
 
(b) v1 = x2 - x1 = -4 - 2 = -6 
 v2 = y2 - y1 = 3 - (-1) = 4 
 v3 = z2 - z1 = 5 - (-2) = 7 
 The component form of the vector is: v = 〈〈〈〈-6, 4, 7〉〉〉〉  
 
(c)  

1 2 3 4 5 -2 

-2 
-1 

3 

-5 
-6 

-7 
-8 

2 

4 

6 

x 

y 

z 

8 

10 

-9 
-10 

-4 

6 7 

 
 
Example 8:   
Find the terminal point of the vector v = 〈0, ½, -1/3〉 having an initial point 
(3, 0, -2/3) 
 
Solution: 
Let (x2, y2, z2) be the terminal point. 
0 = x2 - 3   or,  x2 = 3 
½ = y2 - 0   or,  y2 = ½ 



-1/3  = z2 - (-2/3),   or, z2 = -1 
The terminal point is (3, ½, -1) 
 
Example 9:   
If z = u - v + 2w and u = 〈1, 2, 3〉, v = 〈2, 2, -1〉 and  w = 〈4, 0, -4〉, find the 
vector z. 
 
Solution: 
 
u = 〈1, 2, 3〉 
-v = 〈-2, -2, 1〉,   2w = 〈8, 0, -8〉  
z = u - v + 2w = 〈7, 0, -4〉 
 
Example 10:   
Which of the following vectors is parallel to: 

 
1 2 3

2 3 4
z i j k= − +  

( ) 6 4 9

4 3
( )

3 2

( ) 12 9

3 9
( )

4 8

a i j k

b i j k

c i k

d i j k

− +

− + −

+

− +

 

 
Solution: 
 
If a vector is parallel to z, then it must be a scalar multiple of z. If the ratio of 
all three components is the same, then the vectors are scalar multiples of 
each other, and hence parallel. So we take the ratios of the components of 
each of the vectors with the components of z and see in which case all three 
ratios are the same. 

1 2 3
( ) 6 4 9

2 3 4
6 4 9

12; 6; 12
1/ 2 2 / 3 3/ 4

a i j k z i j k− + = 〈 − + 〉

−= = =
−

 

This is not parallel to z. 



4 3 1 2 3
( )

3 2 2 3 4
1 4 /3 3/ 2

2; 2; 2
1/ 2 2 / 3/

2

3 4

z b

b i j k z i j k− + − = 〈 − + 〉

− −= − = = −

= −

−
−

 

 
This is parallel to z 

1 2 3
( ) 12 9

2 3 4
c i k z i j k+ = 〈 − + 〉  

 
This is not parallel to z since it has no y component. 

3 9 1 2 3
( )

4 8 2 3 4
3/ 4 3 1 3 9 /8 3

; ;
1/ 2 2 2 / 3 2 3

3
2

/ 4 2

d i j k z i j k

z d

− + = 〈 − + 〉

−= =

=

=
−

 

 
This vector is parallel to z 
 
Example 11:   
Use vectors to determine whether the points P(1, -1, 5), Q(0, -1, 6) and R(3, 
-1, 3) lie in a straight line. 
 
Solution: 

If points P, Q and R lie on a straight line, then vectors , ,PQ PR QR
→ → →

 will be 
scalar multiples of each other. 
P(1, -1, 5), Q(0, -1, 6) and R(3, -1, 3) 

0 1, 1 ( 1),6 5 1,0,1

3 1, 1 ( 1),3 5 2,0, 2 2 1,0,1

3 0, 1 ( 1),3 6 3,0, 3 3 1,0,1

PQ

PR

QR

→

→

→

= 〈 − − − − − 〉 = 〈− 〉

= 〈 − − − − − 〉 = 〈 − 〉 = − 〈− 〉

= 〈 − − − − − 〉 = 〈 − 〉 = − 〈− 〉

 

 
These vectors are scalar multiples of each other, and so they are collinear. 
 
Example 12:   



Find the magnitude of the vector v = -4i + 3j  + 7k 
 
Solution: 
 

2 2 2 2 2 2
1 2 3 ( 4) 743 7v v v v= + + = − + + =  

 
Example 13:   
Find a unit vector (a) in the direction of u, (b) in the direction opposite to u 
where u = 〈6, 0, 8〉 
 
Solution: 
 

(a) 
2 2

3 4
,0,

6,0,8 6,0,8

10 506 8 5

u
n

u

〈 〉 〈 〉= = = =
+

 

(b) 
3 4

,0,
5 5

−  

 
Example 14:   
Determine the value of c such that the vector  v = i + 2j  + 3k satisfies the 
relation 3cv =  

 
Solution: 
 
cv = c i + 2c j   + 3c k 

2 2 24 9 14

14 3

3 14

14

cv c c c c

c

c = ±

= + + =

=  

 
Example 15:   
Find the vector v with a magnitude 5and in the direction of u = 〈-4, 6, 2〉 
Solution: 
The unit vector in the direction of u is given by  

4,6,2 1
4,6,2

16 36 4 2

1
2,3,1

14 14

u
n

u

〈− 〉= = = 〈− −〉 = 〈
+ +

〉  



5
5 2,3,1

14
70

2,3,1
14

v n= = − = −  

 
Example 16:   
The lights in an auditorium are 24 N discs of radius 18 cm. Each disc is 
supported by three equally spaced wires that are L cm long.  
(a) Write the tension T in each wire as a function of L.  
 Determine the domain of the function. 
(b) Complete the following table. 
 
L 20 25 30 35 40 45 50 
T        
 
(c)     Graph the model in part (a) and determine the asymptotes of the graph. 
(d) Confirm the asymptotes analytically. 
(e) Determine the minimum  length of each cable if a cable is designed to 

carry a maximum load of 10 N. 
 
Solution: 

18 cm 

L 

 

T 

P(0, 18, 0) 

Q(0, 0, h) 

h 

(0,0,0) 

 

 
The tensions on all three cables are the same. 
If T is the tension on one of the cables as shown in the figure above, it will 
be a scalar multiple of the vector PQ 

0, 18,PQ h
→

= 〈 − 〉  

T = c 〈0, -18, h〉      where   2 218h L= −  
 
The total tension on the three cables = 3T = 3c 〈0, -18, h〉     ….(i) 



This total tension balances the downward force of 24 N which is the weight 
of the disc. The vector form of this weight is  
W = 〈0, 0, -24〉  ….(ii) 
Since 3T = W, we have  3ch = -24 
Or,         

    
2 2 2 2 2

2 2

2 2

8

8
0, 18, 0, 18,

8 8
18 18 18

8
8

8

1

1

c
h

T c h h
h

T h L
h L

L

L

−=

−= − = −

= +
−

=
−

= + −
 

(b)  
L 20 25 30 35 40 45 50 
T 18.4 11.5 10 9.3 8.9 8.7 8.5 
 
(c) 

asymptote y = 8 

 
 

(d) 
2 2

8
8

18L

L
Lim

L→∞
=

−
 

 
(e) From the table in (b) above, when T = 10 N, L = 30 cm 
 
 



Homework: 
 
1. Find the lengths of the sides of the triangle with vertices (0,0,0), 

(2,2,1), (2, -4,4) and determine whether is right triangle, isosceles or 
neither.  

 
2. Find the standard form of the equation of the sphere with end points 

of its diameter (2,0,0) and (0,6,0) 
 
3. Find the center and radius of the sphere x2 + y2 + z2 – 2x + 6y + 8z + 1 

= 0 
 
4. Find the center and radius of the sphere 9x2 + 9y2 + 9z2 – 6x + 18y +  

1 = 0 
 
5. Given that v = 〈1,2,2〉, sketch (a) 2v, (b) –v, (c) (3/2)v, (d) 0v 
 
6. Given that u = 〈1,2,3〉, v = 〈2,2,-1〉, and w = 〈4,0,-4〉, find the vector    

z = 2u + 4v – w  
 
7. Determine which of the following vectors is parallel to z = 〈3,2,-5〉? 
 (a) 〈6, -4, 10〉  (b) 〈2, 4/3, -10/3〉 
 (c) 〈6 ,4 ,10〉  (d) 〈1, -4, 2〉 
 
8. If vector z has the initial point (1, -1, 3) and terminal point (-2, 3, 5), 

which of the following vectors is parallel to z? 
 (a)  -6i + 8j  + 4k  (b)  4j  + 2k 
 
9. Use vectors to find whether the points (1,2,4), (2,5,0), (0,1,5) are 

collinear.  
 
10. If v = i – 2j – 3k, find the magnitude of v 
 
11. If u = 〈2,-1,2〉, find a unit vector (a) in the direction of u and (b) in the 

direction opposite to u. 
 
12. Find the vector v which has a magnitude 3/2 and is in the direction of 

u = 〈2, -2, 1〉 
 



Lesson 1.3 
The Dot Product of Two Vectors 

 
1. Dot Product 
 

The dot product of two vectors u and v is the product of 
the magnitude of u and the component of v in the 
direction of u. If θ is the angle between u and v, then the 
component of v in the direction of u is cosv θ  

                      cosu v u v θ⋅ =                   …(i) 

            If u = 〈u1, u2 , u3〉 and v = 〈v1, v2 , v3〉 
 
              u ⋅ v = u1v1 + u2v2 + u3v3 

 
The dot product of vectors is a scalar quantity and it has the following 
properties: 
If u, v, w are vectors in a plane or in space, then 
 

1.   u ⋅⋅⋅⋅ v = v ⋅⋅⋅⋅ u                           (commutative property) 
2.   u ⋅⋅⋅⋅ (v + w) = u ⋅⋅⋅⋅ v + u ⋅⋅⋅⋅ w     (Distributive property) 
3.   c(u ⋅⋅⋅⋅ v)  = cu ⋅⋅⋅⋅ v  = u ⋅⋅⋅⋅ cv 
4.   0 ⋅⋅⋅⋅ v  =  0 

 
From equation (i) above, it also follows that: 
 
  

If vectors u and v are at right angles to each other, 
                               u ⋅ v  =  0 
This is a test we can use to test whether two vectors are 
orthogonal (perpendicular to each other). 

 
Equation (i) above can also be used to find the angle between two vectors u 
and v  
 

                     co   s ...(ii)
u v

u v
θ ⋅=    

 



Example 1:  If u = 2i + j – 2k  and  v = i – 3j + 2k, find 
(a) u ⋅ v, (b) (b) u ⋅ u,  (c) (u ⋅ v)v and (d) u ⋅ 2v 
 
Solution: 
 
u = 2i + j -2k  and  v = i - 3j + 2k 
 
(a) u ⋅ v = u1v1 + u2v2 + u3v3 = 2(1) + 1(-3) + (-2)2 = 2 - 3 - 4 = -5 
(b) u ⋅ u  = 2(2) + 1(1) +(-2)(-2) = 4 + 1 + 4 = 9 
(c) (u ⋅ v)v = -5(i - 3j + 2k) = -5i + 15j - 10k 
(d) 2v = 2i - 6j + 4k 
 u ⋅ 2v = 2(2) + 1(-6) + (-2)(4) = 4 - 6 -8 = -10 
 
Using TI-86: 

  
 
 
Example 2:   

40,   25 and the angle between u and v is 5 /6.u v π= =   

 
Find u ⋅ v. 
 
Solution: 
 

cos 40 25 cos5 / 6 866u v u v θ π⋅ = = × × = −  

 
Example 3:   
Find the angle θ between the vectors u and v given that:  

cos sin
6 6
3 3

cos sin
4 4

u i j

v i j

π π

π π

= +

= +
 

 
Solution: 



 

2 2

1

3 3
cos cos sin sin 0.26

6 4 6 4

sin ( / 6) sin ( / 6) 1

1

cos 0.26

cos ( 0.26) 1.83 105o

u v

u

v

u v

u v

π π π π

π π

θ

θ −

⋅ = + = −

= + =

=
⋅= = −

= − = =

 

Using TI-86: 
 

  
 
Example 4:   
Find the angle θ between the vectors:  
u = 2i - 3j + k     and       v = i - 2j + k 
 
Solution: 
 
u = 2i - 3j + k   and       v = i - 2j + k 
u ⋅ v = 2(1) + (-3)(-2) + 1(1) = 9 

2 2 2

1

2 ( 3) 1 14

1 4 1 6

9
cos 0.98

14 6

cos (0.98 10.89) o

u

v

u v

u v
θ

θ −

= + − + =

= + + =
⋅= = =

×
= =

 

 



 
 
Example 5:   
Determine whether u = 〈2, 18 〉 and v = 〈3/2, -1/6〉 are orthogonal. 
 
Solution: 
 
If u and v are orthogonal, then u ⋅ v = 0.  

3 1
2 18 0

2 6
u v  ⋅ = × + × − = 

 
 

 
u and v are orthogonal. 
 
Example 6:   
Determine whether u = -2i + 3j – k  and v = 2i + j – k are orthogonal. 
 
Solution: 
 
u ⋅ v = (-2)2 + 3(1) + (-1)(-1) = 0 
u and v are orthogonal. 
 
2. Direction Cosines of a Vector 



Example 7: 

If  �⃑� = 〈2,1,2〉 and 𝑣 = 〈0,3,4〉, find 

(a) the projection of �⃑�  onto 𝑣 ,  
(b) the vector component of �⃑�  orthogonal to 𝑣 , 
(c) the scalar component of �⃑�  in the direction of 𝑣 . 

 

Solution: 

�⃑� ∙ 𝑣 = (2)(0) + (1)(3) + (2)(4) = 11, 

|𝑣 | = √(0)2 + (3)2 + (4)2 = 5,  and so  |𝑣 |2 = 25. 

(a) 𝑝𝑟𝑜𝑗�⃑⃑� 𝑣 = (
�⃑⃑� ∙�⃑� 

|�⃑� |2
)𝑣 =

11

25
〈0,3,4〉 = 〈0,

33

25
,
44

25
〉. 

(b) �⃑� − 𝑝𝑟𝑜𝑗�⃑⃑� 𝑣 = 〈2,1,2〉 − 〈0,
33

25
,
44

25
〉 = 〈2,

−8

25
,

6

25
〉. 

(c) |𝑝𝑟𝑜𝑗�⃑⃑� 𝑣 | = √(0)2 + (
33

25
)2 + (

44

25
)2 =

11

5
= 2.2 

 



Lesson 1.4 
The Cross Product of Two Vectors in Space 

 
If u = u1i+ u2j + u3k and v = v1i + v2j + v3k are two vectors 
in space, then the cross product of these vectors is a vector 
given by 
u × v = (u2v3 - u3v2)i -(u1v3 - u3v1)j + (u1v2 - u2v1)k  

 
If u =〈2, -3, 5〉 and v = 〈1, 2, 4〉, we use the following method to find u × v 
Complete the 3 x 3 matrix with i, j, k as the first row; u1, u2, u3 as the 
second row; v1, v2, v3 as the third row.  

2 3 5 (( 3)4 2 5) (2 4 1 5) (2 2 1( 3)

1 2 4

                          7   2 2 3

i j k

u v j

i j

i k

k

 
 

× = − = − − × − × − × + ×

− −

− −
 


= +




 

 
To obtain the x component of the cross product, cross out the row and 
column containing i and multiply the remaining 2 x 2 matrix diagonally and 
subtract as (-3)4 - 2 x 5 = -22. The x component of the cross product is -22i. 
To find the y component, cross out the row and column containing j, then 
multiply diagonally the remaining 2 x 2 matrix and subtract as 2 x 4 - 1 x 5 = 
3. Remember, we take i positive, j negative and k positive. Therefore, the y 
component of the cross product = -3j. To find the z component of the cross 
product, cross out the row and column containing k and multiply and 
subtract the remaining 2 x 2 matrix. as 2 x 2 - (-3)1 = 7. The z component of 
the cross product is 7k. Thus 
 u x v = -22i - 3j + 7k as shown above.  
 
Unlike the dot product, the cross product of two vectors u and v is a vector 
orthogonal to both u and v. The direction of u × v can be found using the 
right hand rule. Hold the four fingers of your right hand at right angles to 
your thumb. If these four fingers are moved from u to v, the thumb will 
point in the direction of the cross product.  
 
The following are some of the properties of cross product of vectors. 

If u, v, w are vectors in space and c is a scalar, then 
1.  u × v = - v × u 



2.  u × u = v × v = 0 
3.  u × v is orthogonal to both u and v 
4.  The magnitude of u × v is given by 
      sinu v u v θ× =  where θ is the angle between 

      the vectors 
5.  u × v = 0 if u and v are parallel 
6.  u × v = area of the parallelogram having u and v  
     as adjacent sides. 

 

u 

v 

u X v 

 

u 

v 
v X u 

 

u 

v 

u X v = u v sin θ  

v sinθθθθ  

 
 
Example 1:   
Find the cross product (a) i × j, (b) k × j and (c) k × i  and sketch the result. 
 
Solution 

i X j = k 

i 

j 

(a) 

k X j = -i k 

j 

(b) 

k X i= j 

i 

k 

(c) 
 
Example 2:   
Given that u = j + 6k and v = i – 2j + k, find u × v and show that it is 
orthogonal to both u and v. 
 
Solution: 



0 1 6 (1 ( 12)) (0

1

6) (0 1)

1 2 1

       3 6

i j k

u v i j

i j k

k

 
 

× = = − − − − + − 
 − 

+ −=

 

 
If u and u × v are orthogonal , then u ⋅ (u × v) = 0 
u = 〈0, 1, 6〉, v = 〈1, -2, 1〉 and  u × v = 〈13, 6, -1〉 
u ⋅ (u × v) = 0 + 6 - 6 = 0 
v ⋅ (u × v) = 13 - 12 -1 = 0 
Therefore, (u × v) is orthogonal to both u and v 
 
Example 3:   
Given that u = 〈-8, -6, 4〉 and v = 〈10, -12, -2〉, use a graphing utility to find 
u × v and a unit vector orthogonal to u and v. 
 
Solution: 

  
The figure above shows the calculator output for u × v. Since this vector is 
orthogonal to both u and v, a unit vector orthogonal to u and v is a unit 
vector in the direction of u × v. In the figure on the right I stored u × v as A 

and obtained 
A

A
 which is the required unit vector. 

 
Example 4:   
Find the area of the parallelogram with the vectors:  
u = i + j + k and v = j + k  as adjacent sides. Verify your result using the 
calculator. 
 
Solution: 
 
The area of the parallelogram is given by the magnitude of  u × v 



1 1 1 0 0, 1,1

0 1 1

1 1 2

i j k

u v i j k

u v

 
 

× = = − + = − 
 
 

× = + =

 

 

 
Example 5:   
Find the area of the triangle with vertices P(2, -3, 4), Q(0, 1, 2) and R(-1, 2, 
0). 
 
Solution: 

2,4, 2

3,5, 4

PQ u

PR v

→

→

= = − −

= = − −
 

 
Area of the triangle with u and v as adjacent sides is given by:  

1

2
A u v= ×  

 

2 2 2

2 4 2 6 2 2

3 5 4

( 6) ( 2) 2 44 2 11

i j k

u v i j k

u v

 
 

× = − − = − − + 
 − − 

× = − + − + = =

 

The area of the triangle = 11 
u 

v 

 
 
2. The Triple Scalar Product  

If u = 〈u1, u2, u3〉, v = 〈v1, v2, v3〉, and w = 〈w1, w2, w3〉, then 



the quantity u ⋅ (v × w) is called the triple scalar of u, v and w. 
The magnitude of u ⋅ (v × w) gives the volume of a 
parallelepiped with u, v, w as adjacent sides.  
 

 

1 2 3

1 2 3

1 2 3

u

u  (v  w)= v

w

u u

v v

w w

 
 

⋅ ×  
 
 

 

u 
v 

w 

 
 
Example 6:   
If u = 〈2, 0, 0〉, v = 〈1, 1, 1〉 and w = 〈0, 2, 2〉,  
find u ⋅ (v × w) 
 
Solution: 
 

2 0 0

( ) 1 1 1 2(2 2) 0(2 0) 0(2 0) 0

0 2 2

u v w

 
 

⋅ × = = − − − + − = 
 
 

 

 
Example 7:   
Find the volume of the parallelepiped having adjacent edges given by the 
vectors u = 〈1, 3, 1〉, v = 〈0, 5, 5〉 and w = 〈4, 0, 4〉. 
 
Solution: 
The volume of the parallelepiped is given by the magnitude of the triple 
scalar product u ⋅ (v × w) 
u ⋅ (v × w) = 
1 3 1

0 5 5 1(20 0) 3(0 20) 1(0 20) 60

4 0 4

 
 

= − − − + − = 
 
  

 
u 

v 

w 

 
 



Lesson 1.5 
Lines and Planes in Space 

 
1. Lines in Space 
 
In order to write a set of parametric equations for a line in space, we need a 
point P(x1, y1, z1) through which the line passes and a vector v = 〈a, b, c〉 
parallel to the line.  

Parametric equations for a line passing through P(x1, y1, z1) 
and parallel to the vector v = 〈〈〈〈a, b, c〉〉〉〉 are given by  
 
                x = x1 + at 
                y = y1 + bt 
                z = z1 + ct 

 
A symmetric equation for the line is obtained by eliminating the parameter t 
from the above equations which gives: 
   

  1 1 1x x y y z z

a b c

− − −= =  

 
Example 1:   
Find a set of parametric equations and a set of symmetric equations for a line 
passing through P(0, 0, 0) and parallel to the vector  v = 〈-2, 5/2, 1〉 
 
Solution: 
 
We have  x1 = 0,  y1 = 0  z1 = 0 
  v = 〈-2, 5/2, 1〉 =  〈-4, 5, 2〉 
   a = -4  b = 5    c = 2 
The parametric equations are: 
x = 0 - 4t or, x = -4t 
y = 0 + 5t or, y = 5t 
z = 0 + 2t or, z = 2t 
 
The symmetric equation is:  
 



4 5 2

x y z= =
−

 

 
Example 2:   
Find a set of parametric equations and a set of symmetric equations for a line 
passing through P(-2, 0, 3) and parallel to the vector v = 6i + 3j 
 
Solution: 
 
We have: x1 = -2,  y1 = 0,  z1 = 3 
   a  = 6    b = 3    c = 0 
 
The parametric equations are: 
x = -2 + 6t 
y = 3t 
z = 3 
The symmetric equations are: 

2

6 3
2

2
3

x y

x
y

z

+ =

+ =

=

 

 
Example 3:   
Find a set of parametric equations and a set of symmetric equations for a line 
passing through P(-3, 5, 4) and parallel to the line: 

 
1 1

3
3 2

x y
z

− += = −
−

 

 
Solution: 
 
The general form of the symmetric equation of a line that is parallel to         
v = 〈a, b, c〉 is: 

 1 1 1x x y y z z

a b c

− − −= = .  

 
Since the line we are looking for is parallel to  



1 1
3

3 2

x y
z

− += = −
−

,  

 
the vector v = 〈3, -2, 1〉 is parallel to the line. We are now looking for the 
equation of a line that passes through P(-3, 5, 4) and parallel to v = 〈3, -2, 1〉. 
So we have: 
 
x1 = -3,   y1 = 5  z1 = 4 
  a = 3    b = -2   c = 1 
 
The parametric equations are: 
 
x = -3 + 3t 
y = 5 - 2t 
z = 4 + t 
 
The symmetric equations are: 
 

3 5
4

3 2

x y
z

+ −= = −
−

 

 
Example 4:   
Find a set of parametric equations and a set of symmetric equations for a line 
that passes through P(1, 0, 1) and Q(1, 3, -2). 
 
Solution: 
The vector PQ

→
 is given by:  

0,3, 3PQ
→

= −  

Now we are looking for the equation of the line that passes through               
P(1, 0, 1) (we choose one of the points), and parallel to the vector 〈0, 3, -3〉. 
We have: 
x1 = 1, y1 = 0, z1 = 1 
a = 0   b = 3   c = -3 
 
The parametric equations are: 
x = 1 
y = 3t 
z = 1 - 3t 



 
The symmetric equations are: 
 

1
1 and , 1

3 3

y z
x or y z

−= = = −
−

 

 
2. Planes in space 
 
A plane in space is defined using a point P(x1, y1, z1) in it and a vector          
n = 〈a, b, c〉 normal to it.  
 

The standard equation of the plane containing the point       
P(x1, y1, z1) and a normal vector n = 〈a, b, c〉 is 
a(x - x1) + b(y - y1) + c(z - z1) = 0 
The general equation of the plane is 
ax + by + cz + d = 0 

 
The plane ax + d = 0 is parallel to the yz plane, by + d = 0 is parallel to the 
xz plane and cz + d = 0 is parallel to the xy plane. 
 

x 

y 

z 
yz plane 

ax + d = 0 

 

x y 

z 

xz plane 

by + d = 0 

 
 
Example 5:   
Find a set of parametric equations for the line that passes through the point 
P(2, 3, 4) and perpendicular to the plane  3x + 2y – z  = 6. 
 
Solution: 
The vector normal to the plane 3x + 2y – z  = 6 is n = 〈3, 2, -1〉 
Since we are looking for the equation of a line that is perpendicular to this 
plane, the vector n = 〈3, 2, -1〉 is parallel to the line. We need the equation of 
the line that passes through (2, 3, 4) and parallel to the vector n = 〈3, 2, -1〉 
We have: x1 = 2, y1 = 3, z1 = 4 



    a = 3,  b = 2 ,  c = -1 
The parametric equations are: 
 
x = 2 + 3t 
y = 3 + 2t 
z = 4 - t 
 

 
 
Example 6:   
Two lines in space are given by: 
x = -3t + 1, y = 4t + 1,  z = 2t + 4 
x = 3s + 1, y = 2s + 4, z = -s + 1 
Determine whether these two lines intersect. If they do, find the point of 
intersection and the cosine of the angle of intersection. 
 
Solution: 
If the lines intersect, at the point of intersection, we have: 
(i) -3t + 1 = 3s + 1,  
(ii) 4t + 1 = 2s + 4 
(iii) 2t + 4 = -s + 1 
From (i) we have s = -t. Using this in (ii), we get 4t + 1 = -2t + 4, or, t = ½. 
Using s = -t in (iii) we have 2t + 4 = t + 1, or, t = -3. Since t should be the 
same at the point of intersection, these lines do not intersect. 
 
Example 7:    
Two lines in space are given by: 

2 2
3

3 6
3 2

5
2 4

x y
z

x z
y

− −= = −
−
− += + =

 

 
Determine whether these two lines intersect. If they do, find the point of 
intersection and the cosine of the angle of intersection. 



 
Solution: 
Writing the equations in the parametric form, we have for line 1 
x = 2 - 3t,  y = 2 + 6t, z = 3 + t 
For line 2 we have: 
x = 3 + 2s,  y = -5 + s,  z = -2 + 4s 
If they intersect, at the point of intersection we have, 
(i) 2 - 3t = 3 + 2s or, 2s + 3t  = -1 
(ii) 2 + 6t = -5 + s or,   s  -  6t  = 7 
(iii) 3 + t = -2 + 4s or, 4s -  t    = 5 
Solving (i) and (ii) above gives s = 1 and t = -1. These solutions also satisfy 
the third equation. Therefore, these two lines intersect when t = -1 and s = 1. 
The point of intersection is P(5, -4, 2) 
To find the cosine of the angle of intersection, we use the dot product of the 
two vectors u and v that are parallel to these lines.  
The vector u parallel to line 1 is   u = 〈-3, 6, 1〉 
The vector v parallel to line 2 is   v = 〈2, 1, 4〉 
u ⋅ v = -6 + 6 + 4 = 4 

9 36 1 46

4 1 16 21

4
cos 0.13

46 21

u

v

u v

u v
θ

= + + =

= + + =
⋅= = =

 

 
θθθθ = 82.5o 
 
Example 8:   
Find an equation of the plane containing the point P(1, 0, -3) and 
perpendicular to the vector n = k 
 
Solution:   
We have x1 = 1,  y1 = 0, z1 = -3 
        a = 0,   b = 0     c = 1 
The standard equation is: 
 
a(x - x1) + b(y - y1) + c(z - z1) = 0 
0(x - 1) + 0(y - 0) + 1(z -(- 3)) = 0 or, z = -3 



 
 
Example 9:   
Find an equation of the plane containing the point P(3, 2, 2) and 
perpendicular to the line: 

 
1 3

2
4 3

x z
y

− += + =
−

 

 
Solution: 
The vector perpendicular to the plane is n = 〈4, 1, -3〉 
We have  x1 = 3, y1 = 2 , z1 = 2 
   a = 4,   b = 1,   c = -3 
The standard equation of the plane is:  
4(x - 3) + 1(y - 2) + (-3)(z - 2) = 0 
4x - 12 + y -2 -3z + 6 = 0 
4x + y - 3z = 8 
 

The plane 
4 8

3

x y
z

+ −=  is plotted below using mathematica. 



4x + y - 3z = 8 

 
 
Example 10:   
Find an equation of the plane that passes through P(1, 2, -3), Q(2, 3, 1) and 
R(0, -2, -1). 
 
Solution: 

Using the points P, Q and R, we can define two vectors, PQ and PR
→ →

 on 
the plane. The cross product of these two vectors will be normal to the plane. 
 

1,1,4

1, 4,2

1 1 4 18 6 3 3(6 2 )

1 4 2

PQ u

PR v

i j k

u v i j k i j k

→

→

= =

= = − −

 
 

× = = − − = − − 
 − − 

  

 
The normal vector n = 〈6, -2, -1〉 and the plane contains the point P(1, 2, -3) 
The equation of the plane is a(x - x1) + b(y - y1) + c(z - z1) = 0 
 
6(x - 1) + (-2)(y - 2) + (-1)(z - (-3)) = 0 
6x - 6 - 2y + 4 - z - 3 = 0 
6x - 2y - z = 5 
 
Example 11:   
Find an equation of the plane that contains the point P(1, 2, 3) and is parallel 
to the yz plane.  



 
Solution: 
 

x 

y 

z 
yz plane 

x = 1 

 
n = 〈1, 0, 0〉 
The equation of the plane is 1(x - 1) + 0(y - 2) + 0(z - 3) = 0 
Or,       x = 1 
 
Example 12:   
Find an equation for the plane that contains the point (2, 2, 1) and contains 
the line: 

 
4

2 1

x y
z

−= =
−

 

 
Solution: 
The direction vector of the line is u = 〈2, -1, 1〉. A point on the line can be 
obtained by assigning arbitrary values to x and z and solving for y. When     
x = z = 0,  y = 4. Thus the point (0, 4, 0) is on the line. The vector joining 
point (2, 2, 1) to (0, 4, 0) is v = 〈-2, 2, -1〉. Now we have two vectors on the 
plane and the cross product of these gives the normal vector to the plane. 

2 1 1 0 2

2 2 1

i j k

n u v i j k

 
 

= × = − = − + + 
 − − 

 

 
We have:   x1 = 2, y1 = 2, z1 = 1  
   a = -1  b = 0   c = 2 
The equation of the plane is a(x - x1) + b(y - y1) + c(z - z1) = 0 
-1(x - 2) + 0 + 2(z - 1) = 0 
-x + 2 + 2z - 2 = 0 
x - 2z = 0 



 
 
Example 13:   
Find an equation of the plane that passes through      P(4, 2, 1) and Q(-3, 5, 
7) and is parallel to the z axis.  
 
Solution: 
A vector u on the plane is given by  u = 〈-7, 3, 6〉. Since the plane is parallel 
to the z axis, it is parallel to the vector v = 〈0, 0, 1〉. The normal vector to the 
plane is given by: 

7 3 6 3 7

0 0 1

i j k

n u v i j

 
 

= × = − = + 
 
  

 

 
We have  x1 = 4,  y1 = 2, z1 = 1 
    a = 3 ,  b = 7 ,          c = 0 
The equation of the plane is: 
3(x - 4) + 7(y - 2) + 0 = 0 
3x - 12 + 7y -14 = 0 
3x + 7y = 26 
 
Example 14:  
Determine whether the planes 3x + 2y – z  = 7 and x – 4y + 2z = 0 are 
parallel, orthogonal or neither. If they are neither parallel nor orthogonal, 
find the angle of intersection. 
 
Solution: 



 
The normal vector to plane 1 is n1 = 〈3, 2, -1〉 
The normal vector to plane 2 is n2 = 〈1, -4, 2〉 
If the two planes are parallel, then n1 will be a scalar multiple of n2. Since in 
this case, n1 is not a scalar multiple of n2, the two planes are not parallel.  
If the two planes are orthogonal, then n1⋅ n2 = 0 
n1⋅ n2  = 3 - 8 -2 = -7. The planes are not orthogonal. 
If θ is the angle between the two planes, then 

1 2

1 2

1

7 1
cos

14 21 6

cos 6(1/ 6) 5.9o

n n

n n
θ

θ −

⋅
= = =

= =

 

 
Example 15:   
Sketch a graph of the plane 3x + 6y + 2z = 6 
 
Solution: 
The intersection of a plane on the xy plane is called the xy trace. The xy 
trace is obtained by setting z = 0 in the equation of the plane. 
The xy trace of this plane is 3x + 6y = 6 , or, x + 2y = 2 
The yz trace is 6y + 2z = 6,  or,  3y + z = 3 
The xz trace is 3x + 2z = 6 
The figure on the left below shows how these traces are used to sketch the 
graph of the plane. The figure on the right is the mathematica generated 
graph of the plane. 
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Example 16:   



Find a set of parametric equations for the line of intersection of the planes x 
- 3y + 6z = 4 and 5x + y - z = 4 
 
Solution: 
The normal vectors of these planes are: 
n1 = 〈1, -3, 6〉 and n2 = 〈5, 1, -1〉. The line of intersection of these planes is 
orthogonal to both these vectors and is given by n1 × n2 

1 2 1 3 6 3 31 16

5 1 1

i j k

n n i j k

 
 

× = − = − + + 
 −  

 

 
Now we find a point of intersection of the planes by elimination method. 
    x  - 3y + 6z = 4 
15x + 3y -  3z = 12 
__________________ 
16x +       3z   = 16 
If we let z = 0, then x = 1. Using these two values in x - 3y + 6z = 4, y = -1. 
Therefore, a point of intersection of the planes is (1, -1, 0). We are looking 
for the parametric equations of the line with the direction vector 〈-3, 31, 16〉 
and passing through the point (1, -1, 0) 
We have  x1 = 1,  y1 = -1, z1 = 0 
   a = -3,    b = 31         c = 16 
x = 1 - 3t 
y = -1 + 31t 
z = 16t 
 
Example 17:   
Find the point of intersection of the plane 2x + 3y = -5 and the line 

1 3

4 2 6

x y z− −= = . Does the line lie on the plane? 

 
Solution: 
Writing the line in the parametric form, we have 
x = 1 + 4t, y = 2t,  z = 3 + 6t 
Using these values in the equation for the plane, gives 
2(1 + 4t) + 3(2t) = -5 
2 + 8t + 6t = -5 or,   t = -1/2  



Using this value of t in the parametric equations give 
x = 1 - 2 = -1, y = -1, z = 3 - 3 = 0 
The point of intersection is (-1, -1, 0) 
Since there is only one point of intersection, the line does not lie on the 
plane. 
 
Example 18:   
Find the distance between the point (1, 2, 3) and the plane 2x - y + z = 4. 
 
Solution: 
The normal vector to the plane is n = 〈2, -1, 1〉 
A point on the plane can be obtained by setting y = z = 0 and solving for x. 
This gives (2, 0, 0) a point on the plane 
P(2, 0, 0) is a point on the plane and Q(1, 2, 3) a point outside it. 
Vector PQ = 〈-1, 2, 3〉 
 

(2, 0, 0). 

.(1, 2, 3) 

D 

 
 
The distance D between the point and the plane is the length of the 
projection of vector PQ along the normal vector n. 

6

6

2 2 3

6

PQ n
D

n

→

⋅ − − +
= = =  

 
Homework: 

 
1. Find a set of parametric equations and a set of symmetric equations 

for a line that passes through (-2, 0, 3) and parallel to the vector          
v = 2i + 4j – 2k. 

 



2. Find a set of parametric equations and a set of symmetric equations 
for a line that passes through (1, 0, 1) and parallel to the line given by 
x = 3 + 3t,  y = 5 – 2t,  z = -7 + t 

 
3. Find a set of parametric equations and a set of symmetric equations 

for a line that passes through (5, -3, -2) and (-2/3, 2/3, 1) 
 
4. Determine whether the following lines intersect, and if so, find the 

point of intersection and the cosine of the angle of intersection. 
 (i) x = 4t + 2,  y = 3,  z = -t +1 
  x = 2s + 2,  y = 2s + 3,  z = s + 1 
 

 (ii) 
2 1 3

1, 2
3 1 4 3

x y x z
z y

− − += = + = + =
− −

 

 
5. Find an equation of the plane:  
 (i)  passing through (3, 2, 2) and perpendicular to n = 2i + 3j – k  
 (ii)  passing through (0, 0, 6) and perpendicular to the line given by  
  x = 1 – t , y = 2 + t, z = 4 – 2t 
 
 
6. Find the equation of the plane passing through (0,0,0), (1,2,3) and      

(-2,3,3) 
 
7. Find an equation of the plane that passes through the point (1,2,3) and 

parallel to the xy plane. 
 
8. Find an equation of the plane that passes through the points (2,2,1) 

and (-1,1,-1) and perpendicular to the plane 2x – 3y + z = 3 
 
9. Determine whether the following planes are orthogonal, parallel or 

neither. If they are neither parallel nor orthogonal, find the angle of 
intersection. 

  x – 3y + 6z = 4 
  5x + y – z = 1 
 
10. Sketch the graph of the plane 4x + 2y + 6z = 12 
 
11. Find the distance between the point (0,0,0) and the plane  
 2x + 3y + z = 12 



Lesson 1.6 
Surfaces in Space 

 
1. Cylindrical Surfaces. 
 
A cylindrical surface in space is constructed using a generating curve called 
the directrix and a set of parallel lines intersecting the generating curve at 
right angles. These parallel lines are called rulings. 
 

generating curve 

rulings 

Rulings intersect the generating 
curve at right angles. 

generating curve 

rulings 

 
 
If the rulings of a cylinder are parallel to one of the coordinate axes, the 
equation of this cylinder will contain only variables containing the other two 
axes.  
For example z = y2 describes a cylinder  which has the generating curve z = 
y2 and rulings that are parallel to the x axis as shown below. 
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The equation z = sin x describes a cylinder with z = sin x as the generating 
curve and the rulings parallel to the y axis.  
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Example 1:   
Describe and sketch the surface x2 + z2 = 16 
 
Solution: 
Here the y coordinate is missing. This is a cylinder with rulings parallel to 
the y axis and the generating curve is the circle given by x2 + z2 = 16. 
 

x 

y 

z 

 
 
Example 2:   
Describe and sketch the surface y2 + z = 4 
 
Solution: 
This can be written as z = 4 - y2. This is a cylinder with the generating curve 
given by the parabola z = 4 - y2 and the rulings parallel to the x axis. 



x 

y 

z 

z = 4 

z - 4 - y 2 

 
 

 
Example 3:   
Describe and sketch the surface y2 - z2 = 4. 
 
Solution: 
This is a cylinder with the generating curve given by the hyperbola 

2 2

1
4 4

y z− =  and the rulings parallel to the x axis. 
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z 

 

 
Example 4:   
Describe and sketch the surface  z - ey = 0 
 
Solution: 
This is a cylinder with the generating curve given by the exponential curve  
z = ey and the rulings parallel to the x axis. 
 



x 

y 

z 

 

 
 
Example 5:   
Sketch a view of the cylinder y2 + z2 = 4 from each of the following points. 
(a) (10, 0, 0)  (b)  (0, 10, 0)  (c) (10, 10, 10) 
 
Solution: 

x 

y 

z 

(0, 0, 0) 
 

x 

y 

z 

(0, 10, 0) 
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(10,10,10)

 
 
2. Quadric Surfaces 
 
Quadric surfaces are the three dimensional analogues of conic sections. For 
example, an ellipse is a conic, and revolving it about an axis produces an 
ellipsoid. The trace of an ellipsoid in each of the three planes is an ellipse. 
Similarly, revolving a parabola about its axis generates a quadric surface 
called the paraboloid. There are six basic types of quadric surfaces. We will 
consider the standard equation of each of these. 
 
(i) Ellipsoid: 
 
 Standard equation is: 

 
2 2 2

2 2 2
1

x y z

a b c
+ + =  

  



Fo a = b = c ≠ 0, the surface will be a sphere. 

 
 

The xy trace is 
2 2

2 2
1

x y

a b
+ =  which is an ellipse 

The xz trace is 
2 2

2 2
1

x z

a c
+ =  which is an ellipse 

The yz trace is 
2 2

2 2
1

y z

b c
+ =  which is an ellipse. 

 
(ii) Hyperboloid of One Sheet 
 
The standard equation is:   

2 2 2

2 2 2
1

x y z

a b c
+ − =  

 

xy trace 

  

The xy trace is 
2 2

2 2
1

x y

a b
+ =  which is an ellipse. 



The xz trace is 
2 2

2 2
1

x z

a c
− =  which is a hyperbola. 

The yz trace is 
2 2

2 2
1

y z

b c
− =  which is a hyperbola. 

 
The axis of the hyperboloid corresponds to the variable with negative 

coefficient. The axis of 
2 2 2

2 2 2
1

x y z

a b c
+ − =  is the z axis. The hyperboloid 

2 2 2

2 2 2
1

x y z

a b c
− + =  has its axis along the y axis. 

 
(iii) Hyperboloid of Two Sheets 
 
The standard equation is:   

2 2 2

2 2 2
1

z x y

c a b
− − =  

 
The axis of the hyperboloid corresponds to the variable that is positive. This 
is parallel to the z axis. 

 

 

The xy trace is 
2 2

2 2
1

x y

a b
+ =  which is an ellipse. 

The xz trace is 
2 2

2 2
1

z x

c a
− =  which is a hyperbola. 

the yz trace is 
2 2

2 2
1

z y

c b
− =  which is a hyperbola. 

 
(iv) Elliptic Cone 



 
The standard equation is:   

2 2 2

2 2 2
0

x y z

a b c
+ − =  

 
The axis of the elliptic cone corresponds to the variable with the negative 
coefficient. In this case the axis is the z axis. 

 

 

The xy trace is 
2 2

2 2
1

x y

a b
+ =  which is an ellipse. 

The xz trace is 
2 2

2 2
0

x z

a c
− =  which is a hyperbola. 

The yz trace is 
2 2

2 2
0

y z

b c
− =  which is a hyperbola. 

 
(v) Elliptic paraboloid 
The standard equation is: 

 
2 2

2 2

x y
z

a b
= +  

 
The axis of the paraboloid corresponds to the variable raised to the first 
power. The axis of this paraboloid is the z axis. 



 

 
The xy trace is an ellipse 
The xz trace is a parabola 
The yz trace is a parabola 
 
Example 6:   
Identify and sketch the quadric surface  

2 2 2

1
9 16 16

x y z+ + =  

 
Solution: 

This is an ellipsoid with the ellipse 
2 2

1
9 16

x y+ =  as the xy trace, the ellipse 

2 2

1
9 16

x z+ =  as the xz trace,  and the circle y2 + z2 = 4 as the yz trace 
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y 

z 

xy trace 

xz trace 
yz trace 

 
 
Example 7:   
Identify and sketch the quadric surface z = 4x2 + y2. 
 
Solution:  
 



This is an elliptic paraboloid with its axis along the z axis.  

xy trace: (0, 0 ,0) 

xz trace:  z = 4x 2 

yz trace: z = y 2 

 

 

 
Example 8:   
Identify and sketch the graph of x2 = 2y2 + 2z2. 
 
Solution: 
y2 + z2 -x2/2 = 0. This is an elliptic cone with its axis along the x axis.  
The xy trace is 2x y= ±  

The xz trace is 2x z= ±  
the yz trace is the point (0,0, 0) 
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Example 9:   
Identify and sketch the quadric surface: 
4x2 + y2 - 4z2 - 16x - 6y - 16z + 9 = 0 
 
Solution: 
4x2 - 16x + y2 - 6y - 4z2 - 16z  = -9 



4(x2 - 4x + 4) + y2 - 6y + 9 - 4(z2 + 4z + 4) = -9 + 16 + 9 -16 
4(x - 2)2 + (y - 3)2 - 4(z + 2)2 = 0 

2
2 2( 3)

( 2) ( 2) 0
4

y
x z

−− + − + =  

 
This is an elliptic cone with center at (2, 3, -2) and axis parallel to the z axis. 

.(2, 3, -2) 
x 

y 

z 

 
 
Example 10:   
Use a graphing utility to graph the surface  x2 + y2 = e-z 
 
Solution: 
First we solve for z before we can use it on a graphing utility.  

2

2 2

2

1
ln

1z

z
x

e
x y

y

 =  +

=



+
 

 
The following graph is generated on mathematica. 

 
 
3. Surfaces of Revolution: 
 



If a generating curve y = r(z) is revolved about the z axis, the surface 
produced will be as shown in the figure below. The traces taken parallel to 
the xy plane will be circles given by x2 + y2 = [r(z)]2 

 

y = r(z) 

x  + y   = [r(z)] 2 2 2 
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x = r(y) 

x  + z   = [r(y)] 2 2 2 
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Similarly if the generating curve x = r(y) is revolved about the y axis, the 
surface generated will have the equation  x2 + z2 = [r(y)]2 
 

The graph of a radius function revolved about one of the 
coordinate axes, the equation of the resulting surface has one of 
the following forms: 
1.   Revolved about the x axis:  y2 + z2 = [r(x)]2 
2.   Revolved about the y axis:  x2 + z2 = [r(y)]2 
3.   Revolved about the z axis:  x2 + y2 = [r(z)]2 

 
Example 11:   
Find an equation of the surface of revolution by revolving the curve z = 2y 
in the yz plane about the y axis. 
 
Solution: 



 
We have the generating curve given by z = r(y) = 2y. 
The equation of the surface of revolution is given by x2 + z2 = [r(y)]2 
Or x2 + z2 = 4y2 
 
Example 12:   
Find an equation for the surface of revolution generated by revolving the 

curve 22 4z x= −  in the xz plane about the x axis. 
 
Solution: 
The radius function must a function of x 

24
( )

2

x
r x z

−= = .  

The equation of the surface generated is: 
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Example 13:   
Find an equation for the surface of revolution generated by revolving the 
curve z = ln y in the yz plane about the z axis.  
 
Solution: 
 
Since the axis of revolution is the z axis, the radius function is r(z) 
z = ln y. solving for y we get, 
y = ez 
The equation for the surface is x2 + y2 = e2z 
 
Example 14:   
Find an equation of the generating curve which generates the surface given 
by x2 + z2 = sin2y 
 
Solution: 
 
x = siny is the equation of the generating curve in the xy plane. 



z = siny is the equation of the generating curve in the yz plane. 
 

Homework: 
 
1. Describe and sketch the following surfaces: 
 (i) y2 + z2 = 9 
 (ii) 4x2 + y2 = 4 
 
2. Identify and sketch the following quadric surfaces. 
 
 (i) 16x2 – y2 + 16z2 = 4 
 (ii) x2 – y2 + z = 0 
 (iii) 16x2 + 9y2 + 16z2 – 32x – 36y + 36 = 0 
 
3. Find an equation for the surface of revolution generated by the 

following curve about the given axis. 
  
 (i) z2 = 4y  in the yz plane about the y axis 
 (ii) z = 2y in the yz plane about the z axis. 
 
4. Find an equation of a generating curve for the surface of revolution 

given by x2 + y2 – 2z = 0 
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Practice 1, Exam 2 

Calculus III 

 

 

Question 1 (4 points): Consider the function  𝒇(𝒙, 𝒚) = √𝒚 − 𝒙𝟐. 

(a) Find and describe the domain of f.  

(b) Sketch the level curves k = 1, and k = 2 all on one coordinate grid. What kind of curves 

are they?  

 

 

Question 2 (4 points): Evaluate the limit  𝐥𝐢𝐦
(𝒙,𝒚)→(𝟒,𝟑)

√𝒙−√𝒚+𝟏

𝒙−𝒚−𝟏
. 

 

Question 3 (4 points): Let  𝒇(𝒙, 𝒚) = {
𝒙𝒚𝟐

𝒙𝟐+𝒚𝟒 ,           (𝒙, 𝒚) ≠ (𝟎, 𝟎)

𝟎,                  (𝒙, 𝒚) ≠ (𝟎, 𝟎).
 

Show that 𝒇𝒚(𝟎, 𝟎) exists. 

 

 

Question 4 (4 points): Use a chain rule to find the value of 
𝝏𝒛

𝝏𝜽
|
𝒓=𝟐,𝜽=𝝅/𝟔

  if 

𝒛 = 𝒙𝒚𝒆𝒙/𝒚,       𝒙 = 𝒓𝒄𝒐𝒔𝜽,       𝒚 = 𝒓𝒔𝒊𝒏𝜽. 

 

Question 5 (4 points):  Let 𝒇(𝒙, 𝒚) =
𝒙+𝟏

𝒚+𝟏
 

(a) Find the directional derivative of f at the point (2, 0) in the direction of the vector    

�⃑⃑� = 〈−𝟏,√𝟑〉. 
(b) Find the equation of the tangent plane of the surface z = f(x, y) at the point (1, 1, 1). 

 

 
 

 

Question 6 (4 points): Find the shortest distance from the point (-6, 4, 0) to the cone 

𝒛 = √𝒙𝟐 + 𝒚𝟐. 

 

 

Question 7 (6 points): Find all the local maxima, local minima, and saddle points of the 

function 𝒇(𝒙, 𝒚) = 𝒙𝟑 − 𝒚𝟑 − 𝟐𝒙𝒚 + 𝟔. 
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Practice 2, Exam 2 

Calculus III 

 

Question 1 (4 points): Consider the function  𝒇(𝒙, 𝒚) = 𝒍𝒏(𝟒 − 𝒙𝟐 − 𝒚𝟐). 

(a) Determine and sketch the domain of f.  

(b) Sketch the level curves k = 0, k = 1, and k = 2 all on one coordinate grid. What kind of 

curves are they?  

 

 

Question 2 (4 points): Determine the set of points at which the function is continuous. 

𝒇(𝒙, 𝒚) =
𝟏 + 𝒙𝟐 + 𝒚𝟐

𝟏 − 𝒙𝟐 − 𝒚𝟐
 

 

Question 3 (4 points): By considering different paths of approach, show that the limit 

𝐥𝐢𝐦
(𝒙,𝒚)→(𝟎,𝟎)

𝒙𝟑−𝒙𝒚𝟐

𝒙𝟐+𝒚𝟐   does not exist. 

 

Question 4 (4 points): Suppose that 

𝒘 = √𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐,       𝒙 = 𝒄𝒐𝒔𝜽,       𝒙 = 𝒔𝒊𝒏𝜽,       𝒛 = 𝒕𝒂𝒏𝜽 

Use the chain rule to find 
𝒅𝒘

𝒅𝜽
  when 𝜽 =

𝝅

𝟒
. 

 

Question 5 (4 points): Find an equation for the tangent plane and parametric equations for 

the normal line to the surface 𝒙𝟐𝒚 − 𝟒𝒛𝟐 = −𝟕 at the point (−𝟑, 𝟏. −𝟐). 

 

 

Question 6 (4 points): The temperature (in degrees Celsius) at a point (x, y) on a metal 

plate in the xy-plane is  𝑻(𝒙, 𝒚) =
𝒙𝒚

𝟏+𝒙𝟐+𝒚𝟐. 

a) Find the rate of change of temperature at (1, 1) in the direction of �⃑⃑� = 𝟐𝒊 − 𝒋 . 

b) An ant at (1, 1) wants to walk in the direction in which the temperature drops most 

rapidly. Find a unit vector in that direction. 

 

 

Question 7 (4 points):  Consider the function 𝒇(𝒙, 𝒚) = 𝟐 + 𝒙𝟐 − 𝒚𝟐 − 𝒚. 

(a) Find the critical points of f and classify each one as a local maximum, local minimum, or 

saddle point. 

(b) Find the absolute maximum and minimum values of f on the disk 
{(𝒙, 𝒚)|𝒙𝟐 + 𝒚𝟐 ≤ 𝟏} 

and the points where these extreme values occur.  



MY ACCOUNT 

Calculus III  

Study concepts, example questions & explanations  

 

 
 

Question #1: Domain of a Function 
 

Let  𝒇(𝒙, 𝒚) = 𝒍𝒏(𝟗 − 𝒙𝟐 − 𝟗𝒚𝟐). Evaluate 𝒇(𝟐, 𝟎) and find and sketch the 
domain of f. 

 

Answer: 

𝒇(𝟐, 𝟎) = 𝒍𝒏(𝟗 − 𝟐𝟐 − 𝟗 × 𝟎𝟐) = 𝒍𝒏(𝟓).  

𝒍𝒏(𝟗 − 𝒙𝟐 − 𝟗𝒚𝟐)  is defined whenever 𝟗 − 𝒙𝟐 − 𝟗𝒚𝟐 > 0 or  
𝒙𝟐

𝟗
+ 𝒚𝟐 < 1. 

Thus the domain of f is 𝑫 = {(𝒙, 𝒚) | 
𝒙𝟐

𝟗
+ 𝒚𝟐 < 1}, the points inside the 

ellipse 
𝒙𝟐

𝟗
+ 𝒚𝟐 = 1. 

 

 

 

 

 
 
 
 

Question #2: Domain and Range of a Function 
 

Let  𝒇(𝒙, 𝒚) = √𝟑𝟔 − 𝟗𝒙𝟐 − 𝟒𝒚𝟐.  

(a) Evaluate 𝒇(𝟐, 𝟎). 
(b) Find and sketch the domain of f. 
(c) Find the range of f. 

https://www.varsitytutors.com/practice-tests/my_account


 

Answer: 

𝒇(𝟏, 𝟐) = √𝟑𝟔 − 𝟗(𝟏)𝟐 − 𝟒(𝟐)𝟐 = √𝟏𝟏. 

For the square root to be defined, we need 𝟑𝟔 − 𝟗𝒙𝟐 − 𝟒𝒚𝟐 ≥ 𝟎  or  
𝒙𝟐

𝟒
+

𝒚𝟐

9
≤ 1. Thus the domain of f is 𝑫 = {(𝒙, 𝒚) | 

𝒙𝟐

𝟒
+

𝒚𝟐

9
≤ 1}, the points on 

or inside the ellipse  
𝒙𝟐

𝟒
+

𝒚𝟐

9
= 1. 

Since 𝟎 ≤ √𝟑𝟔 − 𝟗𝒙𝟐 − 𝟒𝒚𝟐 ≤ 𝟔, the range is {z | 0 ≤  z ≤ 6} = [0,6]. 

 

 

Question #3: Domain and Range of a Function 
 

Find the domain and range of the function  𝒇(𝒙, 𝒚) =
𝟏

√𝒙𝟐+𝒚𝟐−𝟏
. 

 

Answer: 

√𝒙𝟐 + 𝒚𝟐 − 𝟏  is defined whenever 𝒙𝟐 + 𝒚𝟐 − 𝟏 ≥ 0 and since it is in the 

denominator we consider only 𝒙𝟐 + 𝒚𝟐 − 𝟏 > 0 or 𝒙𝟐 + 𝒚𝟐 > 𝟏. . Thus 
the domain of f is 𝑫 = {(𝒙, 𝒚) |𝒙𝟐 + 𝒚𝟐 > 𝟏}, the points outside the unit 
circle  𝒙𝟐 + 𝒚𝟐 = 𝟏. 

Since √𝒙𝟐 + 𝒚𝟐 − 𝟏 > 0, the range of f is (𝟎, ∞).     

 
 

Question #4: Domain of a Function 
 

Find and sketch the domain of the function  𝒇(𝒙, 𝒚) = √𝒚 + 𝟏 + 𝒍𝒏(𝒙𝟐 − 𝒚). 

 

Answer: 



We note that √𝒚 + 𝟏  is defined only when  𝒚 + 𝟏 ≥ 0 or 𝒚 ≥ −1, while  

𝒍𝒏(𝒙𝟐 − 𝒚) is defined only when 𝒙𝟐 − 𝒚 > 0 or 𝒚 < 𝒙𝟐. Thus the domain 
of f is 𝑫 = {(𝒙, 𝒚) |−𝟏 ≤ 𝒚 < 𝒙𝟐}. The natural domain of f is then the 
region lying above or on the line y = −1 and below the parabola 

𝒚 = 𝒙𝟐. 

 

 

 

                                                          

      

                                                           

 
 

 

Question #5: Domain of a Function 
 

Find the domain of the function  𝒇(𝒙, 𝒚) =
√𝟗−𝒙𝟐−𝒚𝟐

𝒙+𝟐𝒚
. 

 

Answer: 

√𝟗 − 𝒙𝟐 − 𝒚𝟐  is defined whenever 𝟗 − 𝒙𝟐 − 𝒚𝟐 ≥ 0 or 𝒙𝟐 + 𝒚𝟐 ≤ 𝟗 and  

the denominator 𝒙 + 𝟐𝒚 ≠ 0. So, the domain of f is 𝑫 = {(𝒙, 𝒚) |𝒙𝟐 + 𝒚𝟐 ≤

𝟗  𝒂𝒏𝒅 𝒙 ≠ −𝟐𝒚 }.   

 
 

 

Question #6: Graph of a Function 
 
In each part, describe the graph of the function in the xyz-coordinate 
system. 

(a)  𝒇(𝒙, 𝒚) = 𝟏 − 𝒙 −
𝟏

𝟐
𝒚. 

(b) 𝒇(𝒙, 𝒚) = √𝟏 − 𝒙𝟐 − 𝒚𝟐 

y 
2x y  

x 

  

y  1 



(c) 𝒇(𝒙, 𝒚) = −√𝒙𝟐 + 𝒚𝟐 

 

Answer: 

(a) The graph of the given function is the graph of the equation           

𝒛 = 𝟏 − 𝒙 −
𝟏

𝟐
𝒚  which is a plane. A triangular portion of the plane can 

be sketched by plotting the intersections with the coordinate axes 

and joining them with line segments. 

 

 

 

 

(b) The graph of the given function is the graph of the equation            

𝒛 = √𝟏 − 𝒙𝟐 − 𝒚𝟐. After squaring both sides, this can be rewritten as 

𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐 = 𝟏. which represents a sphere of radius 1, centered at 

the origin. Since 𝒛 = √𝟏 − 𝒙𝟐 − 𝒚𝟐 imposes the extra condition that z 

≥ 0, the graph is just the upper hemisphere.   

 

 

 

 

 

 

 (c) The graph of the given function is the graph of the equation            

𝒛 = −√𝒙𝟐 + 𝒚𝟐. After squaring both sides, this can be rewritten as 

𝒛𝟐 = 𝒙𝟐 + 𝒚𝟐, which is the equation of a circular cone. Since 𝒛 =

−√𝒙𝟐 + 𝒚𝟐 imposes the extra condition that  𝑧 ≤ 0, the graph is just 

the lower nappe of the cone. 

z 
(0, 0, 1) 

y 

(0, 2, 0) 
(1, 0, 0) 
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Question #7: Level curves 
 

Let  𝒇(𝒙, 𝒚) = √𝒙𝟐 + 𝒚𝟐. 
(a) Sketch the graph of the function. 

(b)  Identify the level curves of f. 

(c) Sketch the level curves for 𝒌 = 𝟏, 𝟐, 𝟑, 𝟒, 𝟓. 

 

Answer: 

𝒛 = 𝒇(𝒙, 𝒚) = √𝒙𝟐 + 𝒚𝟐. Recall from the Quadric Surfaces section that 

this the upper portion of the cone  𝐳𝟐 = 𝒙𝟐 + 𝒚𝟐. 

 

 

 

 

 

 

 

The level curves are 

http://tutorial.math.lamar.edu/Classes/CalcIII/QuadricSurfaces.aspx


√𝒙𝟐 + 𝒚𝟐 = 𝑘  or  𝒙𝟐 + 𝒚𝟐 = 𝑘2
 

This is a family of circles with center (0, 0) and radius k. The cases 

𝑘 = 1,2,3,4,5 are shown in the figure below. 

 

 

 

 

 

 

 

 
 
 

 

Question #8: Level Curves 
 
Identify and sketch the level curves (or contours) for the following 

function  𝒚𝟐 = 𝟐𝒙𝟐 + 𝒛. 

 

Answer: 

We know that level curves or contours are given by setting z = k. 
Doing this in our equation gives, 

𝒚𝟐 = 𝟐𝒙𝟐 + 𝒌 

If k = 0, the equation will be 𝒚𝟐 = 𝟐𝒙𝟐 or 𝑦 = ±√2𝑥. So, in this case the 
level curve(s) will be two lines through the origin.  

Next, if k > 0, the level curves will be  

𝒚𝟐

𝒌
−

𝒙𝟐

𝒌/𝟐
= 𝟏 



which are hyperbolas symmetric about the y-axis and open up and 
down.  

Finally, if k < 0 the level curves are in the form  

𝒙𝟐

(−k/2)
−

𝒚𝟐

(−𝒌)
= 𝟏. 

This is a family of hyperbolas that are symmetric about the x-axis and 
open right and left.   

 

 

 

 

 

 

 

 

 
 

 

 

Question #9: Level Surfaces 
 

Let  𝒇(𝒙, 𝒚) =
𝟏

√𝒙𝟐+𝒚𝟐+𝒛𝟐−𝟒
. 

(a) Find the domain of f. 
(b) Find the level surfaces of f. 

Answer: 

√𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐 − 𝟒  is defined whenever 𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐 − 𝟒 ≥ 0 or 𝒙𝟐 +
𝒚𝟐 + 𝒛𝟐 ≥ 4 and to avoid division by zero we need that 𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐 >



4. Thus the domain of f is  𝑫 = {(𝒙, 𝒚, 𝒛) |𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐 > 4}, the points 
outside the sphere of center (0, 0, 0) and radius 2. 

The level surfaces are 
𝟏

√𝒙𝟐+𝒚𝟐+𝒛𝟐−𝟒
= 𝒌, where 𝑘 ≥ 0. These form a 

family of concentric spheres with center (0, 0, 0) and radius √𝟒 +
𝟏

𝒌𝟐 

𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐 = 𝟒 +
𝟏

𝒌𝟐
. 
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Question #1: Limits 
 
Find the limit in the following: 

(a) 𝐥𝐢𝐦
(𝒙,𝒚)→(𝟎,𝟎)

𝒙𝟐−𝒙𝒚

√𝒙−√𝒚
 

(b) 𝐥𝐢𝐦
(𝒙,𝒚)→(𝟎,𝟎)

𝒆𝒚𝒔𝒊𝒏𝒙

𝒙
 

(c) 𝐥𝐢𝐦
(𝒙,𝒚)→(𝟏,𝟏)

𝒙𝟐−𝒚𝟐

𝒙−𝒚
 

(d) 𝐥𝐢𝐦
(𝒙,𝒚)→(𝟎,𝟎)

𝒙−𝒚

𝒙𝟒−𝒚𝟒 

(e) 𝐥𝐢𝐦
(𝒙,𝒚)→(𝟐,−𝟒)

𝒚+𝟒

𝒙𝟐𝒚−𝒙𝒚+𝟒𝒙𝟐−𝟒𝒙
 

(f) 𝐥𝐢𝐦
(𝒙,𝒚)→(𝟎,𝟎)

𝒔𝒊𝒏(𝒙𝟐+𝒚𝟐)

𝒙𝟐+𝒚𝟐  

 

 

Answer: 

(a)  𝐥𝐢𝐦
(𝒙,𝒚)→(𝟎,𝟎)

𝒙𝟐−𝒙𝒚

√𝒙−√𝒚
= 𝐥𝐢𝐦

(𝒙,𝒚)→(𝟎,𝟎)

x(x−𝒚)

√𝒙−√𝒚
= 𝐥𝐢𝐦

(𝒙,𝒚)→(𝟎,𝟎)

x(√𝒙−√𝒚)(√𝒙+√𝒚)

(√𝒙−√𝒚)
= 𝐥𝐢𝐦

(𝒙,𝒚)→(𝟎,𝟎)
x(√𝒙 + √𝒚) = 0. 

(b) 𝐥𝐢𝐦
(𝒙,𝒚)→(𝟎,𝟎)

𝒆𝒚𝒔𝒊𝒏𝒙

𝒙
= 𝐥𝐢𝐦

(𝒙,𝒚)→(𝟎,𝟎)
𝒆𝒚 𝒔𝒊𝒏𝒙

𝒙
= 𝟏 × 𝟎 = 𝟎. 

(c) 𝐥𝐢𝐦
(𝒙,𝒚)→(𝟏,𝟏)

𝒙𝟐−𝒚𝟐

𝒙−𝒚
= 𝐥𝐢𝐦

(𝒙,𝒚)→(𝟏,𝟏)

(𝒙−𝒚)(𝒙+𝒚)

(𝒙−𝒚)
= 𝐥𝐢𝐦

(𝒙,𝒚)→(𝟏,1)
(𝒙 + 𝒚) = 𝟐.     

(d) 𝐥𝐢𝐦
(𝒙,𝒚)→(𝟐,2)

𝒙−𝒚

𝒙𝟒−𝒚𝟒 = 𝐥𝐢𝐦
(𝒙,𝒚)→(𝟐,𝟐)

(𝒙−𝒚)

(𝒙𝟐−𝒚𝟐)(𝒙𝟐+𝒚𝟐)
= 𝐥𝐢𝐦

(𝒙,𝒚)→(𝟐,𝟐)

(𝒙−𝒚)

(𝒙−𝒚)(𝒙+𝒚)(𝒙𝟐+𝒚𝟐)
=

𝐥𝐢𝐦
(𝒙,𝒚)→(𝟐,𝟐)

𝟏

(𝒙+𝒚)(𝒙𝟐+𝒚𝟐)
=

𝟏

𝟑𝟐
. 

(e) 𝐥𝐢𝐦
(𝒙,𝒚)→(𝟐,−𝟒)

𝒚+𝟒

𝒙𝟐𝒚−𝒙𝒚+𝟒𝒙𝟐−𝟒𝒙
= 𝐥𝐢𝐦

(𝒙,𝒚)→(𝟐,−𝟒)

𝒚+𝟒

𝒚𝒙(𝒙−𝟏)+𝟒𝒙(𝒙−𝟏)
= 𝐥𝐢𝐦

(𝒙,𝒚)→(𝟐,−𝟒)

𝒚+𝟒

𝒙(𝒙−𝟏)(𝒚+𝟒)
=

𝐥𝐢𝐦
(𝒙,𝒚)→(𝟐,−𝟒)

𝟏

𝒙(𝒙−𝟏)
=

𝟏

𝟐
. 

(f) Let 𝒘 = 𝒙𝟐 + 𝒚𝟐, then 𝐥𝐢𝐦
(𝒙,𝒚)→(𝟎,𝟎)

𝒔𝒊𝒏(𝒙𝟐+𝒚𝟐)

𝒙𝟐+𝒚𝟐 = 𝐥𝐢𝐦
w→0+

𝒔𝒊𝒏(w)

w
= 1.  
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Question #2: Limits 
 
By considering different paths of approach, show that the limits do not 
exist. 
 

(a) 𝐥𝐢𝐦
(𝒙,𝒚)→(𝟎,𝟎)

𝒙𝟒−𝒚𝟐

𝒙𝟒+𝒚𝟐 

(b) 𝐥𝐢𝐦
(𝒙,𝒚)→(𝟏,𝟏)

𝒙𝒚𝟐−𝟏

𝒚−𝟏
 

(c) 𝐥𝐢𝐦
(𝒙,𝒚)→(𝟎,𝟎)

𝒙𝟐𝒚

𝒙𝟒+𝒚𝟐 

(d) 𝐥𝐢𝐦
(𝒙,𝒚)→(𝟏,−𝟏)

𝒙𝒚+𝟏

𝒙𝟐−𝒚𝟐 

 

Answer: 

(a) We examine the values of f along curves that end at (0, 0). 
Along the x-axis, y = 0, the limit is  

 𝐥𝐢𝐦
(𝒙,𝒚)→(𝟎,𝟎)

𝐴𝑙𝑜𝑛𝑔 𝑥−𝑎𝑥𝑖𝑠

𝒙𝟒−𝒚𝟐

𝒙𝟒+𝒚𝟐 = 𝐥𝐢𝐦
(𝒙,𝒚)→(𝟎,𝟎)

𝒙𝟒

𝒙𝟒 = 1. 

 
Along the y-axis, x = 0, the limit is  

 𝐥𝐢𝐦
(𝒙,𝒚)→(𝟎,𝟎)

𝐴𝑙𝑜𝑛𝑔 𝑦−𝑎𝑥𝑖𝑠

𝒙𝟒−𝒚𝟐

𝒙𝟒+𝒚𝟐 = 𝐥𝐢𝐦
(𝒙,𝒚)→(𝟎,𝐲)

−𝒚𝟐

𝒚𝟐 = − 1. 

 
Since f has two different limits along two different curves, the 
given limit does not exist. 
 
(b) First let's approach (1, 1) along the line x = 1. Then   

𝐥𝐢𝐦
(𝒙,𝒚)→(𝟏,𝟏)
𝐴𝑙𝑜𝑛𝑔 𝑥=1

𝒙𝒚𝟐 − 𝟏

𝒚 − 𝟏
= 𝐥𝐢𝐦

y→1

𝒚𝟐 − 𝟏

𝒚 − 𝟏
= 𝐥𝐢𝐦

y→1

(𝒚 − 𝟏)(𝒚 + 𝟏)

𝒚 − 𝟏
= 𝐥𝐢𝐦

y→𝟏
𝒚 + 𝟏 = 𝟐. 

 
We now approach along the line y = x, Then   

𝐥𝐢𝐦
(𝒙,𝒚)→(𝟏,𝟏)
𝐴𝑙𝑜𝑛𝑔 𝑦=𝑥

𝒙𝟒 − 𝒚𝟐

𝒙𝟒 + 𝒚𝟐
= 𝐥𝐢𝐦

x→1

𝒙𝟑 − 𝟏

𝒙 − 𝟏
= 𝐥𝐢𝐦

x→1

(𝒙 − 𝟏)(𝒙𝟐 + 𝒙 + 𝟏)

𝒙 − 𝟏
= 𝐥𝐢𝐦

x→1
(𝒙𝟐 + 𝒙 + 𝟏) = 𝟑. 

 
Since f has two different limits along two different curves, the 
given limit does not exist. 
 
  
(c) First let's approach (0, 0) along the x-axis, y = 0. Then   



𝐥𝐢𝐦
(𝒙,𝒚)→(𝟎,𝟎)

𝐴𝑙𝑜𝑛𝑔 𝑥−𝑎𝑥𝑖𝑠

𝒙𝟐𝒚

𝒙𝟒 + 𝒚𝟐
= 𝐥𝐢𝐦

𝐲→𝟎

𝟎

𝒚𝟐
= 𝟎. 

Next, we approach (1, 1) along the curve y = x2, Then   

𝐥𝐢𝐦
(𝒙,𝒚)→(𝟎,𝟎)

𝐴𝑙𝑜𝑛𝑔 𝑦=𝑥2

𝒙𝟐𝒚

𝒙𝟒 + 𝒚𝟐
= 𝐥𝐢𝐦

x→0

𝒙𝟒

𝒙𝟒 + 𝒙𝟒
= 𝐥𝐢𝐦

x→0

𝒙𝟒

𝟐𝒙𝟒
=

1

2
. 

 
Since we have obtained different limits along different paths, the 
given limit does not exist. 
 
(d)    We examine the values of f along curves that end at (1, -1). 

Along the vertical line x = 1, the limit is  

𝐥𝐢𝐦
(𝒙,𝒚)→(𝟏,−𝟏)
𝐴𝑙𝑜𝑛𝑔 𝑥=1

𝒙𝒚 + 𝟏

𝒙𝟐 − 𝒚𝟐 = 𝐥𝐢𝐦
y→−1

𝒚 + 𝟏

𝟏 − 𝒚𝟐 = 𝐥𝐢𝐦
y→−1

𝒚 + 𝟏

(𝟏 − 𝒚)(𝟏 + 𝒚)
= 𝐥𝐢𝐦

y→−1

𝟏

(𝟏 − 𝒚)
=

𝟏

𝟐
. 

 
Along the line y = -1, the limit is  

𝐥𝐢𝐦
(𝒙,𝒚)→(𝟏,−𝟏)
𝐴𝑙𝑜𝑛𝑔 𝑦=−1

𝒙𝒚 + 𝟏

𝒙𝟐 − 𝒚𝟐 = 𝐥𝐢𝐦
x→1

−𝒙 + 𝟏

𝒙𝟐 − 𝟏
= 𝐥𝐢𝐦

x→1

−(𝒙 − 𝟏)

(𝒙 − 𝟏)(𝒙 + 𝟏)
= 𝐥𝐢𝐦

x→1

−𝟏

(𝒙 + 𝟏)
= −

𝟏

𝟐
. 

 
Since f has two different limits along two different curves, the 
given limit does not exist. 

 
 

Question #3: Continuity 
 

Where is the function  𝒇(𝒙, 𝒚) =
𝒙𝒚

𝒙𝟐−𝒚𝟐  continuous? 

 

Answer: 

The function f is not defined when  𝒙𝟐 − 𝒚𝟐 = 0 and so when 𝒚 = 𝒙 or 
𝒚 = −𝒙. Since f is a rational function, it is continuous on its domain, 
which is the set 𝑫 = {(𝒙, 𝒚) |𝒚 ≠ 𝒙  𝒂𝒏𝒅  𝒚 ≠ −𝒙 }.     

 
 

 

Question #4: Continuity 
 
Discuss the continuity of the function 



  𝒇(𝒙, 𝒚) = {

𝒙𝒚

𝒙𝟐+𝒙𝒚+𝒚𝟐       𝒊𝒇  (𝒙, 𝒚) ≠ (𝟎, 𝟎)

𝟎                   𝒊𝒇  (𝒙, 𝒚) = (𝟎, 𝟎)
  

 

Answer: 

The function f is defined everywhere. For (𝒙, 𝒚) ≠ (𝟎, 𝟎), f is a rational 
function and 𝒙𝟐 + 𝒙𝒚 + 𝒚𝟐 ≠ 0. Thus f is continuous throughout (𝒙, 𝒚) ≠
(𝟎, 𝟎). To examine the continuity of f at (0, 0) we need to find 

lim
(𝑥,𝑦)→(0,0)

𝑓(𝑥, 𝑦). By considering different paths of approach, we show 

that the limit does not exist. First, we approach (0, 0) along the x-
axis, y = 0, to get 

𝐥𝐢𝐦
(𝒙,𝒚)→(𝟎,𝟎)

𝐴𝑙𝑜𝑛𝑔 𝑥−𝑎𝑥𝑖𝑠

𝒙𝒚

𝒙𝟐 + 𝒙𝒚 + 𝒚𝟐
= 𝐥𝐢𝐦

𝐲→𝟎

𝟎

𝒙𝟐
= 𝟎. 

If we approach (0, 0) along the line y = x, we get 

𝐥𝐢𝐦
(𝒙,𝒚)→(𝟎,𝟎)
𝐴𝑙𝑜𝑛𝑔 𝑦=𝑥

𝒙𝒚

𝒙𝟐 + 𝒙𝒚 + 𝒚𝟐
= 𝐥𝐢𝐦

𝐱→𝟎

𝒙𝟐

𝒙𝟐 + 𝒙𝟐 + 𝒙𝟐
= 𝐥𝐢𝐦

𝐱→𝟎

𝒙𝟐

𝟑𝒙𝟐
=

𝟏

𝟑
. 

Thus lim
(𝑥,𝑦)→(0,0)

𝑓(𝑥, 𝑦) doesn’t exist, so f is not continuous at (0, 0) 

and the largest set on which f is continuous is {(𝒙, 𝒚) | (𝒙, 𝒚) ≠ (𝟎, 𝟎)}. 

 
 

 

Question #5: Continuity 
 

Discuss the continuity of the function  𝒇(𝒙, 𝒚, 𝒛) =
𝒙𝒚𝒛

𝒙𝟐+𝒚𝟐−𝒛𝟐 

 

Answer: 

The function f is a rational function and thus is continuous on its 
domain {(𝒙, 𝒚, 𝒛) | 𝒙𝟐 + 𝒚𝟐 − 𝒛𝟐 ≠ 𝟎} = {(𝒙, 𝒚, 𝒛) |𝒛𝟐 ≠  𝒙𝟐 + 𝒚𝟐}. So f is 

continuous on ℝ3 except on the cone 𝒛𝟐 =  𝒙𝟐 + 𝒚𝟐.  

 



 

 

Question #6: Differentiability 
 
Show that f is not differentiable at (0, 0). 

𝒇(𝒙, 𝒚) = {

𝒙𝒚𝟐

𝒙𝟐 + 𝒚𝟒
           𝒊𝒇  (𝒙, 𝒚) ≠ (𝟎, 𝟎)

𝟎                        𝒊𝒇  (𝒙, 𝒚) = (𝟎, 𝟎)

 

 

Answer: 
Recall that If a function f(x, y) is differentiable at (x0,y0), then f is 
continuous at (x0,y0). Thus, if f is not continuous at (x0,y0) then it is 
not differentiable at (x0,y0). 
 
We will show that f is not continuous at (0, 0) and so is differentiable 

at (0, 0). To do that, we first find  lim
(𝑥,𝑦)→(0,0)

𝑓(𝑥, 𝑦).  

 
By considering different paths of approach, we show that the limit 
does not exist. If we approach (0, 0) along the x-axis, y = 0, to get 

𝐥𝐢𝐦
(𝒙,𝒚)→(𝟎,𝟎)

𝐴𝑙𝑜𝑛𝑔 𝑥−𝑎𝑥𝑖𝑠

𝒙𝒚𝟐

𝒙𝟐 + 𝒚𝟒
= 𝐥𝐢𝐦

𝐲→𝟎

𝟎

𝒙𝟐
= 𝟎. 

If we approach (0, 0) along the curve 𝑥 = 𝑦2, we get 

𝐥𝐢𝐦
(𝒙,𝒚)→(𝟎,𝟎)

𝐴𝑙𝑜𝑛𝑔 𝑥=𝑦2

𝒙𝒚𝟐

𝒙𝟐+𝒚𝟒 = 𝐥𝐢𝐦
𝐲→𝟎

𝒚𝟒

𝒚𝟒+𝒚𝟒 = 𝐥𝐢𝐦
𝐲→𝟎

𝒚𝟒

𝟐𝒚𝟒 =
1

2
. 

Thus lim
(𝑥,𝑦)→(0,0)

𝑓(𝑥, 𝑦) doesn’t exist, so f is not continuous at (0, 0) 

and as a result f is not differentiable at (0, 0).  

 

 

 
 

 

 



MY ACCOUNT 

Calculus III  

Study concepts, example questions & explanations  

 

 
 

Question #1: Partial Derivatives 
 

Find the first partial derivatives of the function  𝒇(𝒙, 𝒚) = 𝒚 𝐥𝐧(𝒙𝟑 + 𝒚𝟐). 

 

Answer: 

Recall that  
𝑑

𝑑𝑥
𝑙𝑛𝑢 =

𝑢′

𝑢
   and   

𝑑

𝑑𝑥
(𝑢 ∙ 𝑣) = 𝑢 ∙ 𝑣′ + 𝑢′ ∙ 𝑣 

𝑓𝑥 =
𝜕𝑓

𝜕𝑥
= 𝑦

3𝑥2

𝒙𝟑+𝒚𝟐
=

3𝑦𝑥2

𝒙𝟑+𝒚𝟐
     

𝑓𝑦 =
𝜕𝑓

𝜕𝑦
= 𝑦

2𝑦

𝒙𝟑 + 𝒚𝟐
+ (1) 𝐥𝐧(𝒙𝟑 + 𝒚𝟐) =

2𝑦2

𝒙𝟑 + 𝒚𝟐
+ 𝐥𝐧(𝒙𝟑 + 𝒚𝟐) 

 

 
 

 

Question #2: Partial Derivatives 
 

Find the first partial derivatives of the function  𝒇(𝒙, 𝒚) = 𝒙𝟐𝒔𝒊𝒏(
𝒙

𝒙+𝒚
). 

 

Answer: 

Recall that 
𝑑

𝑑𝑥
sin(𝑢) = cos(𝑢) ∙ 𝑢′   and  

𝑑

𝑑𝑥
(
𝑢

𝑣
) =

𝑣∙𝑢′−𝑢∙𝑣′

𝑣2
 

𝑓𝑥 =
𝜕𝑓

𝜕𝑥
= 𝑥2𝒄𝒐𝒔 (

𝒙

𝒙+𝒚
) (

(𝒙+𝒚)∙𝟏−𝒙∙𝟏

(𝒙+𝒚)𝟐
) + 2𝑥𝒔𝒊𝒏 (

𝒙

𝒙+𝒚
) =

𝒚𝒙𝟐

(𝒙+𝒚)𝟐
𝒄𝒐𝒔(

𝒙

𝒙+𝒚
) + 2𝑥𝒔𝒊𝒏 (

𝒙

𝒙+𝒚
)   
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𝑓𝑦 =
𝜕𝑓

𝜕𝑦
= 𝑥2𝒄𝒐𝒔 (

𝒙

𝒙 + 𝒚
)(

(𝒙 + 𝒚) ∙ 𝟎 − 𝒙 ∙ 𝟏

(𝒙 + 𝒚)𝟐
) =

−𝒙𝟑

(𝒙 + 𝒚)𝟐
𝒄𝒐𝒔(

𝒙

𝒙 + 𝒚
) 

 

 

 

Question #3: Partial Derivatives 
 
Find the first partial derivatives of the function 

𝒇(𝒙, 𝒚) = 𝒆𝒙𝒚𝒔𝒊𝒏(𝟑𝒙)𝒄𝒐𝒔(𝟐𝒚). 

 

Answer: 

Recall that 
𝑑

𝑑𝑥
e𝑢 = e𝑢 ∙ 𝑢′   and    

𝑑

𝑑𝑥
cos(𝑢) = −sin(𝑢) ∙ 𝑢′. 

𝑓𝑥 =
𝜕𝑓

𝜕𝑥
= 𝒆𝒙𝒚(𝟑𝒄𝒐𝒔(𝟑𝒙))𝒄𝒐𝒔(𝟐𝒚) + (𝒚𝒆𝒙𝒚)𝒔𝒊𝒏(𝟑𝒙)𝒄𝒐𝒔(𝟐𝒚) 

= 𝒆𝒙𝒚𝒄𝒐𝒔(𝟐𝒚)[𝟑𝒄𝒐𝒔(𝟑𝒙) + 𝒚𝒔𝒊𝒏(𝟑𝒙)]     

𝑓𝑦 =
𝜕𝑓

𝜕𝑦
= 𝒆𝒙𝒚𝒔𝒊𝒏(𝟑𝒙)(−𝟐𝒔𝒊𝒏(𝟐𝒚)) + (𝒙𝒆𝒙𝒚)𝒔𝒊𝒏(𝟑𝒙)𝒄𝒐𝒔(𝟐𝒚)

= 𝒆𝒙𝒚𝒔𝒊𝒏(𝟑𝒙)[𝒙𝒄𝒐𝒔(𝟐𝒚) − 𝟐𝒔𝒊𝒏(𝟐𝒚)] 

 

 

 

Question #4: Partial Derivatives 
 
Find the first partial derivatives of the function 

𝒇(𝒙, 𝒚, 𝒛) = 𝒆𝒙𝒔𝒊𝒏(𝒙𝒚𝒛𝟐)𝒄𝒐𝒔(𝒚). 

 

Answer: 

𝑓𝑥 =
𝜕𝑓

𝜕𝑥
= 𝒆𝒙 (𝒚𝒛𝟐𝒄𝒐𝒔(𝒙𝒚𝒛𝟐))𝒄𝒐𝒔(𝒚) + (𝒆𝒙)𝒔𝒊𝒏(𝒙𝒚𝒛𝟐)𝒄𝒐𝒔(𝒚) 

= 𝒆𝒙𝒄𝒐𝒔(𝒚)[𝒚𝒛𝟐𝒄𝒐𝒔(𝒙𝒚𝒛𝟐) + 𝒔𝒊𝒏(𝒙𝒚𝒛𝟐)]     



𝑓𝑦 =
𝜕𝑓

𝜕𝑦
= 𝒆𝒙𝒔𝒊𝒏(𝒙𝒚𝒛𝟐)(−𝒔𝒊𝒏(𝒚)) + 𝒆𝒙 (𝒙𝒛𝟐𝒄𝒐𝒔(𝒙𝒚𝒛𝟐)) 𝒄𝒐𝒔(𝒚)

= 𝒆𝒙[−𝒔𝒊𝒏(𝒙𝒚𝒛𝟐)𝒔𝒊𝒏(𝒚) + 𝒙𝒛𝟐𝒄𝒐𝒔(𝒙𝒚𝒛𝟐)𝒄𝒐𝒔(𝒚)] 

𝑓𝑧 =
𝜕𝑓

𝜕𝑧
= 𝒆𝒙 (𝟐𝒛𝒙𝒚𝒄𝒐𝒔(𝒙𝒚𝒛𝟐))𝒄𝒐𝒔(𝒚) = 𝟐𝒙𝒚𝒛𝒆𝒙𝒄𝒐𝒔(𝒙𝒚𝒛𝟐)𝒄𝒐𝒔(𝒚) 

 

 

 

 

Question #5: Partial Derivatives 
 
Use the limit definition of partial derivative to compute the partial 

derivatives 𝑓𝑥(0,0) and 𝑓𝑦(0,0) of the function 

  𝒇(𝒙, 𝒚) = {
𝒔𝒊𝒏(𝒙𝟑+𝒚𝟒)

𝒙𝟐+𝒚𝟐
𝒊𝒇(𝒙,𝒚) ≠ (𝟎, 𝟎)

𝟎𝒊𝒇(𝒙, 𝒚) = (𝟎, 𝟎)
 

 

Answer: 
Using the limit definition of partial derivative we get 

𝑓𝑥(0,0) = lim
ℎ→0

𝑓(0+ℎ,0)−𝑓(0,0)

ℎ
= lim

ℎ→0

𝑓(ℎ,0)−0

ℎ
= lim

ℎ→0

sin(ℎ3)

ℎ2

ℎ
= lim

ℎ→0

sin(ℎ3)

ℎ3 = 1     

𝑓𝑦(0,0) = lim
ℎ→0

𝑓(0,0 + ℎ) − 𝑓(0,0)

ℎ
= lim

ℎ→0

𝑓(0, ℎ) − 0

ℎ
= lim

ℎ→0

sin(ℎ4)
ℎ2

ℎ
= lim

ℎ→0

sin(ℎ4)

ℎ3

= lim
ℎ→0

ℎ
sin(ℎ4)

ℎ4
= 0 ∙ 1 = 0 

 

 

 

Question #6: Implicit Differentiation 
 

Find  
𝝏𝒛

𝝏𝒙
  if z is defined implicitly as a function of x and y by the equation  

𝒙𝒚𝒛 + 𝒄𝒐𝒔(𝒙 + 𝟐𝒚 + 𝟓𝒛) = 𝟗. 

 



Answer: 

To find 
𝝏𝒛

𝝏𝒙
, we differentiate implicitly with respect to x, being careful to 

treat y as a constant  

𝝏

𝝏𝒙
[𝒙𝒚𝒛 + 𝒄𝒐𝒔(𝒙 + 𝟐𝒚 + 𝟓𝒛)] =

𝝏

𝝏𝒙
[𝟗] 

(𝒙𝒚)
𝝏𝒛

𝝏𝒙
+ (𝟏)𝒚𝒛 − 𝒔𝒊𝒏(𝒙 + 𝟐𝒚 + 𝟓𝒛) (1 + 0 + 5

𝝏𝒛

𝝏𝒙
) = 0 

(𝒙𝒚)
𝝏𝒛

𝝏𝒙
+ 𝒚𝒛 − 𝒔𝒊𝒏(𝒙 + 𝟐𝒚 + 𝟓𝒛) − 𝟓𝒔𝒊𝒏(𝒙 + 𝟐𝒚 + 𝟓𝒛)

𝝏𝒛

𝝏𝒙
= 0 

(𝒙𝒚 − 𝟓𝒔𝒊𝒏(𝒙 + 𝟐𝒚 + 𝟓𝒛))
𝝏𝒛

𝝏𝒙
= 𝒔𝒊𝒏(𝒙 + 𝟐𝒚 + 𝟓𝒛)− 𝑦𝑧 

𝝏𝒛

𝝏𝒙
=

𝒔𝒊𝒏(𝒙 + 𝟐𝒚+ 𝟓𝒛)− 𝑦𝑧

(𝒙𝒚 − 𝟓𝒔𝒊𝒏(𝒙 + 𝟐𝒚 + 𝟓𝒛))
 

 
 

 

Question #7: Implicit Differentiation 
 

Find  
𝝏𝒛

𝝏𝒚
  at the point (2, 0, 1) if z is defined implicitly as a function of x 

and y by the equation  

𝒙𝒛 + 𝒍𝒏(𝒛) = 𝒙 + 𝒚. 

 

Answer: 
We differentiate both sides of the equation with respect to y, holding 
x constant and treating z as a differentiable function of y:  
 

𝝏

𝝏𝒚
[𝒙𝒛 + 𝒍𝒏(𝒛)] =

𝝏

𝝏𝒚
[𝒙 + 𝒚] 

 

𝒙
𝝏𝒛

𝝏𝒚
+

𝝏𝒛
𝝏𝒚

𝒛
= 𝟎 + 𝟏 

 

(𝒙 +
𝟏

𝒛
)
𝝏𝒛

𝝏𝒚
= 𝟏 

 



𝝏𝒛

𝝏𝒚
=

𝟏

(𝒙 +
𝟏
𝒛
)
=

𝒛

𝒛𝒙 + 𝟏
 

 

So,   
𝝏𝒛

𝝏𝒚
|(𝟐,𝟎,𝟏) =

𝟏

(𝟏)(𝟐)+𝟏
=

𝟏

𝟑
. 

 
 

 

Question #8: Implicit Differentiation 
 
If resistors of RI , R2, and R3 ohms are connected in parallel to make an 
R-ohm resistor, the value of R can be found from the equation 

𝟏

𝑹
=

𝟏

𝑹𝟏
+

𝟏

𝑹𝟐
+

𝟏

𝑹𝟑
. 

Find the value of  
𝝏𝑹

𝝏𝑹𝟐
 when RI = 30, R2 = 45, and R3 = 90 ohms 

Answer: 

To find  
𝝏𝑹

𝝏𝑹𝟐
, we treat RI and R3 as constants and, using implicit 

differentiation, differentiate both sides of the equation with respect to 
R2: 

𝝏

𝝏𝑹𝟐

(
𝟏

𝑹
) =

𝝏

𝝏𝑹𝟐

(
𝟏

𝑹𝟏
+

𝟏

𝑹𝟐
+

𝟏

𝑹𝟑
) 

−𝟏

𝑹𝟐

𝝏𝑹

𝝏𝑹𝟐

= 𝟎 −
𝟏

𝑹𝟐
𝟐 + 𝟎 

𝝏𝑹

𝝏𝑹𝟐
=

𝑹𝟐

𝑹𝟐
𝟐 = (

𝑅

𝑅𝟐
)
2

 

When RI = 30, R2 = 45, and R3 = 90 ohms 

𝟏

𝑹
=

𝟏

𝑹𝟏
+

𝟏

𝑹𝟐
+

𝟏

𝑹𝟑
=

𝟏

𝟑𝟎
+

𝟏

𝟒𝟓
+

𝟏

𝟗𝟎
=

𝟏

𝟏𝟓
. 

So, R = 15 and  

𝝏𝑹

𝝏𝑹𝟐
= (

15

45
)
2

=
1

9
. 

 

 

 



 

 

Question #9: Higher Derivatives 
 

Find the second partial derivatives for  𝒇(𝒙, 𝒚) = 𝒙𝟐𝒚𝟒 + 𝒚√𝒙+ 𝟒𝒚. 

 

Answer: 
 

𝑓𝑥 =
𝜕𝑓

𝜕𝑥
= 𝟐𝒙𝒚𝟒 + 𝒚

𝟏

𝟐√𝒙
+ 𝟎 = 𝟐𝒙𝒚𝟒 +

𝟏

𝟐
𝒚𝒙−𝟏/𝟐 

𝑓𝑦 =
𝜕𝑓

𝜕𝑦
= 4𝒙𝟐𝒚𝟑 + √𝒙 + 𝟒 

𝑓𝑥𝑥 =
𝜕2𝑓

𝜕𝑥2
=

𝝏

𝝏𝒙
[𝟐𝒙𝒚𝟒 +

𝟏

𝟐
𝒚𝒙−𝟏/𝟐] = 𝟐𝒚𝟒 +

𝟏

𝟐
𝒚(−

𝟏

𝟐
𝒙−𝟑/𝟐) = 𝟐𝒚𝟒 −

𝟏

𝟒
𝒚𝒙−𝟑/𝟐 

𝑓𝑦𝑦 =
𝜕2𝑓

𝜕𝑦2
=

𝝏

𝝏𝒚
[4𝒙𝟐𝒚𝟑 + √𝒙 + 𝟒] = 𝟏𝟐𝒙𝟐𝒚𝟐+

𝟏

𝟐
𝒙−𝟏/𝟐 

𝑓𝑥𝑦 =
𝜕2𝑓

𝜕𝑦𝜕𝑥
=

𝝏

𝝏𝒚
[𝟐𝒙𝒚𝟒 +

𝟏

𝟐
𝒚𝒙−𝟏/𝟐] = 𝟖𝒙𝒚𝟑+

𝟏

𝟐
𝒙−𝟏/𝟐 

 

𝑓𝑦𝑥 =
𝜕2𝑓

𝜕𝑥𝜕𝑦
=

𝝏

𝝏𝒙
[4𝒙𝟐𝒚𝟑 + √𝒙 + 𝟒] = 𝟖𝒙𝒚𝟑+

𝟏

𝟐
𝒙−𝟏/𝟐 
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Question #1: Differentiability 
 

Show that  𝒇(𝒙, 𝒚) = 𝒚𝒆𝒙𝒚 is differentiable at (0, 1). 

 

Answer: 
Recall that if the partial derivatives  𝑓𝑥 and 𝑓𝑦 exist near (a, b) and are 

continuous at (a, b), then f is differentiable at (a, b). 
 
The partial derivatives are  

𝑓𝑥 = 𝑦2𝒆𝒙𝒚,      𝑓𝑥(0,1) = 1     

𝑓𝑦 = 𝑦𝑥𝒆𝒙𝒚 + 𝒆𝒙𝒚,      𝑓𝑦(0,1) = 1 

Both 𝑓𝑥 and 𝑓𝑦 are continuous functions, so is f differentiable at (0, 1). 

 
 

 

Question #2: Differentiability 
 
Show that f is not differentiable at (0, 0). 

𝒇(𝒙, 𝒚) = {

𝒙𝒚𝟐

𝒙𝟐 + 𝒚𝟒
           𝒊𝒇  (𝒙, 𝒚) ≠ (𝟎, 𝟎)

𝟎                        𝒊𝒇  (𝒙, 𝒚) = (𝟎, 𝟎)

 

 

Answer: 
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Recall that If a function f(x, y) is differentiable at (x0,y0), then f is 
continuous at (x0,y0). Thus, if f is not continuous at (x0,y0) then it is 
not differentiable at (x0,y0). 
 
We will show that f is not continuous at (0, 0) and so is differentiable 

at (0, 0). To do that, we first find  lim
(𝑥,𝑦)→(0,0)

𝑓(𝑥, 𝑦).  

 
By considering different paths of approach, we show that the limit 
does not exist. If we approach (0, 0) along the x-axis, y = 0, to get 

𝐥𝐢𝐦
(𝒙,𝒚)→(𝟎,𝟎)

𝐴𝑙𝑜𝑛𝑔 𝑥−𝑎𝑥𝑖𝑠

𝒙𝒚𝟐

𝒙𝟐 + 𝒚𝟒
= 𝐥𝐢𝐦

𝐲→𝟎

𝟎

𝒙𝟐
= 𝟎. 

If we approach (0, 0) along the curve 𝑥 = 𝑦2, we get 

𝐥𝐢𝐦
(𝒙,𝒚)→(𝟎,𝟎)

𝐴𝑙𝑜𝑛𝑔 𝑥=𝑦2

𝒙𝒚𝟐

𝒙𝟐+𝒚𝟒 = 𝐥𝐢𝐦
𝐲→𝟎

𝒚𝟒

𝒚𝟒+𝒚𝟒 = 𝐥𝐢𝐦
𝐲→𝟎

𝒚𝟒

𝟐𝒚𝟒 =
1

2
. 

Thus lim
(𝑥,𝑦)→(0,0)

𝑓(𝑥, 𝑦) doesn’t exist, so f is not continuous at (0, 0) 

and as a result f is not differentiable at (0, 0).  

 

 

 
 

Question #3: Tangent Plane 
 
Find an equation of the tangent plane to the given surface at the 
specified point. 

𝒇(𝒙, 𝒚) = 𝒙𝒔𝒊𝒏(𝐱 + 𝐲),         (−𝟏, 𝟏, 𝟎). 

 

Answer: 

Recall that if f has continuous partial derivatives, then nn equation of 

the tangent plane to the surface at the point (𝑥0, 𝑦0, 𝑧0) is  
   

𝑧 − 𝑧0 = 𝑓𝑥(𝑥0, 𝑦0)(x − 𝑥0) + 𝑓𝑦(𝑥0, 𝑦0)(y − 𝑦0) 

 
The partial derivatives are 

𝑓𝑥 = 𝑥𝑐𝑜𝑠(𝑥 + 𝑦) + sin (𝑥 + 𝑦),      𝑓𝑥(−1,1) = −1,     



𝑓𝑦 = 𝑥𝑐𝑜𝑠(𝑥 + 𝑦),      𝑓𝑦(−1,1) = −1. 

Thus an equation of the tangent plane at (−𝟏, 𝟏, 𝟎) is 

𝑧 − 𝑧0 = 𝑓𝑥(𝑥0, 𝑦0)(x − 𝑥0) + 𝑓𝑦(𝑥0, 𝑦0)(y − 𝑦0) 

𝑧 − 0 = 𝑓𝑥(−1,1)(x − (−1)) + 𝑓𝑦(−1,1)(y − 1) 

z = (−1)(x + 1) + (−1)(y − 1) 

𝑧 = −𝑥 − 𝑦 
 
 

 

 

 

Question #4: Tangent Plane 
 
Find an equation of the tangent plane to the given surface at the 
specified point. 

𝒇(𝒙, 𝒚) = 𝐥𝐧(𝐱 − 𝟐𝐲),         (𝟑, 𝟏, 𝟎). 

 

Answer: 

Recall that if f has continuous partial derivatives, then nn equation of 

the tangent plane to the surface at the point (𝑥0, 𝑦0, 𝑧0) is  
   

𝑧 − 𝑧0 = 𝑓𝑥(𝑥0, 𝑦0)(x − 𝑥0) + 𝑓𝑦(𝑥0, 𝑦0)(y − 𝑦0) 

 
The partial derivatives are 

𝑓𝑥 =
1

𝑥−2𝑦
,      𝑓𝑥(3,1) = 1,     

𝑓𝑦 =
−2

𝑥−2𝑦
,      𝑓𝑦(3,1) = −2. 

Thus an equation of the tangent plane at (3,1,0) is 

𝑧 − 𝑧0 = 𝑓𝑥(𝑥0, 𝑦0)(x − 𝑥0) + 𝑓𝑦(𝑥0, 𝑦0)(y − 𝑦0) 

𝑧 − 0 = 𝑓𝑥(3,1)(x − 3) + 𝑓𝑦(3,1)(y − 1) 

z = (1)(x + 1) + (−2)(y − 1) 
𝑧 = 𝑥 − 2𝑦 + 3 
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Question #1: Chain Rule 
 

Use the Chain Rule to find  
𝝏𝒛

𝝏𝒕
  where  𝒛 = 𝒄𝒐𝒔(𝒙 + 𝟒𝒚),   𝒙 = 𝟓𝒕𝟒,    𝒚 = 𝟏/𝒕. 

 

Answer: 
To remember the Chain Rule, it’s helpful to draw the tree diagram. 
With the help of the tree diagram, we have the Chain Rule 

𝜕𝑧

𝜕𝑡
=

𝜕𝑧

𝜕𝑥

𝑑𝑥

𝑑𝑡
+

𝜕𝑧

𝜕𝑦

𝑑𝑦

𝑑𝑡
 

Applying the above Chain Rule, we get  

𝜕𝑧

𝜕𝑡
= (− sin(𝑥 + 4𝑦))(20𝑡3) + (−4 sin(𝑥 + 4𝑦)) (−

1

𝑡2
) 

𝜕𝑧

𝜕𝑡
= −20𝑡3 sin(5𝑡4 + 4/𝑡) +

16

𝑡2
sin(5𝑡4 + 4/𝑡) 

𝜕𝑧

𝜕𝑡
= (−20𝑡3 +

16

𝑡2
) sin(5𝑡4 + 4/𝑡) 

 

 
 

 

Question #2: Chain Rule 
 

Use the Chain Rule to find  
𝝏𝒛

𝝏𝒔
  where 

𝒛 = √𝒙 − 𝟑𝒚,         𝒙 = 𝒔𝟐 + 𝒕𝟑,          𝒚 = 𝟏 − 𝟐𝒔𝒕. 
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Answer: 
To remember the Chain Rule, it’s helpful to draw the tree diagram. 
With the help of the tree diagram, we have the Chain Rule 

𝜕𝑧

𝜕𝑠
=

𝜕𝑧

𝜕𝑥

𝜕𝑥

𝜕𝑠
+

𝜕𝑧

𝜕𝑦

𝜕𝑦

𝜕𝑠
 

Applying the above Chain Rule, we get 

𝜕𝑧

𝜕𝑠
= (

1

2√𝑥 − 3𝑦
) (2𝑠) + (

−3

2√𝑥 − 3𝑦
) (−2𝑡) 

𝜕𝑧

𝜕𝑠
=

𝑠 + 3𝑡

√𝑥 − 3𝑦
 

 

 
 

 

Question #3: Chain Rule 
 

Use the Chain Rule to find  
𝝏𝒘

𝝏𝜽
  when r = 2 and 𝜽 = 𝝅/𝟐. 

𝒘 = 𝒙𝒚 + 𝒙𝒛 + 𝒚𝒛,         𝒙 = 𝒓𝒄𝒐𝒔𝜽,          𝒚 = 𝒓𝒔𝒊𝒏𝜽,          𝒛 = 𝒓𝜽. 

 

Answer: 
To remember the Chain Rule, it’s helpful to draw the tree diagram. 
With the help of the tree diagram, we have the Chain Rule 

𝜕𝑧

𝜕𝜃
=

𝜕𝑤

𝜕𝑥

𝜕𝑥

𝜕𝜃
+

𝜕𝑤

𝜕𝑦

𝜕𝑦

𝜕𝜃
+

𝜕𝑤

𝜕𝑧

𝜕𝑧

𝜕𝜃
 

Applying the above Chain Rule, we get 

𝜕𝑧

𝜕𝜃
= (𝑦 + 𝑧)(−𝑟𝑠𝑖𝑛𝜃) + (𝑥 + 𝑧)(𝑟𝑐𝑜𝑠𝜃) + (𝑥 + 𝑦)(𝑟) 

𝜕𝑧

𝜕𝜃
= (𝑟𝑠𝑖𝑛𝜃 + 𝑟𝜃)(−𝑟𝑠𝑖𝑛𝜃) + (𝑟𝑐𝑜𝑠𝜃 + 𝑟𝜃)(𝑟𝑐𝑜𝑠𝜃) + (𝑟𝑐𝑜𝑠𝜃 + 𝑟𝑠𝑖𝑛𝜃)(𝑟) 



𝜕𝑧

𝜕𝜃
|𝑟=2,𝜃=𝜋/2 = (2 + 𝜋)(−2) + (0 + 𝜋)(0) + (0 + 2)(2) = −2𝜋 

 

 
 

 

 

Question #4: Chain Rule 

Use the Chain Rule to find  
𝝏𝑻

𝝏𝒑
  when p = 4, q = 1  and  𝒓 = 𝟗. 

𝑻 = 𝟑𝒖𝟑𝒗𝟐 + 𝒖𝒗 + 𝒗𝟒,         𝒖 = 𝒑𝒒√𝒓,          𝒗 = 𝒒√𝒑𝒓. 

 

Answer: 
To remember the Chain Rule, it’s helpful to draw the tree diagram. 
With the help of the tree diagram, we have the Chain Rule 

𝜕𝑇

𝜕𝑝
=

𝜕𝑇

𝜕𝑢

𝜕𝑢

𝜕𝑝
+

𝜕𝑇

𝜕𝑣

𝜕𝑣

𝜕𝑝
 

Applying the above Chain Rule, we get 

𝜕𝑇

𝜕𝑝
= (9𝑢2𝑣2 + 𝑣 + 4𝑣3)(𝑞√𝑟) + (6𝑢3𝑣) (

𝑞𝑟

2√𝑝
) 

When p = 4, q = 1  and  𝒓 = 𝟗, we have that  

𝒖 = 𝒑𝒒√𝒓 = 𝟏𝟐        and         𝒗 = 𝒒√𝒑𝒓 = 𝟏𝟖. 

Thus 

𝜕𝑇

𝜕𝑝
|p = 4,q = 1,𝒓=𝟗 = 1749654 

 

 
 

 



Question #5: Chain Rule 
 

If 𝒛 = 𝒇(𝒙, 𝒚) has continuous second-order partial derivatives and          

𝒙 = 𝒓𝟐 + 𝒔𝟐  and  𝒚 = 𝟐𝒓𝒔.  Find  
𝝏𝟐𝒛

𝝏𝒓𝟐
 . 

 

Answer: 
The Chain Rule gives 

𝜕𝑧

𝜕𝑟
=

𝜕𝑧

𝜕𝑥

𝜕𝑥

𝜕𝑟
+

𝜕𝑧

𝜕𝑦

𝜕𝑦

𝜕𝑟
= 2𝑟

𝜕𝑧

𝜕𝑥
+ 2𝑠

𝜕𝑧

𝜕𝑦
 

Applying the Product Rule to the last expression, we  

𝜕2𝑧

𝜕𝑟2
=

𝜕

𝜕𝑟
(2𝑟

𝜕𝑧

𝜕𝑥
+ 2𝑠

𝜕𝑧

𝜕𝑦
) 

= 2𝑟
𝜕

𝜕𝑟
(

𝜕𝑧

𝜕𝑥
) + 2

𝜕𝑧

𝜕𝑥
+ 2𝑠

𝜕

𝜕𝑟
(

𝜕𝑧

𝜕𝑦
) 

But, using the Chain Rule again, we have 

𝜕

𝜕𝑟
(

𝜕𝑧

𝜕𝑥
) =

𝜕

𝜕𝑥
(

𝜕𝑧

𝜕𝑥
)

𝜕𝑥

𝜕𝑟
+

𝜕

𝜕𝑦
(

𝜕𝑧

𝜕𝑥
)

𝜕𝑦

𝜕𝑟
= 2𝑟

𝜕2𝑧

𝜕𝑥2
+ 2𝑠

𝜕2𝑧

𝜕𝑦𝜕𝑥
 

𝜕

𝜕𝑟
(

𝜕𝑧

𝜕𝑦
) =

𝜕

𝜕𝑥
(

𝜕𝑧

𝜕𝑦
)

𝜕𝑥

𝜕𝑟
+

𝜕

𝜕𝑦
(

𝜕𝑧

𝜕𝑦
)

𝜕𝑦

𝜕𝑟
= 2𝑟

𝜕2𝑧

𝜕𝑥𝜕𝑦
+ 2𝑠

𝜕2𝑧

𝜕𝑦2
 

Putting these expressions into the equation of  
𝜕2𝑧

𝜕𝑟2  and using the 

equality of the mixed second-order derivatives,  
𝜕2𝑧

𝜕𝑥𝜕𝑦
=

𝜕2𝑧

𝜕𝑦𝜕𝑥
, we obtain 

𝜕2𝑧

𝜕𝑟2
= 2𝑟

𝜕

𝜕𝑟
(

𝜕𝑧

𝜕𝑥
) + 2

𝜕𝑧

𝜕𝑥
+ 2𝑠

𝜕

𝜕𝑟
(

𝜕𝑧

𝜕𝑦
) 

= 2𝑟 (2𝑟
𝜕2𝑧

𝜕𝑥2
+ 2𝑠

𝜕2𝑧

𝜕𝑦𝜕𝑥
) + 2

𝜕𝑧

𝜕𝑥
+ 2𝑠 (2𝑟

𝜕2𝑧

𝜕𝑥𝜕𝑦
+ 2𝑠

𝜕2𝑧

𝜕𝑦2
) 

= 2
𝜕𝑧

𝜕𝑥
+ 4𝑟2

𝜕2𝑧

𝜕𝑥2
+ 8𝑟𝑠

𝜕2𝑧

𝜕𝑥𝜕𝑦
+ 4𝑠2

𝜕2𝑧

𝜕𝑦2
 

 

 
 



 

 

Question #6: Chain Rule 
 

Let 𝑾(𝒔, 𝒕) = 𝑭(𝒖(𝒔, 𝒕), 𝒗(𝒔, 𝒕)) where are differentiable, and 

𝒖(𝟏. 𝟎) = 𝟐,   𝒖𝒔(𝟏, 𝟎) = −𝟐,   𝒖𝒕(𝟏, 𝟎) = 𝟔,  
𝒗(𝟏. 𝟎) = 𝟑,   𝒗𝒔(𝟏, 𝟎) = 𝟓,   𝒗𝒕(𝟏, 𝟎) = 𝟒, 

𝑭𝒖(𝟐, 𝟑) = −𝟏,   𝑭𝒗(𝟐, 𝟑) = 𝟏𝟎 

Find 𝑾𝒔(𝟏, 𝟎). 

 

Answer: 
With the help of the tree diagram, we have the Chain Rule 

𝜕𝑊

𝜕𝑠
=

𝜕𝐹

𝜕𝑢

𝜕𝑢

𝜕𝑠
+

𝜕𝐹

𝜕𝑣

𝜕𝑣

𝜕𝑠
 

Applying the above Chain Rule, we get 

𝜕𝑊

𝜕𝑠
|(1,0) = 𝑭𝒖(𝒖(𝟏, 𝟎), 𝒗(𝟏, 𝟎))𝒖𝒔(𝟏, 𝟎) + 𝑭𝒗(𝒖(𝟏, 𝟎), 𝒗(𝟏, 𝟎))𝒗𝒔(𝟏, 𝟎) 

𝜕𝑊

𝜕𝑠
|(1,0) = 𝑭𝒖(𝟐, 𝟑)(−𝟐) + 𝑭𝒗(𝟐, 𝟑)(𝟓) 

𝜕𝑊

𝜕𝑠
|(1,0) = (−𝟏)(−𝟐) + (𝟏𝟎)(𝟓) = 𝟓𝟐 

 

 
 

 

Question #7: Chain Rule 
 

Use the Chain Rule to find  
𝝏𝒖

𝝏𝒛
  when  𝒙 = √𝟑, 𝒚 = 𝟐, 𝒛 = 𝟏. 

𝒖 =
𝒑−𝒒

𝒒−𝒓
,         𝒑 = 𝒙 + 𝒚 + 𝒛,       𝒒 = 𝒙 − 𝒚 + 𝒛,          𝒓 = 𝒙 + 𝒚 − 𝒛. 

 

Answer: 
With the help of the tree diagram, we have the Chain Rule 



𝜕𝑢

𝜕𝑧
=

𝜕𝑢

𝜕𝑝

𝜕𝑝

𝜕𝑧
+

𝜕𝑢

𝜕𝑞

𝜕𝑞

𝜕𝑧
+

𝜕𝑢

𝜕𝑟

𝜕𝑟

𝜕𝑧
 

Applying the above Chain Rule, we get 

𝜕𝑢

𝜕𝑧
= (

1

𝑞 − 𝑟
) (1) + (

(𝑞 − 𝑟)(−1) − (𝑝 − 𝑞)(1)

(𝑞 − 𝑟)2
) (1) + (

𝑝 − 𝑞

(𝑞 − 𝑟)2
) (−1) 

𝜕𝑢

𝜕𝑧
=

1

𝑞 − 𝑟
+

𝑟 − 𝑝

(𝑞 − 𝑟)2
+

𝑞 − 𝑝

(𝑞 − 𝑟)2
=

1

𝑞 − 𝑟
+

𝑟 + 𝑞 − 2𝑝

(𝑞 − 𝑟)2
 

When  𝑥 = √3, 𝑦 = 2, 𝑧 = 1, we have  

𝑝 = 𝑥 + 𝑦 + 𝑧 = √3 + 3,       𝑞 = √3 − 1,          𝑟 = √3 + 1. 

Thus, 

𝜕𝑢

𝜕𝑧
|𝑥=√3,𝑦=2,𝑧=1 =

1

−2
+

−6

(−2)2
= −2 
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Question #1: Directional Derivative 
 
Find the directional derivative of the function 𝒇(𝒙, 𝒚) = 𝒚𝒔𝒊𝒏(𝒙𝒚) at the  

point (
𝝅

𝟑
, 𝟏) in the direction of the vector �⃑⃑� = 〈𝟏, 𝟑〉. 

 

Answer: 
The directional derivative of f at (𝑥0,𝑦0) in the direction of the unit 
vector �⃑� = 〈𝑎, 𝑏〉 is 

𝐷�⃑⃑� 𝑓 = ∇𝑓 ∙ �⃑⃑�  

We first compute the gradient vector at (
𝝅

𝟑
, 𝟏):  

𝑓𝑥 = 𝑦2 cos(𝑥𝑦),   𝑓𝑦 = 𝑥𝑦 cos(𝑥𝑦), 

𝑓𝑥(
𝝅

𝟑
, 𝟏) = 1/2,   𝑓𝑦(

𝝅

𝟑
, 𝟏) = 𝜋/6 

∇𝑓 = 〈𝑓𝑥, 𝑓𝑦〉 

∇𝑓 (
𝝅

𝟑
, 𝟏) = 〈𝑓𝑥 (

𝝅

𝟑
, 𝟏) , 𝑓𝑦 (

𝝅

𝟑
, 𝟏)〉 = 〈1/2, 𝜋/6〉 

 

Note that �⃑⃑�  is not a unit vector, but since |�⃑� | = √10, the unit vector in 

the direction �⃑⃑�  of is �⃑� =
1

 |�⃑� |
�⃑� = 〈

𝟏

√𝟏𝟎
,

𝟑

√𝟏𝟎
〉. 

Therefore, we have 
   

𝐷�⃑⃑� 𝑓 (
𝝅

𝟑
, 𝟏) = ∇𝑓 (

𝝅

𝟑
, 𝟏) ∙ �⃑⃑� = 〈

1

2
,
𝜋

6
〉 ∙ 〈

1

√10
,

3

√10
〉 =

1

2√10
+

𝜋

2√10
=

1 + 𝜋

2√10
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Question #2: Directional Derivative 
 

If 𝒇(𝒙, 𝒚) = 𝒍𝒏(𝒙𝟐 − 𝟑𝒙𝒚 + 𝒚), (a) find the gradient of f and (b) find the 

directional derivative of f at (5, 1) in the direction of 𝒊 + 𝟐𝒋 . 

 

Answer: 

The gradient vector of f is at (
𝝅

𝟑
, 𝟏):  

𝑓𝑥 =
2𝑥 − 3𝑦

𝒙𝟐 − 𝟑𝒙𝒚 + 𝒚
,   𝑓𝑦 =

−3𝑥 + 1

𝒙𝟐 − 𝟑𝒙𝒚 + 𝒚
, 

∇𝑓 = 〈𝑓𝑥 , 𝑓𝑦〉 = 〈
2𝑥 − 3𝑦

𝒙𝟐 − 𝟑𝒙𝒚 + 𝒚
,

−3𝑥 + 1

𝒙𝟐 − 𝟑𝒙𝒚 + 𝒚
〉 

The directional derivative of f at (𝑥0,𝑦0) in the direction of the unit 
vector �⃑� = 〈𝑎, 𝑏〉 is 

𝐷�⃑⃑� 𝑓 = ∇𝑓 ∙ �⃑⃑�  

At (5,1) we have  

∇𝑓(𝟓, 𝟏) = 〈𝑓𝑥(𝟓, 𝟏), 𝑓𝑦(𝟓, 𝟏)〉 = 〈
7

11
,−14/11〉 

Note that �⃑⃑� = 𝒊 + 𝟐𝒋  is not a unit vector, but since |�⃑� | = √5, the unit 

vector in the direction �⃑⃑� = of is �⃑� =
1

 |�⃑� |
�⃑� = 〈

𝟏

√𝟓
,

𝟐

√𝟓
〉. 

Therefore, we have 
   

𝐷�⃑⃑� 𝑓(𝟓, 𝟏) = ∇𝑓(𝟓, 𝟏) ∙ �⃑⃑� = 〈
7

11
,−

14

11
〉 ∙ 〈

𝟏

√𝟓
,
𝟐

√𝟓
〉 =

7

11√5
−

28

11√5
=

−21

11√5
 

 

 
 

 

 

 

 



Question #3: Directional Derivative 
 

If 𝒇(𝒙, 𝒚) = 𝒙𝒆𝒚 + 𝒄𝒐𝒔(𝒙𝒚), find the rate of change of f at the point P(2, 0) 

in the direction from P to Q(5,-4).  

 

Answer: 

We first compute the gradient vector:  

∇𝑓 = 〈𝑓𝑥, 𝑓𝑦〉 = 〈𝒆𝒚 − 𝒚𝒔𝒊𝒏(𝒙𝒚), 𝒙𝒆𝒚 − 𝒙𝒔𝒊𝒏(𝒙𝒚)〉 

The gradient of f at (2, 0) is 

∇𝑓(2,0) = 〈𝑓𝑥(2,0), 𝑓𝑦(2,0)〉 = 〈𝟏, 𝟐〉 

 

The directional derivative of f at (𝑥0,𝑦0) in the direction of the unit 
vector �⃑� = 〈𝑎, 𝑏〉 is 

𝐷�⃑⃑� 𝑓 = ∇𝑓 ∙ �⃑⃑�  

The unit vector in the direction of 𝑃𝑄⃑⃑⃑⃑  ⃑ = 〈3,−4〉 is �⃑� =
1

 |𝑃𝑄⃑⃑ ⃑⃑  ⃑ |
𝑃𝑄⃑⃑⃑⃑  ⃑ = 〈

𝟑

𝟓
,
−𝟒

𝟓
〉. 

Therefore, we have 
   

𝐷�⃑⃑� 𝑓(2,0) = ∇𝑓(2,0) ∙ �⃑⃑� = 〈1,2〉 ∙ 〈
3

5
,
−4

5
〉 =

3

5
−

8

5
= −1. 

 

 
 

 

 

 

 

 

 

 



Question #4: Directional Derivative 
Find the derivative of 𝒇(𝒙, 𝒚) = 𝒙𝟑 − 𝒙𝒚𝟐 − 𝒛  at P0(1, 1, 0) in the 

direction of �⃑⃑� = 𝟐𝒊 − 𝟑𝒋 + 𝟔�⃑⃑� . 

 

Answer: 

We first compute the gradient vector:  

∇𝑓 = 〈𝑓𝑥 , 𝑓𝑦 , 𝑓𝑧〉 = 〈𝟑𝒙𝟐 − 𝒚𝟐, −𝟐𝒙𝒚,−𝟏〉 

The gradient of f at (1, 1, 0) is 

∇𝑓(1,1,0) = 〈𝑓𝑥(1,1,0), 𝑓𝑦(1,1,0), 𝑓𝑧(1,1,0)〉 = 〈2, −2, −1〉 

The directional derivative of f at (𝑥0,𝑦0, 𝑧0) in the direction of the unit 
vector �⃑� = 〈𝑎, 𝑏, 𝑐〉 is 

𝐷�⃑⃑� 𝑓 = ∇𝑓 ∙ �⃑⃑�  

The unit vector in the direction of �⃑⃑� = 𝟐𝒊 − 𝟑𝒋 + 𝟔�⃑⃑�  is  

�⃑� =
1

 |�⃑� |
𝑣 = 〈

𝟐

𝟕
,
−𝟑

𝟕
,
𝟔

𝟕
〉. 

 
Therefore, we have 
   

𝐷�⃑⃑� 𝑓(1,1,0) = ∇𝑓(1,1,0) ∙ �⃑⃑� = 〈2,−2,−1〉 ∙ 〈
2

7
,
−3

7
,
6

7
〉 =

4

7
. 

 

 
 

 

 

 

 

 

 

 

 



Question #5: Directional Derivative 
 

Find the maximum rate of change of 𝒇(𝒙, 𝒚) =
𝒙𝟐

𝟐
+

𝒚𝟐

𝟐
 at the point (1, 1) 

and the direction in which it occurs.  

 

Answer: 
The maximum value of the directional derivative 𝐷�⃑⃑� 𝑓(𝒙) is |∇𝑓(𝒙)| and 
it occurs when �⃑�  has the same direction as the gradient vector ∇𝑓(𝒙). 

We first compute the gradient vector:  

∇𝑓 = 〈𝑓𝑥 , 𝑓𝑦〉 = 〈𝒙, 𝒚〉 

and so  

∇𝑓(1,1) = 〈𝟏, 𝟏〉 

The maximum rate of change of 𝒇 at the point (1, 1) is 

|∇𝑓(1,1)| = |〈𝟏, 𝟏〉| = √12 + 12 = √2 

and it occurs in the direction of the gradient vector 

∇𝑓(1,1) = 〈𝟏, 𝟏〉. 

 

 
 

 

 

 

 

 

 

 

 



Question #6: Directional Derivative 
 

Suppose that the temperature at a point (𝒙, 𝒚, 𝒛) in space is given by 

𝑻(𝒙, 𝒚, 𝒛) =
𝟖𝟎

𝟏+𝒙𝟐+𝟐𝒚𝟐+𝟑𝒛𝟐
, where T is measured in degrees Celsius and 

x, y, z in meters. In which direction does the temperature increase 
fastest at the point (𝟏, 𝟏,−𝟐)? What is the maximum rate of increase? 

 

 
 

Answer: 

The maximum value of the directional derivative 𝐷�⃑⃑� 𝑓(𝒙) is |∇𝑓(𝒙)| and 
it occurs when �⃑�  has the same direction as the gradient vector ∇𝑓(𝒙). 

The gradient of T is:  

∇𝑇 = 〈𝑇𝑥, 𝑇𝑦, 𝑇𝑧〉

= 〈
−𝟏𝟔𝟎𝒙

(𝟏 + 𝒙𝟐 + 𝟐𝒚𝟐 + 𝟑𝒛𝟐)𝟐
,

−𝟑𝟐𝟎𝒚

(𝟏 + 𝒙𝟐 + 𝟐𝒚𝟐 + 𝟑𝒛𝟐)𝟐
,

−𝟒𝟖𝟎𝒛

(𝟏 + 𝒙𝟐 + 𝟐𝒚𝟐 + 𝟑𝒛𝟐)𝟐
〉 

At the point (𝟏, 𝟏, −𝟐) the gradient is  

∇𝑇(𝟏, 𝟏,−𝟐) = 〈−
𝟓

𝟖
,−

𝟏𝟎

𝟖
,
𝟑𝟎

𝟖
〉 

The temperature increases fastest in the direction of the gradient 
vector  ∇𝑇(𝟏,𝟏,−𝟐). The maximum rate of increase is the length of 
the gradient vector:  

|∇𝑇(𝟏, 𝟏,−𝟐)| = |〈𝟏, 𝟏〉| =
5

8
√41 ≈ 4°𝐶/𝑚. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 



Question #7: Directional Derivative 
 

Find the directions in which the function increase and decrease most 
rapidly at P0. Then find the derivatives of the function in these 
directions. 

𝒇(𝒙, 𝒚) = 𝐱𝟐𝒚 + 𝒆𝒙𝒚𝒔𝒊𝒏𝒚,      𝑷𝟎(𝟏, 𝟎). 
 

 
 
 

Answer: 

The gradient of f is:  

∇𝑓 = 〈𝑓𝑥 , 𝑓𝑦〉 = 〈𝟐𝒙𝒚 + 𝒚𝒆𝒙𝒚𝒔𝒊𝒏𝒚, 𝒙𝟐 + 𝒆𝒙𝒚𝒄𝒐𝒔𝒚 + 𝒙𝒆𝒙𝒚𝒔𝒊𝒏𝒚〉. 

At the point (𝟏, 𝟎) the gradient is  

∇𝑓(𝟏, 𝟎) = 〈𝟎, 2〉. 

The function increases most rapidly in the direction of  
∇𝑓(𝟏,𝟎) = 〈𝟎,2〉 and the rate of change in this direction is 

|∇𝑓(𝟏,𝟎)| = |〈𝟎, 𝟐〉| = 2. 

The function decreases most rapidly in the direction of −∇𝑓(𝟏,𝟎) =
〈𝟎,−2〉 and the rate of change in this direction is 

−|∇𝑓(𝟏,𝟎)| = −|〈𝟎, 𝟐〉| = −2. 

 
 
 

 

 

 

 

 

 

 

 



Question #8: Directional Derivative 
 

Find the directions in which the directional derivative of 𝒇(𝒙, 𝒚) = 𝒚𝒆−𝒙𝒚 

at the point (0, 2) has the value 1.  
 

 
 
 

Answer: 
The directional derivative of f at (𝑥0,𝑦0) in the direction of the unit 
vector �⃑� = 〈𝑎, 𝑏〉 is 

𝐷�⃑⃑� 𝑓 = ∇𝑓 ∙ �⃑⃑�  

The gradient of f is:  

∇𝑓 = 〈𝑓𝑥 , 𝑓𝑦〉 = 〈−𝒚𝟐𝒆−𝒙𝒚, −𝒙𝒚𝒆−𝒙𝒚 + 𝒆−𝒙𝒚〉. 

At the point (𝟎, 𝟐) the gradient is  

∇𝑓(𝟎, 𝟐) = 〈−4,1〉. 

The directional derivative of f at (0,2) in the direction of the unit 
vector �⃑� = 〈𝑎, 𝑏〉, is 

𝐷�⃑⃑� 𝑓 = ∇𝑓 ∙ �⃑⃑� = 〈−4,1〉 ∙ 〈𝑎,𝑏〉 = −4𝑎+𝑏. 

Thus 𝐷�⃑⃑� 𝑓 has the value 1 in the direction of 

𝐷�⃑⃑� 𝑓 = −4𝑎+ 𝑏 = 1 ⇛ 𝑏 = 1+4𝑎. 

Since �⃑� = 〈𝑎, 𝑏〉 is a unit vector we have that √𝑎2 + 𝑏2 = 1 or 𝑎2 +
𝑏2 = 1. 

In this case we have  

𝑎2 + 𝑏2 = 1 

𝑎2 + (1+ 4𝑎)2 = 1 

𝑎2 + 1 + 8𝑎 + 16𝑎2 = 1 

17𝑎2 + 8𝑎 = 0 

𝑎(17𝑎 + 8) = 0 



𝑎 = 0    𝑜𝑟   𝑎 = −8/17. 

Then  

 𝑎 = 0 ⇛ 𝑏 = 1  and  𝑎 = −
8

17
  ⇛ 𝑏 = 1 + 4(−

8

17
) = −

15

17
,   

The directions in which 𝐷�⃑⃑� 𝑓 = 1 are  

〈0,1〉, 〈−
8

17
,−

15

17
〉. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Question #9: Tangent Plane and Normal Line 
 

Find the equations of the tangent plane and normal line at the point      
(0, 1, 1)  to the surface  

𝒙 + 𝒚 + 𝒛 = 𝟐𝒆𝒙𝒚𝒛. 
 
 

Answer: 

The tangent plane at the point 𝑃(𝑥0, 𝑦0, 𝑧0) to the surface                
F(x, y, z) = k has normal vector  �⃑� = ∇𝐹(𝑥0, 𝑦0, 𝑧0). 

The normal line at the point 𝑃(𝑥0, 𝑦0, 𝑧0) to the surface                   
F(x, y, z) = k is in the direction of the vector 𝑣 = ∇𝐹(𝑥0, 𝑦0, 𝑧0). 

First we rewrite the equation of the surface in the form F(x, y, z) = k 
as:  

𝒙 + 𝒚 + 𝒛 − 𝟐𝒆𝒙𝒚𝒛 = 𝟎 

and so  

𝑭(𝒙,𝒚, 𝒛) = 𝒙 + 𝒚 + 𝒛 − 𝒆𝒙𝒚𝒛. 

Therefore we have 

𝐹𝑥 = 1 − 2𝑦𝑧𝒆𝒙𝒚𝒛,        𝐹𝑦 = 1 − 2𝑥𝑧𝒆𝒙𝒚𝒛,      𝐹𝑧 = 1 − 2𝑥𝑦𝒆𝒙𝒚𝒛, 

𝐹𝑥(0,1,1) = −1,            𝐹𝑦(0,1,1) = 1,             𝐹𝑧(0,1,1) = 1, 

∇𝐹(0,1,1) = 〈𝐹𝑥(0,1,1),𝐹𝑦(0,1,1),𝐹𝑧(0,1,1)〉 = 〈−1,1,1〉 

The tangent plane at the point (0,1,1) to the surface has normal 
vector  �⃑� = ∇𝐹(0,1,1) = 〈−1,1,1〉. Therefore the equation of the 
tangent plane is  

(−1)(𝑥 − 0) + (1)(𝑦 − 1) + (1)(𝑧 − 1) = 0 

which simplifies to   −𝑥 + 𝑦 + 𝑧 = 2. 

The normal line at the point (0,1,1) to the surface is in the direction of 
the vector 𝑣 = ∇𝐹(0,1,1) = 〈−1,1,1〉. Parametric equations of the 
normal line are 

𝑥 = 0− 𝑡,    𝑦 = 1 + 𝑡,     𝑧 = 1+ 𝑡. 



Question #10: Tangent Plane and Normal Line 
 

Find the equations of the tangent plane and normal line at the point      
(1, 2, 4)  to the surface  

𝒙𝟐 + 𝒚𝟐 + 𝒛 = 𝟗. 
 
 

 
 

Answer: 

The tangent plane at the point 𝑃(𝑥0, 𝑦0, 𝑧0) to the surface                
F(x, y, z) = k has normal vector  �⃑� = ∇𝐹(𝑥0, 𝑦0, 𝑧0). 

The normal line at the point 𝑃(𝑥0, 𝑦0, 𝑧0) to the surface                   
F(x, y, z) = k is in the direction of the vector 𝑣 = ∇𝐹(𝑥0, 𝑦0, 𝑧0). 

The equation of the surface is already written in the form                
F(x, y, z) = k, and so  

𝑭(𝒙,𝒚, 𝒛) = 𝒙𝟐 + 𝒚𝟐 + 𝒛. 

The gradient is  

𝐹𝑥 = 2𝑥,        𝐹𝑦 = 2𝑦,      𝐹𝑧 = 1, 

∇𝐹(1,2,4) = 〈𝐹𝑥(1,2,4),𝐹𝑦(1,2,4), 𝐹𝑧(1,2,4)〉 = 〈2,4,1〉 

The tangent plane at the point (1,2,4) to the surface has normal 
vector  �⃑� = ∇𝐹(1,2,4) = 〈2,4,1〉. The tangent plane is therefore the 
plane  

2(𝑥 − 1) + 4(𝑦 − 2) + 1(𝑧 − 4) = 0 

which simplifies to   2𝑥 + 4𝑦 + 𝑧 = 14. 

The normal line at the point (1,2,4) to the surface is in the direction of 
the vector 𝑣 = ∇𝐹(1,2,4) = 〈2,4,1〉. Parametric equations of the 
normal line are 

𝑥 = 1+2𝑡,    𝑦 = 2 + 4𝑡,     𝑧 = 4 + 𝑡. 

 
 

 



Question #11: Tangent Plane and Normal Line 
 

Find the tangent plane to the surface  𝒛 = 𝒙𝒄𝒐𝒔(𝒚) − 𝒚𝒆𝒙  at  (0, 0, 0). 

 
 

 
 

Answer: 

The tangent plane at the point 𝑃(𝑥0, 𝑦0, 𝑧0) to the surface                
F(x, y, z) = k has normal vector  �⃑� = ∇𝐹(𝑥0, 𝑦0, 𝑧0). 

First we rewrite the equation of the surface in the form F(x, y, z) = k 
as:  

𝒙𝒄𝒐𝒔(𝒚) − 𝒚𝒆𝒙 − 𝑧 = 0 

and so  

𝑭(𝒙,𝒚, 𝒛) = 𝒙𝒄𝒐𝒔(𝒚) − 𝒚𝒆𝒙 − 𝑧. 

We first calculate the partial derivatives of F 

𝐹𝑥 = cos(𝑦) − 𝑦𝒆𝑥 ,        𝐹𝑦 = −𝑥𝑠𝑖𝑛(𝑦) − 𝒆𝒙,      𝐹𝑧 = −1, 

𝐹𝑥(0,0,0) = 1,            𝐹𝑦(0,0,0) = −1,             𝐹𝑧(0,1,1) = −1, 

Then, 

∇𝐹(0,0,0) = 〈𝐹𝑥(0,0,0),𝐹𝑦(0,0,0),𝐹𝑧(0,0,0)〉 = 〈1,−1,−1〉. 

The tangent plane at the point (0,0,0) to the surface has normal 
vector  �⃑� = ∇𝐹(0,0,0) = 〈1,−1,−1〉. Therefore the equation of the 
tangent plane is  

(1)(𝑥 − 0) + (−1)(𝑦 − 0) + (−1)(𝑧 − 0) = 0 

which simplifies to   𝑥 − 𝑦 − 𝑧 = 0. 

 
 

 

 



Question #12: Tangent Plane 
 

At what point on the paraboloid 𝒚 = 𝒙𝟐 + 𝒛𝟐 is the tangent plane parallel 

to the plane  𝑥 + 2𝑦 + 3𝑧 = 1? 

 

 

Answer: 

The tangent plane at the point 𝑃(𝑥0, 𝑦0, 𝑧0) to the surface                
F(x, y, z) = k has normal vector  �⃑� = ∇𝐹(𝑥0, 𝑦0, 𝑧0). 

The normal line at the point 𝑃(𝑥0, 𝑦0, 𝑧0) to the surface                   
F(x, y, z) = k is in the direction of the vector 𝑣 = ∇𝐹(𝑥0, 𝑦0, 𝑧0). 

First we rewrite the equation of the paraboloid in the form F(x, y, z) = 
k as:  

𝒙𝟐 + 𝒛𝟐 − 𝒚 = 𝟎 

and so 

𝑭(𝒙,𝒚, 𝒛) = 𝒙𝟐 + 𝒛𝟐 − 𝒚. 

Therefore we have 

𝐹𝑥 = 2𝑥,        𝐹𝑦 = −1,      𝐹𝑧 = 2𝑧, 

∇𝐹(𝑥0, 𝑦0, 𝑧0) = 〈2𝑥0,−1,2𝑧0〉. 

The tangent plane at the point (𝑥0, 𝑦0, 𝑧0) to the paraboloid has 
normal vector  𝑛1⃑⃑⃑⃑ = ∇𝐹(𝑥0, 𝑦0, 𝑧0) = 〈2𝑥0,−1,2𝑧0〉. The given plane 

𝑥 + 2𝑦 + 3𝑧 = 1 has normal vector  𝑛2⃑⃑⃑⃑ = 〈1,2,3〉. The two planes are 
parallel if their normal vectors are parallel, 𝑛1⃑⃑⃑⃑ //𝑛2⃑⃑⃑⃑  . Thus,  

𝑛1⃑⃑⃑⃑ = 𝑘𝑛2⃑⃑⃑⃑ ⇛ 〈2𝑥0,−1,2𝑧0〉 = 𝑘〈1,2,3〉 ⇛ 2𝑥0 = 𝑘, 2𝑘 = −1,2𝑧0 = 3𝑘 

So, 𝑘 = −
1

2
,   𝑥0 =

𝑘

2
= −

1

4
,     𝑧0 =

3𝑘

2
= −

3

4
.   

The point (𝑥0, 𝑦0, 𝑧0) is a point on the paraboloid if 𝑦0 = 𝑥0
2 + 𝑧0

2 =
5

8
. 

Therefore, the point on the paraboloid 𝒚 = 𝒙𝟐 + 𝒛𝟐 where the tangent 
plane is parallel to the plane 𝑥 + 2𝑦 + 3𝑧 = 1 is  

(𝑥0, 𝑦0, 𝑧0) = (−
1

4
,
5

8
,−

3

4
). 



 

Question #13: The Gradient 
 

The cylinder 𝒙𝟐 + 𝒚𝟐 = 𝟐  and the plane  𝒙 + 𝒛 = 𝟒  meet in an ellipse E. 

Find parametric equations for the line tangent to E at the point P0(I, 1, 3). 
 

 
 
 

Answer: 

First we rewrite the equations of the two surfaces in the form          
F(x, y, z) = k as:  

𝑭(𝒙, 𝒚, 𝒛) = 𝒙𝟐 + 𝒚𝟐,            𝑮(𝒙, 𝒚, 𝒛) = 𝒙 + 𝒛     

The tangent line is orthogonal to both ∇𝐹 and ∇𝐺 at Po, and therefore 
parallel to  𝑣 = ∇𝐹 × ∇𝐺. We have  

∇𝐹(1,1,3) = 〈2,2,0〉,    ∇𝐺(1,1,3) = 〈1,0,1〉, 

𝑣 = ∇𝐹 × ∇𝐺 = |
𝑖 𝑗 �⃑� 

2 2 0
1 0 1

| = 2𝑖 − 2𝑗 − 2�⃑� .  

The tangent line is  

𝑥 = 1 +2𝑡,    𝑦 = 1 −2𝑡,     𝑧 = 3−2𝑡. 
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In almost all the problems in this sheet, we will use the Second 

Derivative Test for functions of two variable to maximize and 

minimize the given function. 

 

 

NOTE 1: In case (c) the point (a, b) is called a saddle point of f and the 
graph of f crosses its tangent plane at (a, b). 
 
NOTE 2: If D = 0, the test gives no information (The Test Fails): could 
have a local maximum or local minimum at (a, b), or could be a 
saddle point of (a, b). In this case, we must find some other way to 
determine the behavior of f at (a, b). 
 
NOTE 3: We cannot apply this test if the partial derivatives of f are not 
exist.  
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Question #1: Maximum and Minimum Values 
 
Locate and classify the critical points of  

𝒇(𝒙, 𝒚) = (𝒙 − 𝟓)𝟐 + (𝒚 + 𝟖)𝟐. 

 

Answer: 

First compute the partial derivatives of f:  

𝑓𝑥 = 2(𝑥 − 5),   𝑓𝑦 = 2(𝑦 + 8). 

The critical points satisfy the equations 𝑓𝑥 = 0  and 𝑓𝑦 = 0  

simultaneously. Hence 

2(𝑥 − 5) = 0   ⟹      𝑥 = 5  

2(𝑦 + 8) = 0   ⟹      𝑦 = −8 
 
So, (5, −8) is the only critical point for f. 
 
We now need to find D defined as 

𝐷 = 𝑓
𝑥𝑥

𝑓
𝑦𝑦

− (𝑓
𝑥𝑦

)
2

. 

 
To do so, we find the second partial derivatives 

 

𝑓𝑥𝑥 = 2,     𝑓𝑦𝑦 = 2,   𝑓𝑥𝑦 = 0. 

Thus,  

𝐷(5, −8) = 𝑓
𝑥𝑥

(5, −8)𝑓
𝑦𝑦

(5, −8) − (𝑓
𝑥𝑦

(5, −8))
2

= (2)(2) − (0)2 = 4. 

 
Since 𝐷 > 0 and 𝑓𝑥𝑥(2, −1) = 4 > 0, f has a local minimum at (5, −8) 
and so 𝑓(5, −8) = 0 is a local minimum. 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Question #2: Maximum and Minimum Values 
 
Find the local maximum and minimum values and saddle point(s) of the 
function 

𝒇(𝒙, 𝒚) = 𝟐𝒙𝟐 + 𝟐𝒙𝒚 + 𝟐𝒚𝟐 − 𝟔𝒙. 

 

Answer: 

We first compute the partial derivatives of f:  

𝑓𝑥 = 4𝑥 + 2𝑦 − 6,   𝑓𝑦 = 2𝑥 + 4𝑦. 

The critical points satisfy the equations 𝑓𝑥 = 0  and 𝑓𝑦 = 0  

simultaneously. Hence 

4𝑥 + 2𝑦 − 6 = 0  ⟹   4𝑥 + 2𝑦 = 6    

2𝑥 + 4𝑦 = 0 
 
The above system of equations has one solution at the point           
(2, -1). So, (2, -1) is the only critical point for f. 



 
We now need to find D defined as 

𝐷 = 𝑓
𝑥𝑥

𝑓
𝑦𝑦

− (𝑓
𝑥𝑦

)
2

. 

 
To do so, we find the second partial derivatives 

 

𝑓𝑥𝑥 = 4,     𝑓𝑦𝑦 = 4,   𝑓𝑥𝑦 = 2. 

Thus,  

𝐷(2, −1) = 𝑓
𝑥𝑥

(2, −1)𝑓
𝑦𝑦

(2, −1) − (𝑓
𝑥𝑦

(2, −1))
2

= (4)(4) − (2)2 = 12. 

 
Since 𝐷 > 0 and 𝑓𝑥𝑥(2, −1) = 4 > 0, f has a local minimum at (2, −1) 
and so 𝑓(2, −1) = −6 is a local minimum. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 



Question #3: Maximum and Minimum Values 
 
Determine the critical points and locate any local minima, maxima and 
saddle points of the function 

𝒇(𝒙, 𝒚) = 𝟐𝒙𝟐 − 𝟒𝒙𝒚 + 𝒚𝟒 + 𝟐 

 

Answer: 

We first compute the partial derivatives of f:  

𝑓𝑥 = 4𝑥 − 4𝑦,            𝑓𝑦 = −4𝑥 + 4𝑦3. 

The critical points satisfy the equations 𝑓𝑥 = 0  and 𝑓𝑦 = 0  

simultaneously. Hence 

4𝑥 − 4𝑦 = 0 ⟹    𝑥 = 𝑦 

−4𝑥 + 4𝑦3 = 0 
 
Substituting the first equation in the second equation gives 
 

−4𝑦 + 4𝑦3 = 0 
4𝑦(𝑦2 − 1) = 0 

4𝑦(𝑦 − 1)(𝑦 + 1) = 0 
𝑦 = 0, 𝑦 = 1,        𝑦 = −1. 

 
We now use the equation x = y to find the critical points: 

(0,0), (1,1), (−1, −1). 
 
We now need to find D defined as 

𝐷 = 𝑓
𝑥𝑥

𝑓
𝑦𝑦

− (𝑓
𝑥𝑦

)
2

 

 
To do so, we find the second partial derivatives 

 

𝑓𝑥𝑥 = 4,     𝑓𝑦𝑦 = 12𝑦2,   𝑓𝑥𝑦 = −4. 

Thus,  
 

 (0,0) (1,1) (−1, −1) 
𝑓𝑥𝑥(𝑎, 𝑏) 4 4 4 
𝑓𝑦𝑦(𝑎, 𝑏) 0 0 0 

𝑓𝑥𝑦(𝑎, 𝑏) −4 −4 −4 

𝐷 −16 32 32 

 Saddle point local minimum local minimum 



 

 

 

 

 

 

 

 

 

 
 

 

 

Question #4: Maximum and Minimum Values 
 
Find and classify the critical points of the function 

𝒇(𝒙, 𝒚) = 𝒆(−
𝟏
𝟑

𝒙𝟑+𝒙−𝒚𝟐)
 

 

Answer: 

The partial derivatives of f are  

𝑓𝑥 = (1 − 𝑥2)𝑒(−
1
3

𝑥3+𝑥−𝑦2),            𝑓𝑦 = −2𝑦𝑒(−
1
3

𝑥3+𝑥−𝑦2). 

The critical points satisfy the equations 𝑓𝑥 = 0  and 𝑓𝑦 = 0  

simultaneously. Hence 

(1 − 𝑥2)𝑒(−
1
3

𝑥3+𝑥−𝑦2) = 0     ⟹     (1 − 𝑥2) = 0 

−2𝑦𝑒(−
1
3

𝑥3+𝑥−𝑦2) = 0     ⟹          𝑦 = 0 
 



The first equation gives  𝑥 = 1  𝑜𝑟  𝑥 = −1  and the second equation 
gives 𝑦 = 0. Thus, the critical points are 

(1,0), (−1,0). 
 
We now need to find D defined as 

𝐷 = 𝑓
𝑥𝑥

𝑓
𝑦𝑦

− (𝑓
𝑥𝑦

)
2

. 

 
To do so, we find the second partial derivatives 

 

𝑓𝑥𝑥 = (−2𝑥 + (1 − 𝑥2)2)𝑒(−
1
3

𝑥3+𝑥−𝑦2),     𝑓𝑦𝑦 = (−2 + 4𝑦2)𝑒(−
1
3

𝑥3+𝑥−𝑦2),   

 

 𝑓𝑥𝑦 = −2𝑦(1 − 𝑥2)𝑒(−
1

3
𝑥3+𝑥−𝑦2). 

Thus,  
 

 (1,0) (−1,0) 
𝑓𝑥𝑥(𝑎, 𝑏) −2𝑒2/3 2𝑒−2/3 
𝑓𝑦𝑦(𝑎, 𝑏) −2𝑒2/3 −2𝑒−2/3 

𝑓𝑥𝑦(𝑎, 𝑏) 0 0 

𝐷 4𝑒4/3 −4𝑒−4/3 

 local maximum Saddle point 

 

 

 

 

 

 

 

 

 

 

 

 



 

Question #5: Maximum and Minimum Values 
 
Find and classify the critical points for 

𝒇(𝒙, 𝒚) = 𝟑𝒙𝟐𝒚 + 𝒚𝟑 − 𝟑𝒙𝟐 − 𝟑𝒚𝟐 + 𝟐 

 

Answer: 

We will first need to get all the first partial derivatives  

𝑓𝑥 = 6𝑥𝑦 − 6𝑥,            𝑓𝑦 = 3𝑥2 + 3𝑦2 − 6𝑦. 

The critical points satisfy the equations 𝑓𝑥 = 0  and 𝑓𝑦 = 0  

simultaneously. Hence 

6𝑥𝑦 − 6𝑥 = 0     ⟹     6𝑥(𝑦 − 1) = 0 
3𝑥2 + 3𝑦2 − 6𝑦 = 0      

 

The first equation gives  𝑥 = 0  𝑜𝑟 𝑦 = 1. We plug these values in the 
second equation to get 

𝑥 = 0     ⟹     3𝑦2 − 6𝑦 = 3𝑦(𝑦 − 2) = 0      ⟹   𝑦 = 0, 𝑦 = 2 
 

𝑦 = 1     ⟹     3𝑥2 − 3 = 3(𝑥 − 1)(𝑥 + 1) = 0      ⟹   𝑥 = 1, 𝑥 = −1 
 
Thus, the critical points are 

(0,0),     (0,2),     (1,1),     (−1,1). 
 
We now need to find D defined as 

𝐷 = 𝑓
𝑥𝑥

𝑓
𝑦𝑦

− (𝑓
𝑥𝑦

)
2

. 

 
To do so, we find the second partial derivatives 

 
𝑓𝑥𝑥 = 6𝑦 − 6,     𝑓𝑦𝑦 = 6𝑦 − 6,        𝑓𝑥𝑦 = 6𝑥.   

 

Thus,  

 (0,0) (0,2) (1,1) (−1,1) 
𝑓𝑥𝑥(𝑎, 𝑏) −6 6 0 0 

𝑓𝑦𝑦(𝑎, 𝑏) −6 6 0 0 

𝑓𝑥𝑦(𝑎, 𝑏) 0 0 6 −6 

𝐷 36 36 −36 −36 

 local maximum local minimum Saddle point Saddle point 

 



Question #6: Maximum and Minimum Values 
 
Locate and classify the critical points of  

𝒇(𝒙, 𝒚) = 𝟑𝒙𝒚 − 𝒙𝟑 − 𝒚𝟑. 

 

Answer: 

First compute the partial derivatives of f:  

𝑓𝑥 = 3𝑦 − 3𝑥2,   𝑓𝑦 = 3𝑥 − 3𝑦2. 

The critical points satisfy the equations 𝑓𝑥 = 0  and 𝑓𝑦 = 0  

simultaneously. Hence 

3𝑦 − 3𝑥2 = 0   ⟹      𝑦 = 𝑥2  

3𝑥 − 3𝑦2 = 0   ⟹      𝑥 = 𝑦2 
 
The first equation gives  𝑦 = 𝑥2. We plug these values in the second 
equation to get  

𝑥 = 𝑦2 = (𝑥2)
2

= 𝑥4   ⟹  𝑥4 − 𝑥 = 𝑥(𝑥3 − 1) = 0  ⟹   𝑥 = 0  𝑜𝑟  1  

 

Now, 𝑥 = 0  ⟹   𝑦 = 02 = 0  and 𝑥 = 1  ⟹   𝑦 = 12 = 1. 
The critical points for f are  

(0,0),     (1,1). 
 
We now need to find D defined as 

𝐷 = 𝑓
𝑥𝑥

𝑓
𝑦𝑦

− (𝑓
𝑥𝑦

)
2

. 

 
To do so, we find the second partial derivatives 

 

𝑓𝑥𝑥 = −6𝑥,     𝑓𝑦𝑦 = −6𝑦,   𝑓𝑥𝑦 = 3. 

Thus,  

𝐷(0,0) = 𝑓
𝑥𝑥

(0,0)𝑓
𝑦𝑦

(0,0) − (𝑓
𝑥𝑦

(0,0))
2

= (0)(0) − (3)2 = −9, 

𝐷(1,1) = 𝑓
𝑥𝑥

(1,1)𝑓
𝑦𝑦

(1,1) − (𝑓
𝑥𝑦

(1,1))
2

= (−6)(−6) − (3)2 = 27. 

 
We can obtain that: 
 𝐷(0,0) < 0, and so (0,0) is a saddle point. 
𝐷(1,1) > 0  with  𝑓𝑥𝑥(2, −1) < 0  gives that f has a local maximum at 
(1, 1). 



 

Question #7: Applications on Extreme Values 
 
Find the shortest distance from the point (1, 0, -2) to the plane 
𝒙 + 𝟐𝒚 + 𝒛 = 𝟒.  

 

Answer: 

The distance from any point (𝑥, 𝑦, 𝑧) to the point (1, 0, -2) is 

𝑑 = √(𝑥 − 1)2 + (𝑦 − 0)2 + (𝑧 + 2)2  

but if (𝑥, 𝑦, 𝑧) lies on the plane 𝑥 + 2𝑦 + 𝑧 = 4, then                         
z = 4 − 𝑥 − 2𝑦  and so we have 

𝑑 = √(𝑥 − 1)2 + (𝑦 − 0)2 + (4 − 𝑥 − 2𝑦 + 2)2. 

We can minimize d by minimizing the simpler expression 

 𝑑2 = 𝑓(𝑥, 𝑦) = (𝑥 − 1)2 + 𝑦2 + (6 − 𝑥 − 2𝑦)2. 

By solving the equations 

𝑓𝑥 = 2(𝑥 − 1) − 2(6 − 𝑥 − 2𝑦) = 4𝑥 + 4𝑦 − 14 = 0, 

𝑓𝑥 = 2𝑦 − 4(6 − 𝑥 − 2𝑦) = 4𝑥 + 10𝑦 − 24 = 0, 

we find that the only critical point is (
11

6
,

5

3
).  

Since  𝑓𝑥𝑥 = 4, 𝑓𝑥𝑦 = 4, 𝑓𝑦𝑦 = 10, we have 

𝐷 = 𝑓𝑥𝑥𝑓𝑦𝑦 − (𝑓𝑥𝑦)
2

= 24 > 0  and   𝑓𝑥𝑥 > 0, 

so by the Second Derivatives Test f  has a local minimum at (
11

6
,

5

3
). 

Intuitively, we can see that this local minimum is actually an absolute 
minimum because there must be a point on the given plane that is 

closest to (1, 0, -2). At this point we get  𝑑 =
5

6
√6.  

So, the shortest distance from the point (1, 0, -2) to the plane         

𝑥 + 2𝑦 + 𝑧 = 4  is   
5

6
√6. 



 

Question #8: Finding Absolute Extrema 
 
Find the absolute maximum and minimum values of the function 

f (x, y) = x2 – 2xy + 2y 
 
on the rectangle   𝑫 = {(𝒙, 𝒚)|𝟎 ≤ 𝒙 ≤ 𝟑, 𝟎 ≤ 𝒚 ≤ 𝟐}. 
 
 
 
 

Answer: 

Since f is a polynomial, it is continuous on the closed, bounded 
rectangle D, so Theorem 8 tells us there is both an absolute 
maximum and an absolute minimum. 

We first find the critical points. These occur when  

              fx  = 2x – 2y = 0,                   fy   = –2x + 2 = 0, 

so the only critical point is (1, 1), and the value of f there is  f(1,1) = 1. 

Next, we look at the values of f on the boundary of D, which consists 
of the four line segments L1, L2, L3, L4  shown in the Figure below. 

 

 

 

 

  

 

On L1 we have y = 0 and 

f  (x, 0) = x2                 0  x  3. 

This is an increasing function of x, so its minimum value is  f(0,0) = 0 

and its maximum value is f (3,0) = 9.  

On L2 we have x = 3 and 



f(3, y) = 9 – 4y                 0  y  2 

This is a decreasing function of y, so its maximum value is  f(3,0) = 9 
and its minimum value is f(3,2) = 1.  

 On L3 we have y = 2 and 

f(x, 2) = x2 – 4x + 4           0  x  3. 

Simply by observing that f(x, 2) = (x – 2)2, we see that the minimum 
value of this function is f(2,2) = 0 and the maximum value is f(0,2) = 
4. 

 Finally, on L4 we have x = 0 and 

f(0, y) = 2y          0  y  2 

with maximum value f(0,2) = 4 and minimum value f(0,0) = 0. 

Thus, on the boundary, the minimum value of f is 0 and the maximum 
is 9. 

Finally, we compare these values with the value  f(1,1) = 1 at the 

critical point and conclude that the absolute maximum value of f on D 

is f(3, 0) = 9 and the absolute minimum value is f(0,0) = f(2, 2) = 0. 

 (𝑎, 𝑏) 𝑓(𝑎, 𝑏) Classification 

Interior point(s) (1,1) 1  
 

Boundary 
point(s) 

(0,0) 0 absolute minimum 

(3,0) 9 absolute maximum 

(3,2) 1  

(0,2) 4  

(2,2) 0 absolute minimum 

 
 

Question #9: : Finding Absolute Extrema 
 
Find the absolute maximum and minimum values of 

𝒇(𝒙, 𝒚) = 𝟐 + 𝟐𝒙 + 𝟐𝒚 − 𝒙𝟐 − 𝒚𝟐 
on the triangular region in the first quadrant bounded by the lines x = 0, 
y = 0, y = 9 − x. 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Answer: 

Since f is differentiable, the only places where f can assume these 
values are points inside the triangle where 𝑓𝑥 = 𝑓𝑦 = 0 and points on 

the boundary. 

(a) Interior points. For these we have 

𝑓𝑥 = 2 − 2𝑥 = 0, 𝑓𝑦 = 2 − 2𝑦 = 0, 

yielding the single point (x, y) = (1, 1). The value of f there is  f(1,1) = 
4. 

(b) Boundary points. We take the triangle one side at a time: 

i) On the segment OA, y = 0. The function 

𝑓(𝑥, 𝑦) = 𝑓(𝑥, 0) = 2 + 2𝑥 − 𝑥2 

may now be regarded as a function of x defined on the closed 
interval [0, 9]. Its extreme values may occur at the endpoints 

𝑥 = 0       𝑤ℎ𝑒𝑟𝑒  𝑓(0,0) = 2 

𝑥 = 9       𝑤ℎ𝑒𝑟𝑒  𝑓(9,0) = −61 

and at the interior points where 𝑓′(𝑥, 0) = 2 − 2𝑥 = 0. The only 
interior point where 𝑓′(𝑥, 0) = 0  is x = 1, where f(1,0) = 3. 



ii) On the segment OB, x = 0 and f(x,y) = f(0,y) = 2 + 2y - y2. We 
know from the symmetry of f in x and y and from the analysis we just 

carried out that the candidates on this segment are: 𝑓(0,0) = 2, 
𝑓(0,9) = −61, 𝑓(0,1) = 3. 

iii) We have already accounted for the values of f at the endpoints of 

AB, so we need only look at the interior points of AB. With y = 9 − 𝑥, 

we have 

𝑓(𝑥, 9 − 𝑥) = 2 + 2𝑥 + 2(9 − 𝑥) − 𝑥2 − (9 − 𝑥)2 = −61 + 18𝑥 − 2𝑥2. 

Setting 𝑓′(𝑥, 9 − 𝑥) = 18 − 4𝑥 = 0  gives 𝑥 = 9/2. 

At this value of x, 𝑦 = 9 − 𝑥 = 9 −
9

2
= 9/2   and 

𝑓 (
9

2
,
9

2
) = −41/2. 

We list all the candidates: 4, 2, − 61, 3, − 41/2. The absolute 
maximum is 4, which f assumes at (1, 1). The absolute minimum is 
− 61, which f assumes at (0, 9) and (9, 0). 

 (𝑎, 𝑏) 𝑓(𝑎, 𝑏) Classification 

Interior point(s) (1,1) 4 absolute maximum 

 

Boundary 
point(s) 

(1,0) 3  

(0,1) 3  

(0,0) 2  

(9,0) −61 absolute minimum 

(0,9) −61 absolute minimum 

(
9

2
,
9

2
) −

41

2
 

 

 

 
 
 

 

 

 

 



Question #10: Finding Absolute Extrema 
 
Find the absolute minimum and absolute maximum of 

𝒇(𝒙, 𝒚) = 𝟐𝒙𝟐 − 𝒚𝟐 + 𝟔𝒚 

on the disk  𝒙𝟐 + 𝒚𝟐 ≤ 𝟏𝟔.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Answer: 

Since f is differentiable, the only places where f can assume these 
values are points inside the disk and points on the boundary of the 
disk.  

Let’s first find the critical points of the function that lies inside the 
disk. To do so, we solve  

𝑓𝑥 = 4𝑥 = 0,   𝑓𝑦 = −2𝑦 + 6 = 0, 

yielding the single point (0, 3). The value of f there is  f(0, 3) = 9. 

Now we need to look at the boundary. On the boundary we have  
𝒙𝟐 + 𝒚𝟐 = 𝟏𝟔  and so 𝒙𝟐 = 𝟏𝟔 − 𝒚𝟐. If we plug this in the rule of 𝒇(𝒙, 𝒚) 
we get that 

𝑓(𝑥, 𝑦) = 2𝑥2 − 𝑦2 + 6𝑦 = 2(16 − 𝑦2) − 𝑦2 + 6𝑦 

 This is a function of y, 

𝑔(y) = 32 − 3𝑦2 + 6𝑦 

We will need to find the absolute extrema of this function on the 

range −4 ≤ 𝑦 ≤ 4 (this is the range of y on the disk). 

Note that   
𝑔′(𝑦) = −6y + 6 = 0  ⇛   𝑦 = 1. 



The value of this function at the critical point and the endpoints are, 

𝑔(−4) = −40,    𝑔(1) = 35,    𝑔(−4) = 8.     

To find the values of x that correspond to these values of y, we use 
that 𝒙𝟐 = 𝟏𝟔 − 𝒚𝟐. Thus, 

𝑦 = −4 ⇛ 𝑥 = 0,   𝑦 = 1 ⇛ 𝑥 = ±√15,    𝑦 = 4 ⇛ 𝑥 = 0. 

We then can find that  

𝑓(0, −4) = −40,   𝑓(0,4) = 8, 𝑓(√15, 1) = 35,   𝑓(−√15, 1) = 35.    

So, comparing these values to the value of the function at the critical 
point, f(0, 3) = 9, we can see that the absolute minimum occurs 

at (0,−4) while the absolute maximum occurs twice at (√15, 1) and 

(−√15, 1).  

 (𝑎, 𝑏) 𝑓(𝑎, 𝑏) Classification 

Interior point(s) (0,3) 9  
Boundary 
point(s) 

(0, −4) −40 absolute minimum 

(0,4) 8  

(√15, 1) 35 absolute maximum 

(−√15, 1) 35 absolute maximum 
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Practice Problems, Chapter 15 

Calculus III 

 

Question 1: Evaluate ∬ (𝒙 + 𝒚) 𝒅𝑨
𝑫

, where D is the region enclosed by 𝒚 = 𝒙𝟑, 𝐲 = 𝟎, 𝐱 = 𝟏. 

 

 

Question 2: Set up ∬ (𝒙𝒚) 𝒅𝑨
𝑹

, where R is the region enclosed by 𝒚 = √𝟒 − 𝒙𝟐 and       

𝒚 =
𝟏

𝟐
𝒙 = 𝟏. 

 

 

 

 

 

 

 

 

 

Question 3: Use a double integral to find the volume of a parallelepiped whose base is a 

rectangle in the xy- plane given by 𝑫 = {(𝒙, 𝒚)|𝟎 ≤ 𝒙 ≤ 𝟏, 𝟎 ≤ 𝒚 ≤ 𝟐}, while the top side lies in 

the plane 𝒙 + 𝒚 + 𝒛 = 𝟑. 

 

Question 4: Transform to polar coordinates and then evaluate the integral 

𝑰 = ∫ ∫   (𝒙𝟐 + 𝒚𝟐) 𝒅𝒚𝒅𝒙
√𝟒−𝒙𝟐

𝒙

√𝟐

𝟎

 

 

Question 5: Evaluate ∬ 𝒚 𝒅𝑨
𝑫

, where D is the region given by the disk 𝒙𝟐 + 𝒚𝟐 ≤ 𝟗 

minus the first quadrant. 

 

 

 

 

 

 

 

Question 6:  Evaluate  ∫ ∫   𝒙 𝒎𝒂𝒙(𝒙, 𝒚)  𝒅𝒚𝒅𝒙
𝟏

𝟎

𝟏

𝟎
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Question 7: Use spherical coordinates to find the volume of the region outside the sphere 

𝒙𝟐 + 𝒚𝟐 + (𝒛 − 𝟏)𝟐 = 𝟏 and inside the upper half of the sphere  𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐 = 𝟒. 

 

Question 8: Use cylindrical coordinates to find the volume of a curved wedge cut out from 

a cylinder (𝒙 − 𝟐)𝟐 + 𝒚𝟐 = 𝟒  by the planes 𝒛 = 𝟎 and 𝒛 = −𝒚.  

 

Question 9: Use a triple integral to find the volume of the solid enclosed by the paraboloid 

𝒛 = 𝒙𝟐 + 𝒚𝟐 and the planes  𝒛 = 𝟏 and 𝒛 = 𝟐. 

 

Question 10: Let E be the solid enclosed by the paraboloids 𝒛 = 𝒙𝟐 + 𝒚𝟐 and 𝒛 = 𝟖 − 𝒙𝟐 −

𝒚𝟐. Write ∭ 𝒙𝒚𝒛 𝒅𝑽
𝑬

 as an iterated integral in cylindrical coordinates.  

 

 

Question 11:  Let E be the be the “ice cream cone” bounded below by the cone 𝒛 =

√𝟑(𝒙𝟐 + 𝒚𝟐) and above by the sphere  𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐 = 𝟏. Write an iterated integral in 

spherical coordinates which gives the volume of E.  

 

Question 12:  Evaluate 

∫ ∫ ∫   (
𝟏

𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐
)  𝒅𝒛𝒅𝒚𝒅𝒙

√𝟏−𝒙𝟐−𝒚𝟐

−√𝟏−𝒙𝟐−𝒚𝟐

√𝟏−𝒙𝟐

−√𝟏−𝒙𝟐

𝟏

−𝟏
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Calculus III  

15.2: Iterated Integrals 

Study concepts, example questions & explanations  

 

 
 

Question #1: Iterated Integrals 
 

Calculate the iterated integral   ∫ ∫ 𝒙√𝒚𝒅𝒙𝒅𝒚
𝟐

𝟎

𝟒

𝟎
. 

 

Answer: 

∫ ∫ 𝑥√𝑦𝑑𝑥𝑑𝑦
2

0

4

0

= ∫ (∫ 𝑥√𝑦𝑑𝑥
2

0

)
4

0

𝑑y 

= ∫ (√𝑦
𝑥2

2
)|

0

24

0

𝑑y 

= ∫ 2√𝑦
4

0

𝑑y 

= (
4

3
𝑦3/2)|

0

4

=
32

3
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Question #2: Iterated Integrals 
 

Calculate the double integral  ∬ (𝒙𝒚𝟐 +
𝒚

𝒙
)𝒅𝑨

𝑹
, 

 𝑹 = {(𝒙, 𝒚)|𝟐 ≤ 𝒙 ≤ 𝟑,−𝟏 ≤ 𝒚 ≤ 𝟎}. 

 

Answer: 

∬ (𝑥𝑦2 +
𝑦

𝑥
)𝑑𝐴

𝑅

= ∫ ∫ (𝑥𝑦2 +
𝑦

𝑥
)𝑑𝑦𝑑𝑥

0

−1

3

2

= ∫ (∫ (𝑥𝑦2 +
𝑦

𝑥
)

0

−1

𝑑𝑦)
3

2

𝑑x 

= ∫ ((𝑥
𝑦3

3
+
𝑦2

2𝑥
)|

−1

0

)
3

2

𝑑x 

= ∫ (
1

3
𝑥 −

1

2𝑥
)

3

2

𝑑x = (
𝑥2

6
−
1

2
𝑙𝑛𝑥)|

2

3

=
5

6
−
1

2
(𝑙𝑛3 − 𝑙𝑛2). 

 
 

Question #3: Volume 
 
Find the volume of the solid lying under the plane 𝒛 = 𝟐𝒙 + 𝟓𝒚 + 𝟏 and 

above the rectangular region 𝑹 = {(𝒙, 𝒚)| − 𝟏 ≤ 𝒙 ≤ 𝟎, 𝟏 ≤ 𝒚 ≤ 𝟒} 

 

Answer: 

Volume = ∬ (2𝑥 + 5𝑦 + 1)𝑑𝐴
𝑅

= ∫ ∫ (2𝑥 + 5𝑦 + 1)𝑑𝑥𝑑𝑦
0

−1

4

1
 

= ∫ (∫ (2𝑥 + 5𝑦 + 1)
0

−1

𝑑𝑥)
4

1

𝑑y 

= ∫ (𝑥2 + 5𝑦𝑥 + 𝑥)|−1
0

4

1

𝑑y 

= ∫ 5𝑦
4

1

𝑑y = (
5

2
𝑦2)|

1

4

=
75

2
 



Question #4: Volume 
Evaluate the double integral   ∬ (𝒚𝒆−𝒙𝒚)𝒅𝑨

𝑹
,   𝑹 = [𝟎, 𝟐] × [𝟎, 𝟑]. 

 

 

Answer: 
It's easier if we first integrate with respect to x, 
 

∬ (𝑦𝑒−𝑥𝑦)𝑑𝐴
𝑅

= ∫ ∫ (𝑦𝑒−𝑥𝑦)𝑑𝑥𝑑𝑦
2

0

3

0

 

= ∫ (∫ (𝑦𝑒−𝑥𝑦)
2

0

𝑑𝑥)
3

0

𝑑y 

= ∫ (−𝑒−𝑥𝑦)|0
2

3

0

𝑑y 

= ∫ (1 − 𝑒−2𝑦)
3

0

𝑑y = (𝑦 −
𝑒−2𝑦

−2
)|

0

3

=
5

2
+
1

2
𝑒−6 

 

 
 

 

 

 

 

 

 

 

 

 

 

 



Question #5: Volume 
 

Find the volume of the solid enclosed by the paraboloid 𝒛 = 𝟐 + 𝒙𝟐 +
(𝒚 − 𝟐)𝟐 and the planes z = 1, x = 1, x = -1, y = 0, y = 4. 

 

Answer: 

Volume = ∫ ∫ (2 + 𝑥2 + (𝑦 − 2)2)𝑑𝑦𝑑𝑥
4

0

1

−1
− ∫ ∫ (1)𝑑𝑦𝑑𝑥

4

0

1

−1
 

= ∫ ∫ (1 + 𝑥2 + (𝑦 − 2)2)𝑑𝑦𝑑𝑥
4

0

1

−1

 

= ∫ (∫ (1 + 𝑥2 + (𝑦 − 2)2)
4

0

𝑑𝑦)
1

−1

𝑑x 

= ∫ (𝑦 + 𝑦𝑥2 +
(𝑦 − 2)3

3
)|

0

41

−1

𝑑x 

= ∫ (
28

3
+ 4𝑥2)

1

−1

𝑑xy = (
28

3
𝑥 +

4

3
𝑥3)|

−1

1

=
64

3
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Calculus III  

15.3: Double Integrals over General Regions 

Study concepts, example questions & explanations  

 

 
 

Question #1: Iterated Integral 
 

Evaluate    ∫ ∫  𝒙𝒚 𝒅𝒚𝒅𝒙
𝒙𝟐

√𝒙

𝟐

𝟎
. 

 

Answer: 

∫ ∫  𝑥𝑦 𝑑𝑦𝑑𝑥
𝒙𝟐

√𝑥

2

0

= ∫ (∫ 𝑥𝑦𝑑𝑦
𝒙𝟐

√𝑥

)
2

0

𝑑x 

= ∫ [𝑥
𝑦2

2
]

√𝑥

𝒙𝟐
2

0

𝑑x 

=
1

2
∫ (𝑥5 − 𝑥3)

2

0

𝑑x 

=
1

2
[
𝑥6

6
−

𝑥3

3
]

0

𝟐

= 4 
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Question #2: Double Integral 
 

Evaluate  ∬ (𝟐𝒚𝒙𝟐 + 𝟗𝒚𝟑)𝒅𝑨
𝑫

, where D is the region bounded by 𝒚 =
𝟐

𝟑
𝒙  

and 𝒚 = 𝟐√𝒙.  
 
 
Answer: 
Let's first sketch the region D 
 
 

 

 

 

 

 

To find the points of intercession of the two curves, we solve  

2

3
𝑥 = 2√𝑥 ⇛

𝑥2

9
= 𝑥 ⇛ 𝑥2 − 9𝑥 = 0 ⇛ 𝑥 = 0  𝑜𝑟  𝑥 = 9. 

If we consider D as a Type I region, then 

∬ (2𝑦𝑥2 + 9𝑦3)𝑑𝐴
𝐷

= ∫ ∫ (2𝑦𝑥2 + 9𝑦3)𝑑𝑦𝑑𝑥
2√𝑥

𝟐

𝟑
𝒙

9

0

= ∫ (∫ (2𝑦𝑥2 + 9𝑦3)
2√𝑥

𝟐

𝟑
𝒙

𝑑𝑦)
9

0

𝑑𝑥 

= ∫ [𝑦2𝑥2 +
9

4
𝑦4]

𝟐

𝟑
𝒙

2√𝑥9

0

𝑑𝑥 

= ∫ (36𝑥2 + 4𝑥3 −
8

9
𝑥4)

9

0

𝑑𝑥 

= [12𝑥3 + 𝑥4 −
8

45
𝑥5]

𝟎

9

=
24057

6
. 



Question #3: Double Integral 
Evaluate  ∬  𝒙(𝒚 − 𝟏)  𝒅𝑨

𝑫
, where D is the region enclosed by 𝒚 = 𝟏 − 𝒙𝟐  

and 𝒚 = 𝒙𝟐 − 𝟑.  
 
 
Answer: 
Let's first sketch the region D 
 
 

 

 

 

 

 

To find the points of intercession of the two curves, we solve  

𝑥2 − 3 = 1 − 𝑥2 ⇛ 2𝑥2 = 4 ⇛ 𝑥2 = 2 ⇛ 𝑥 = ±  √2. 

If we consider D as a Type I region, then 

∬ 𝑥(𝑦 − 1) 𝑑𝐴
𝐷

= ∫ ∫ 𝑥(𝑦 − 1) 𝑑𝑦𝑑𝑥
1−𝑥2

𝑥2−3

√2

−√2

= ∫ (∫ 𝑥(𝑦 − 1) 𝑑𝑦
1−𝑥2

𝑥2−3

)
√2

−√2

𝑑𝑥 

= ∫ [𝑥 (
𝑦2

2
− 𝑦)]

𝑥2−3

1−𝑥2
√2

−√2

𝑑𝑥 

= ∫ (4𝑥3 − 8𝑥)
√2

−√2

𝑑𝑥 

= [𝑥4 − 4𝑥2]
−√2

√2
= 0. 

 
 



Question #4: Double Integral 
Evaluate  ∬  (𝟕𝒙𝟐 + 𝟏𝟒𝒚)  𝒅𝑨

𝑫
, where D is the region enclosed by 𝒙 = 𝟐𝒚𝟐  

and 𝒙 = 𝟖  by considering D as  
(a) a Type I region       (b) a Type II region  

 
 
Answer: 

(a) If we consider D as a Type I region, then 

∬ (7𝑥2 + 14𝑦) 𝑑𝐴
𝐷

 

= ∫ ∫ (7𝑥2 + 14𝑦) 𝑑𝑦𝑑𝑥
√

𝑥
2

−√
𝑥
2

8

0
 

     = 4096 

 

 

(b) If we consider D as a Type II region, then 

 

∬ (7𝑥2 + 14𝑦) 𝑑𝐴
𝐷

 

= ∫ ∫ (7𝑥2 + 14𝑦) 𝑑𝑥𝑑𝑦
8

2𝑦2

2

−2
 

      = 4096 

 

 

 

 
 
 
 



Question #5: Reverse the Order of Integration 
 

Evaluate  ∫ ∫   𝒙𝟑𝒄𝒐𝒔(𝒚𝟑)  𝒅𝒚𝒅𝒙
𝟐

𝒙𝟐/𝟒

𝟐√𝟐

𝟎
. 

 
 
Answer: 
If we try to evaluate the integral as it stands, we face the impossible 

task of first evaluating ∫ 𝒄𝒐𝒔(𝒚𝟑)  𝒅𝒚
𝟐

𝒙𝟐/𝟒
. So we must change the order 

of integration. To do so we express the given iterated integral as a 
double integral. 

∫ ∫   𝑥3𝑐𝑜𝑠(𝑦3)  𝑑𝑦𝑑𝑥
2

𝑥2/4

2√2

0

= ∬   𝑥3𝑐𝑜𝑠(𝑦3)  𝑑𝐴
𝐷

 

where D is sketched below  
 
 
 

 

 

 

If we consider D as a Type II region, then 

∬   𝑥3𝑐𝑜𝑠(𝑦3) 𝑑𝐴
𝐷

= ∫ ∫   𝑥3𝑐𝑜𝑠(𝑦3) 𝑑𝑥𝑑𝑦
2√𝑦

0

2

0

= ∫ (∫   𝑥3𝑐𝑜𝑠(𝑦3) 𝑑𝑥
2√𝑦

0

)
2

0

𝑑𝑦 

= ∫ [
𝑥4

4
𝑐𝑜𝑠(𝑦3)]

0

2√𝑦2

0

𝑑𝑦 

= ∫ 4𝑦2𝑐𝑜𝑠(𝑦3)
2

0

𝑑𝑦 

=
4

3
∫ 𝑐𝑜𝑠(𝑢)

8

0

𝑑𝑢 

=
4

3
sin (8) 

Let  u = y3 

du = 3y2 dy 

dy = du/3y2 

 𝑦 = 0 → 𝑢 = 0 

𝑦 = 2 → 𝑢 = 8 



Question #6: Volume 
Find the volume of the prism whose base is the triangle in the xy-plane 

bounded by the x-axis and the lines 𝒚 = 𝒙 and 𝒙 = 𝟏 and whose top lies 

in the plane 𝒛 = 𝟑 − 𝒙 − 𝒚.  
 
 
Answer: 

Recall that if f(x, y) is positive and continuous over D, then the 
volume of the solid region between D and the surface z = f(x,y) is  

𝑉𝑜𝑙𝑢𝑚𝑒 = ∬ 𝑓(𝑥, 𝑦) 𝑑𝐴
𝐷

 

We first sketch the projection D of the prism onto the xy-plane 

 
 
 

 

 

 

 

Hence, 

𝑉𝑜𝑙𝑢𝑚𝑒 = ∬ (3 − 𝑥 − 𝑦) 𝑑𝐴
𝐷

 

If we consider D as a Type I region, then 

𝑉𝑜𝑙𝑢𝑚𝑒 = ∫ ∫ (3 − 𝑥 − 𝑦) 𝑑𝑦𝑑𝑥
𝑥

0

1

0

= ∫ (∫ (3 − 𝑥 − 𝑦) 𝑑𝑦
𝑥

0

)
1

0

𝑑𝑥 

= ∫ [3𝑦 − 𝑥𝑦 −
𝑦2

2
]

0

𝑥1

0

𝑑𝑥 

= ∫ (3𝑥 −
3

2
𝑥2)

1

0

𝑑𝑥 = [
3

2
𝑥2 −

𝑥3

2
]

0

1

= 1. 



 

Question #7: Volume 
Find the volume of the solid that lies under the surface 𝒛 = 𝟏𝟔 − 𝒙𝟐 − 𝒚𝟐 

and above the region D bounded by the curve 𝒚 = 𝟐√𝒙, the line            

𝒚 = 𝟒𝒙 − 𝟐, and the x-axis.  
 
 
Answer: 

We first sketch the projection D of the solid onto the xy-plane 

 
 
 

 

 

Hence, 

𝑉𝑜𝑙𝑢𝑚𝑒 = ∬ (16 − 𝑥2 − 𝑦2) 𝑑𝐴
𝐷

 

It's easier to consider D as a Type II region, then 

𝑉𝑜𝑙𝑢𝑚𝑒 = ∫ ∫ (16 − 𝑥2 − 𝑦2) 𝑑𝑥𝑑𝑦
(𝑦+2)/4

𝑦2/4

2

0

= ∫ (∫ (16 − 𝑥2 − 𝑦2) 𝑑𝑥
(𝑦+2)/4

𝑦2/4

)
2

0

𝑑𝑦 

= 12.4 
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Question #1: Double Integral in Polar 
 

Evaluate    ∬ 𝑒𝑥2+𝑦2
𝑑𝐴

𝐷
, where D is the semicircular region bounded 

by the x-axis and the curve 𝒚 = √𝟏 − 𝒙𝟐.  

 

Answer: 
We sketch the region D 
 
 

 
 
 
 
 
 
 
 
 
The region D in polar coordinates can be written as 

𝐷 = {(𝑟, 𝜃)|0 ≤ 𝜃 ≤ 𝜋, 0 ≤ 𝑟 ≤ 1} 
 
We can evaluate the integral in polar coordinates as 

∬ 𝑒𝑥2+𝑦2
𝑑𝐴

𝐷

= ∫ ∫ 𝑒𝑟2
𝑟𝑑𝑟𝑑𝜃

1

0

𝜋

0

 

= ∫ (∫ 𝑒𝑟2
𝑟𝑑𝑟

𝟏

0

)
𝜋

0

𝑑θ 

= ∫ (∫
1

2
𝑒𝑢𝑑𝑢

𝟏

0

)
𝜋

0

𝑑θ 

= ∫ [
1

2
𝑒𝑢]

0

𝟏𝜋

0

𝑑x 

= ∫
1

2
(𝑒 − 1)

𝜋

0

𝑑x 

=
𝜋

2
(𝑒 − 1) 

 
 
 

 

Let  𝑢 = 𝑟2 

𝑑𝑢 = 2𝑟𝑑𝑟  

𝑑𝑟 = 𝑑𝑢/2𝑟 

 𝑟 = 0 → 𝑢 = 0 

𝑟 = 1 → 𝑢 = 1 



Question #2: Double Integral 
 

Evaluate  ∫ ∫ (𝒙𝟐 + 𝒚𝟐)𝒅𝒚𝒅𝒙
√𝟏−𝒙𝟐

𝟎

𝟏

𝟎
.  

 
 
Answer: 
Integration with respect to y gives 

∫ (𝑥2√1 − 𝑥2 +
(1 − 𝑥2)3/2

3
)

1

𝟎

𝑑𝑥, 

 
which is a difficult integral. So we convert the double integral into 
polar coordinates. 

∫ ∫ (𝑥2 + 𝑦2)𝑑𝑦𝑑𝑥 = ∬ (𝑥2 + 𝑦2) 𝑑𝐴
𝐷

√1−𝑥2

0

1

0

 

where D is the interior of the unit quarter circle 𝑥2 + 𝑦2 = 1 in the first 
quadrant 

𝐷 = {(𝑟, 𝜃)|0 ≤ 𝜃 ≤ 𝜋/2,0 ≤ 𝑟 ≤ 1} 

Thus, 

∬ (𝑥2 + 𝑦2)𝑑𝐴
𝐷

= ∫ ∫ (𝑟2)𝑟𝑑𝑟𝑑𝜃
1

𝟎

𝜋/2

0

= ∫ (∫ 𝑟3
1

𝟎

𝑑𝑟)
𝜋/2

0

𝑑𝜃 

= ∫ [
1

4
𝑟4]

𝟎

1𝜋/2

0

𝑑𝜃 

= ∫
1

4

𝜋/2

0

𝑑𝜃 =
𝜋

8
. 

 

 

 

 

 



Question #3: Double Integral 
Evaluate  ∬  𝟏  𝒅𝑨

𝑫
, where D is the region enclosed by the circle         

𝒙𝟐 + 𝒚𝟐 = 𝟒, above the line 𝒚 =1, and below the line 𝒚 = √𝟑𝒙.  
 

 
Answer: 
Let's first sketch the region D 
 
 

 

 

 

 

 

 

Then we convert the given curves to polar coordinates 

𝑥2 + 𝑦2 = 4 ⇛ 𝑟 = 4 

𝑦 = 1 ⇛ 𝑟𝑠𝑖𝑛𝜃 = 1 ⇛ 𝑟 = 𝑐𝑠𝑐𝜃 

𝑦 = √3𝑥 ⇛ 𝑟𝑠𝑖𝑛𝜃 = √3𝑟𝑐𝑜𝑠𝜃 ⇛ 𝑡𝑎𝑛𝜃 = √3 ⇛ 𝜃 = 𝜋/3 

Moreover, the radial line from the origin through the point (√3,1) 

has equation 𝑦 =
1

√3
𝑥 which is in polar 𝜃 = 𝜋/6. 

Thus the region D in polar coordinates is  

𝐷 = {(𝑟, 𝜃)|𝜋/6 ≤ 𝜃 ≤ 𝜋/3, 𝑐𝑠𝑐𝜃 ≤ 𝑟 ≤ 2} 

∬ 1 𝑑𝐴
𝐷

= ∫ ∫ 𝑟 𝑑𝑟𝑑𝜃
2

𝑐𝑠𝑐𝜃

𝜋/3

𝜋/6

 

=
𝜋 − √3

3
 



 

Question #4: Double Integral 
Find the volume of the solid region bounded above by the paraboloid 

𝒛 = 𝟗 − 𝒙𝟐 − 𝒚𝟐 and below by the unit circle in the xy-plane.  

 
 
Answer: 

The volume of the solid is  

𝑉𝑜𝑙𝑢𝑚𝑒 = ∬ (9 − 𝑥2 − 𝑦2) 𝑑𝐴
𝐷

 

Where D is the unit disk 𝑥2 + 𝑦2 ≤ 1. It's easier to represent the 
region D in polar coordinates as  

𝐷 = {(𝑟, 𝜃)|0 ≤ 𝜃 ≤ 2𝜋, 0 ≤ 𝑟 ≤ 1} 

 

 

 

 

 

 

 

Thus,  

𝑉𝑜𝑙𝑢𝑚𝑒 = ∬ (9 − 𝑥2 − 𝑦2) 𝑑𝐴
𝐷

 

= ∫ ∫ (9 − 𝑟2)𝑟 𝑑𝑟𝑑𝜃
1

𝟎

2𝜋

0

=
17𝜋

2
 

      

 



 

Question #5: Reverse the Order of Integration 
 
Find the volume of the solid that lies under the paraboloid 

 𝒛 = 𝟒 − 𝒙𝟐 − 𝒚𝟐 and above the disk (𝒙 − 𝟏)𝟐 + 𝒚𝟐 = 𝟏 on the xy-plane. 

 
 
Answer: 

The volume of the solid is  

𝑉𝑜𝑙𝑢𝑚𝑒 = ∬ (4 − 𝑥2 − 𝑦2) 𝑑𝐴
𝐷

 

where D is the disk (𝑥 − 1)2 + 𝑦2 ≤ 1. To convert the circle 
(𝑥 − 1)2 + 𝑦2 = 1 to polar coordinates, 

(𝑥 − 1)2 + 𝑦2 = 1 ⇛ 𝑥2 + 𝑦2 − 2𝑥 = 0 ⇛ 𝑟2 = 2𝑟𝑐𝑜𝑠𝜃 ⇛ 𝑟 = 2𝑐𝑜𝑠𝜃 

Thus, 

𝐷 = {(𝑟, 𝜃)|0 ≤ 𝜃 ≤ 𝜋, 0 ≤ 𝑟 ≤ 2𝑐𝑜𝑠𝜃}. 

Hence the volume is 

𝑉𝑜𝑙𝑢𝑚𝑒 = ∬ (4 − 𝑥2 − 𝑦2) 𝑑𝐴
𝐷

 

= ∫ ∫ (4 − 𝑟2)  𝑟𝑑𝑟𝑑𝜃
2𝑐𝑜𝑠𝜃

0

𝜋

0

=
5

2
π 
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15.7: Triple Integrals 

Study concepts, example questions & explanations  

 

 
 

Question #1: Triple Integral 
 

Evaluate    ∫ ∫ ∫ 𝒙𝒚𝒛 𝒅𝒛𝒅𝒚𝒅𝒙
√𝒚

𝒚
 

𝒙𝟐

𝟎

𝟏

𝟎
. 

 

Answer: 

∫ ∫ ∫ 𝑥𝑦𝑧 𝑑𝑧𝑑𝑦𝑑𝑥
√𝑦

𝑦

 
𝑥2

0

1

0

= ∫ ∫ (∫ 𝑥𝑦𝑧 𝑑𝑧
√𝑦

𝑦

) 𝑑𝑦𝑑𝑥 
𝑥2

0

1

0

 

= ∫ ∫ [𝑥𝑦
𝑧2

2
]

𝑦

√𝒚

𝑑𝑦𝑑𝑥 
𝑥2

0

1

0

 

=
1

2
∫ (∫ 𝑥𝑦(𝑦 − 𝑦2)𝑑𝑦 

𝑥2

0

) 𝑑𝑥
1

0

 

=
1

2
∫ [𝑥 (

𝑦3

3
−

𝑦4

4
)]

0

𝑥2
1

0

𝑑𝑥 

=
1

2
∫ (

𝑥7

3
−

𝑥9

4
)

1

0

𝑑𝑥 

= [(
𝑥8

24
−

𝑥10

40
)]

0

𝟏

 

=
1

60
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Question #2: Triple Integral 
 
Set up, but do not evaluate, the limits of integration for evaluating the 

triple integral   ∭ (𝐱 + 𝟗𝒚𝟑)𝒅𝑽
𝑬

, where E is the region enclosed by the 

surfaces  𝒛 = 𝒙𝟐 + 𝟑𝒚𝟐  and  𝒛 = 𝟖 − 𝒙𝟐 − 𝒚𝟐.  
 
 
Answer: 

To find the limits of integration for evaluating the integral, we first 
sketch the region. 
 
 

 

 

 

 

 

 

The two surfaces intersect on  

𝑥2 + 3𝑦2 = 8 − 𝑥2 − 𝑦2 ⇛  𝑥2 + 2𝑦2 = 4. 

The projection D of E onto the xy-plane is the region inside the 

ellipse  𝑥2 + 2𝑦2 = 4.  

The upper boundary of E is the surface  𝒛 = 𝟖 − 𝒙𝟐 − 𝒚𝟐 and the 
lower boundary is the surface  𝒛 = 𝒙𝟐 + 𝟑𝒚𝟐.     

Thus, 

∭ (𝑥 + 9𝑦3)𝑑𝑉
𝐸

= ∬ ∫ (2𝑦𝑥2 + 9𝑦3)𝑑𝑧
8−𝑥2−𝑦2

𝑥2+3𝑦2

𝑑𝐴
𝐷

 

= ∫ ∫ ∫ (2𝑦𝑥2 + 9𝑦3)𝑑𝑧
8−𝑥2−𝑦2

𝑥2+3𝑦2
𝑑𝑦𝑑𝑥

√(4−𝑥2)/2

−√(4−𝑥2)/2

2

−2
 



Question #3: Triple Integral 
Set up, but do not evaluate, the limits of integration for evaluating the 

triple integral   ∭ (𝐱𝐲𝒛𝟐) 𝒅𝑽
𝑬

, where E is the tetrahedron shown below. 

 
 
 
 

   
 
 
 
 
 
 
 
 
 
Answer: 

The z-limts of integration are 0 ≤ 𝑧 ≤ 𝑦 − 𝑥. 

The projection of the tetrahedron E onto the xy-plane is the 
triangular region  

 

 

 

 

 

 

If we consider D as a Type I region, then 

∭ (𝑥𝑦𝑧2) 𝑑𝑉
𝐸

= ∬ ∫ (𝑥𝑦𝑧2)𝑑𝑧
𝑦−𝑥

0

𝑑𝐴
𝐷

 

= ∫ ∫ ∫ (𝑥𝑦𝑧2)𝑑𝑧
𝑦−𝑥

0

𝑑𝑦𝑑𝑥
𝟏

𝒙

1

0

 

 



 

Question #4: Triple Integral 
Set up, but do not evaluate, the limits of integration for evaluating the 

triple integral   ∭ (𝐱 + 𝐲) 𝒅𝑽
𝑬

, where E is the region shown below. 

 
 
 
 

 
 
 
 
 
 
Answer: 

The z-limits of integration are  0 ≤ 𝑧 ≤ 1 − 𝑦. The projection of E 
onto the xy-plane is shown below. 

So, the region D in the xy-plane is 

−1 ≤ 𝑥 ≤ −1 

𝑥2 ≤ 𝑦 ≤ 1 

 

 

 

Thus, 

∭ (𝑥 + 𝑦) 𝑑𝑉
𝐸

= ∬ ∫ (𝑥 + 𝑦)𝑑𝑧
1−𝑦

0

𝑑𝐴
𝐷

 

= ∫ ∫ ∫ (𝑥𝑦𝑧2)𝑑𝑧
1−𝑦

0

𝑑𝑦𝑑𝑥
𝟏

𝒙𝟐

1

−1

 

 

 

 
 



Question #5: Volume 
 

Find the volume of the solid bounded by the parabolic cylinder  𝒙 = 𝒚𝟐 

and the planes 𝒛 = 𝒙,   𝒙 = 1,   𝑧 = 0. 
 
 
Answer: 

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝐸 = 𝑉 = ∭ 1 𝑑𝑉
𝐸

 

The lower and upper surfaces of E are  0 ≤ 𝑧 ≤ 𝑥. 
 
To find the projection D of E onto the xy-plane we set z = 0. 
The cylinder  𝒚 = 𝒙𝟐 intersects the xy-plane at the parabola 𝒙 = 𝒚𝟐, 
the plane 𝒛 = 𝑥 intersects the xy-plane at the line 𝒙 = 0, and the plane  
𝒙 = 1 intersects the xy-plane at the line 𝒙 = 1. So D is the parabolic 
region  
 
 
 
 
 
 
 
 
 

If we consider D as a Type II region, then 

𝑉 = ∭ 1 𝑑𝑉
𝐸

= ∬ ∫ 1 𝑑𝑧
𝑥

0

𝑑𝐴
𝐷

 

= ∫ ∫ ∫ 1 𝑑𝑧
𝑥

0

𝑑𝑥𝑑𝑦
𝟏

𝒚𝟐

1

−1

=
4

5
 

 

 

 

 

 



Question #6: Volume 
Find the volume of the solid E bounded by the cylinder 𝒚𝟐 + 𝒛𝟐 = 𝟗 and 
the planes  𝒙 = 𝟎, 𝒚 = 𝟑𝒙, 𝒛 = 𝟎  in the first octant.  
 
 
Answer: 

The x-limits of integration are  0 ≤ 𝑥 ≤ 𝑦/3. 

The projection of E onto the yz-plane, when x = 0, is  

0 ≤ 𝑧 ≤ 3 

0 ≤ 𝑦 ≤ √9 − 𝑧2 

Hence, 

𝑉 = ∭ 1 𝑑𝑉
𝐸

= ∬ ∫ 1 𝑑𝑥
𝑦/3

0

𝑑𝐴
𝐷

 

= ∫ ∫ ∫ 1 𝑑𝑥
𝑦/3

0

𝑑𝑦𝑑𝑧
√9−𝑧2

𝟎

3

0

 

= ∫ ∫   
𝑦

3
 𝑑𝑦𝑑𝑧

√9−𝑧2

𝟎

3

0

 

= ∫ [
𝑦2

6
]

0

√9−𝑧2

𝑑𝑧
3

0

 

=
1

6
∫ (9 − 𝑧2)

3

0

𝑑𝑧 

=
1

6
[9𝑧 −

𝑧3

3
]

0

3

 

= 3 

 
 
 
 



Question #7: Volume 
Use a triple integral to find the volume of the solid enclosed by the 

paraboloids 𝒛 = 𝟏𝟖 − 𝒙𝟐 − 𝒚𝟐  and  𝒛 = 𝒙𝟐 + 𝒚𝟐.  
 
 
Answer: 

The paraboloids 𝑧 = 18 − 𝑥2 − 𝑦2  and  𝑧 = 𝑥2 + 𝑦2 intersect when 

18 − 𝑥2 − 𝑦2 = 𝑥2 + 𝑦2 ⇛ 𝑥2 + 𝑦2 = 9. 

So, the required solid E is bounded above by 𝑧 = 18 − 𝑥2 − 𝑦2 and 

below by  𝑧 = 𝑥2 + 𝑦2. The projection D of the solid onto the       

xy-plane is the disk  𝑥2 + 𝑦2 ≤ 9. Then, 

  

𝑉 = ∭ 1 𝑑𝑉
𝐸

= ∬ ∫ 1 𝑑𝑧
18−𝑥2−𝑦2

𝑥2+𝑦2

𝑑𝐴
𝐷

 

= ∫ ∫ ∫ 1 𝑑𝑧
18−𝑥2−𝑦2

𝑥2+𝑦2

𝑑𝑦𝑑𝑧
√9−𝑧2

−√9−𝑧2

3

−3

 

= ∫ ∫ (18 − 𝑥2 − 𝑦2)𝑑𝑦𝑑𝑧
√9−𝑧2

−√9−𝑧2

3

−3

 

It's much simpler to use polar coordinates here. Thus, 

𝑉 = ∫ ∫ (18 − 𝑟2) 𝑟𝑑𝑟𝑑𝜃
3

0

2𝜋

0

 

= ∫ ∫ (18𝑟 − 2𝑟3)𝑑𝑟𝑑𝜃
3

0

2𝜋

0

 

= ∫
1

6
[9𝑟2 −

𝑟4

2
]

0

3

𝑑𝜃
2𝜋

0

 

= ∫
81

2
𝑑𝜃

2𝜋

0

 

= 81𝜋 
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Question #1: Triple Integrals in Cylindrical 
 

Evaluate  ∫ ∫ ∫   (𝒙𝟐 + 𝒚𝟐) 𝒅𝒛𝒅𝒚𝒅𝒙
𝟐

√𝒙𝟐+𝒚𝟐  
√𝟒−𝒙𝟐

−√𝟒−𝒙𝟐

𝟐

−𝟐
. 

 

Answer: 

∫ ∫ ∫   (𝑥2 + 𝑦2) 𝑑𝑧𝑑𝑦𝑑𝑥
2

√𝑥2+𝑦2

 
√4−𝑥2

−√4−𝑥2

2

−2

= ∭ (𝑥2 + 𝑦2) 𝑑𝑉
𝐸

 

 

The lower surface of E is the cone 𝑧 = √𝑥2 + 𝑦2 and its upper 

surface is the plane  𝑧 = 2. The projection of E onto the xy-plane is 

the disk 𝑥2 + 𝑦2 ≤ 4.  
 
 
 
 
 
 
 
 
 
This region has a much simpler description in cylindrical 
coordinates: 

𝐸 = {(𝑟, 𝜃, 𝑧)|0 ≤ 𝜃 ≤ 2𝜋, 0 ≤ 𝑟 ≤ 2, 𝑟 ≤ 𝑧 ≤ 2} 
Therefore we have 

∭ (𝑥2 + 𝑦2) 𝑑𝑉 =
𝐸

∫ ∫ ∫ 𝑟2 𝑟𝑑𝑧𝑑𝑟𝑑𝜃
2

𝑟

 
2

0

2𝜋

0

= ∫ ∫ (∫ 𝑟3 𝑑𝑧
2

𝑟

) 𝑑𝑟𝑑𝜃 
2

0

2𝜋

0

 

= ∫ ∫ [𝑟3𝑧]𝑟
2𝑑𝑟𝑑𝜃 

2

0

2𝜋

0

 

= ∫ (∫ (2𝑟3 − 𝑟4)𝑑𝑟 
2

0

) 𝑑𝜃
2𝜋

0

 

= ∫ [(
𝑟4

2
−

𝑟5

5
)]

0

22𝜋

0

𝑑𝜃 

= ∫
8

5

2𝜋

0

𝑑𝜃 =
16𝜋

5
 

 



Question #2: Triple Integrals in Cylindrical 
 

Evaluate   ∭ √𝒙𝟐 + 𝒚𝟐 𝒅𝑽
𝑬

, where E is the region that lies inside the 

cylinder  𝒙𝟐 + 𝒚𝟐 = 𝟏𝟔  and between the planes  𝒛 = −𝟓  and  𝒛 = 𝟒.  
 
 
Answer: 

The solid E is bounded above by the plane 𝑧 = 4 and below by the 

plane 𝑧 = −5. The projection D of  E onto the xy-plane is the disk       

𝑥2 + 𝑦2 ≤ 4. Thus, 

∭ √𝑥2 + 𝑦2 𝑑𝑉
𝐸

= ∬ (∫ √𝑥2 + 𝑦2 𝑑𝑧
4

−5

) 𝑑𝐴
𝐷

 

= ∫ ∫ ∫ √𝑥2 + 𝑦2 𝑑𝑧
4

−5

𝑑𝑦𝑑𝑥
√(4−𝑥2)

−√(4−𝑥2)

2

−2

 

This region has a much simpler description in cylindrical 
coordinates: 

𝐸 = {(𝑟, 𝜃, 𝑧)|0 ≤ 𝜃 ≤ 2𝜋, 0 ≤ 𝑟 ≤ 2, −5 ≤ 𝑧 ≤ 4} 
Therefore we have 

∭ √𝑥2 + 𝑦2 𝑑𝑉
𝐸

= ∫ ∫ ∫ (𝑟) 𝑟𝑑𝑧𝑑𝑟𝑑𝜃
4

−5

 
2

0

2𝜋

0

 

= (∫ 1 𝑑𝜃
2𝜋

0

) (∫ 𝑟2 𝑑𝑟
2

0

) (∫ 1 𝑑𝑧
4

−5

) 

= 48𝜋 

 

 

 

 

 

 



Question #3: Triple Integrals in Cylindrical 
Evaluate the integral by changing to cylindrical coordinates 

   ∫ ∫ ∫ √𝑥2 + 𝑦2 𝑑𝑧
9−𝑥2−𝑦2

0
𝑑𝑦𝑑𝑥

√9−x2

0

3

−3
 

 
 

Answer: 
First we write 

∫ ∫ ∫ √𝑥2 + 𝑦2 𝑑𝑧
9−𝑥2−𝑦2

0

𝑑𝑦𝑑𝑥
√9−x2

0

3

−3

= ∭ √𝑥2 + 𝑦2 𝑑𝑉
𝐸

 

 

The z-limits of integration are 0 ≤ 𝑧 ≤ 9 − 𝑥2 − 𝑦2 = 9 − 𝑟2. 

The projection of E onto the xy-plane is the upper semi-disk: 

−3 ≤ 𝑥 ≤ 3,    0 ≤ 𝑦 ≤ √9 − x2 

This solid E has the description in cylindrical coordinates: 

𝐸 = {(𝑟, 𝜃, 𝑧)|0 ≤ 𝜃 ≤ 𝜋, 0 ≤ 𝑟 ≤ 3,0 ≤ 𝑧 ≤ 9 − 𝑟2} 

Therefore we have 

∭ √𝑥2 + 𝑦2 𝑑𝑉
𝐸

= ∫ ∫ ∫ (𝑟) 𝑟𝑑𝑧𝑑𝑟𝑑𝜃
9−𝑟2

0

 
3

0

𝜋

0

 

= ∫ ∫ (9𝑟2 − 𝑟4) 𝑑𝑟𝑑𝜃
3

0

𝜋

0

 

= ∫ [(3𝑟3 −
𝑟5

5
)]

0

3𝜋

0

𝑑𝜃 

= ∫
162

5

𝜋

0

𝑑𝜃 

=
162

5
𝜋 

 

 
 
 



Question #4: Triple Integrals in Cylindrical 
Evaluate  ∭ 𝐱 𝒅𝑽

𝑬
, where E is enclosed by the planes 𝒛 = 𝟎  and         

𝒛 = 𝒙 + 𝒚 + 𝟓  and by the cylinders 𝒙𝟐 + 𝒚𝟐 = 𝟒  and  𝒙𝟐 + 𝒚𝟐 = 𝟗. 
 
 

Answer: 
The z-limits of integration are 

0 ≤ 𝑧 ≤ 𝑥 + 𝑦 + 5 = 𝑟𝑐𝑜𝑠𝜃 + 𝑟𝑠𝑖𝑛𝜃 + 5. 

The projection of E onto the xy-plane is the region enclosed 

between the two circles 𝑥2 + 𝑦2 = 4  and  𝑥2 + 𝑦2 = 9. 

This solid E in cylindrical coordinate is 

𝐸 = {(𝑟, 𝜃, 𝑧)|0 ≤ 𝜃 ≤ 2𝜋, 2 ≤ 𝑟 ≤ 3,0 ≤ 𝑧 ≤ 𝑟𝑐𝑜𝑠𝜃 + 𝑟𝑠𝑖𝑛𝜃 + 5} 

Therefore we have 

∭ 𝑥 𝑑𝑉
𝐸

= ∫ ∫ ∫ (𝑟𝑐𝑜𝑠𝜃) 𝑟𝑑𝑧𝑑𝑟𝑑𝜃
𝑟𝑐𝑜𝑠𝜃+𝑟𝑠𝑖𝑛𝜃+5

0

 
3

2

2𝜋

0

 

= ∫ ∫ (𝑟3𝑐𝑜𝑠2𝜃 + 𝑟3𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃 + 5𝑟2𝑐𝑜𝑠𝜃) 𝑑𝑟𝑑𝜃
3

2

2𝜋

0

 

= ∫ [(
𝑟4

4
𝑐𝑜𝑠2𝜃 +

𝑟4

4
𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃 +

5

3
𝑟3𝑐𝑜𝑠𝜃)]

2

3𝜋

0

𝑑𝜃 

= ∫ (
65

4
𝑐𝑜𝑠2𝜃 +

65

4
𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃 +

95

3
𝑐𝑜𝑠𝜃)

𝜋

0

𝑑𝜃 

= ∫ (
65

8
(1 + 𝑐𝑜𝑠2𝜃) +

65

8
𝑠𝑖𝑛2𝜃 +

95

3
𝑐𝑜𝑠𝜃)

𝜋

0

𝑑𝜃 

= [(
65

8
(𝜃 +

𝑠𝑖𝑛2𝜃

2
) −

65

16
𝑐𝑜𝑠2𝜃 +

95

3
𝑠𝑖𝑛𝜃)]

0

𝜋

 

=
65

8
𝜋 

 

 
 



Question #5: Volume 
 
Use a triple integral to find the volume of the solid below the plane      

𝒛 = 𝟔 − 𝒙, above 𝒛 = −√𝟒𝒙𝟐 + 𝟒𝒚𝟐 inside the cylinder 𝑥2 + 𝑦2 = 3 with   
𝒙 ≤ 𝟎. 
 
 
Answer: 

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝐸 = 𝑉 = ∭ 1 𝑑𝑉
𝐸

 

The z-limits are  −√4𝑥2 + 4𝑦2 ≤ 𝑧 ≤ 6 − 𝑥  or  −2𝑟 ≤ 𝑧 ≤ 6 − 𝑟𝑐𝑜𝑠𝜃. 
 
To find the projection D of E onto the xy-plane we set z = 0. So, D is 

the portion of the disk 𝑥2 + 𝑦2 ≤ 3 (𝑟 ≤ √3) with 𝑥 ≤ 0. 
 
 

 
 
 
 
 
 
 
 
This solid E in cylindrical coordinate is 

𝐸 = {(𝑟, 𝜃, 𝑧)|𝜋/2 ≤ 𝜃 ≤ 3𝜋/2,0 ≤ 𝑟 ≤ √3, −2𝑟 ≤ 𝑧 ≤ 6 − 𝑟𝑐𝑜𝑠𝜃} 

Therefore we have 

𝑉 = ∭ 1 𝑑𝑉
𝐸

= ∫ ∫ ∫ (1) 𝑟𝑑𝑧𝑑𝑟𝑑𝜃
6−𝑟𝑐𝑜𝑠𝜃

−2𝑟

 
√3

0

3𝜋/2

𝜋/2

 

= ∫ ∫  (6𝑟 − 𝑟2𝑐𝑜𝑠𝜃 + 2𝑟2)
√3

0

3𝜋/2

𝜋/2

𝑑𝑟𝑑𝜃 

= ∫ [(3𝑟2 −
𝑟3

3
𝑐𝑜𝑠𝜃 +

2

3
𝑟3)]

0

√33𝜋/2

𝜋/2

𝑑𝜃 

= ∫ (9 + 2√3 − √3𝑐𝑜𝑠𝜃)
3𝜋/2

𝜋/2

𝑑𝜃 = 2√3 + (9 + 2√3)𝜋 ≈ 42.6 
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15.9: Triple Integrals in Spherical Coordinates 

Study concepts, example questions & explanations  

 

 
We use the following relations in converting from rectangular to 

spherical coordinates: 
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Question #1: Spherical Coordinates 
 
Describe the surface whose equation in spherical coordinates is 

a) 𝝓 =
𝝅

𝟔
 

b) 𝝆 = 𝟐𝒄𝒐𝒔𝝓 

 

Answer: 
a) We convert the equation to rectangular coordinates: 
 

𝜙 =
𝜋

6
 

 

𝑐𝑜𝑠𝜙 = 𝑐𝑜𝑠
𝜋

6
=

√3

2
 

𝜌𝑐𝑜𝑠𝜙 = 𝜌
√3

2
 

 

𝑧 = √𝑥2 + 𝑦2 + 𝑧2
√3

2
 

 
3

4
𝑧2 =

3

4
(𝑥2 + 𝑦2) 

 

𝑧 = √3(𝑥2 + 𝑦2) 

 
This is a cone centered on the z-axis. 
 
b) To convert the equation to rectangular coordinates we use that: 

𝜌 = 2𝑐𝑜𝑠𝜙 

𝜌2 = 2𝜌𝑐𝑜𝑠𝜙 

𝑥2 + 𝑦2 + 𝑧2 = 2𝑧 

𝑥2 + 𝑦2 + 𝑧2 − 2𝑧 = 0 

𝑥2 + 𝑦2 + 𝑧2 − 2𝑧 + 1 − 1 = 0 

𝑥2 + 𝑦2 + (𝑧 − 1)2 = 1 
 
This is a sphere with center (0,0,1) and radius 1. 
 
 
 
 
 



Question #2: Triple Integrals in Spherical 
 

Evaluate   ∭ √𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐 𝒅𝑽
𝑬

, where E is the ball given by the equation   

𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐 ≤ 𝟐𝟓.  
 
 
Answer: 

Since the boundary of E is a sphere, we use spherical coordinates: 

𝐸 = {(𝜌, 𝜃, 𝜙)|0 ≤ 𝜌 ≤ 5,0 ≤ 𝜃 ≤ 2𝜋, 0 ≤ 𝜙 ≤ 𝜋} 
Therefore we have 

∭ √𝑥2 + 𝑦2 + 𝑧2 𝑑𝑉
𝐸

= ∫ ∫ ∫ (𝜌) 𝜌2𝑠𝑖𝑛𝜙  𝑑𝜌𝑑𝜙𝑑𝜃
5

0

 
𝜋

0

2𝜋

0

 

= (∫ 1 𝑑𝜃
2𝜋

0

) (∫ 𝜌3 𝑑𝜌
5

0

) (∫ 𝑠𝑖𝑛𝜙 𝑑𝜙
𝜋

0

) 

= 625𝜋 

 

 

 

 

 

 

 

 

 

 

 

 

 



Question #3: Triple Integrals in Spherical 
Evaluate the integral by changing to spherical coordinates 

   ∫ ∫ ∫ (𝑥2 + 𝑦2 + 𝑧2)2 𝑑𝑧
√1−𝑥2−𝑦2

0
𝑑𝑦𝑑𝑥

√1−x2

0

1

0
 

 
 

Answer: 
First we write 

∫ ∫ ∫ (𝑥2 + 𝑦2 + 𝑧2)2 𝑑𝑧
√1−𝑥2−𝑦2

0

𝑑𝑦𝑑𝑥
√1−x2

0

1

0

= ∭ (𝑥2 + 𝑦2 + 𝑧2)2 𝑑𝑉
𝐸

 

 
The region E is a portion of the unit ball lying in the first octant and 
hence it is bounded by the inequalities  

𝐸 = {(𝜌, 𝜃, 𝜙)|0 ≤ 𝜌 ≤ 1, 0 ≤ 𝜃 ≤ 𝜋/2,0 ≤ 𝜙 ≤ 𝜋/2} 

Therefore we have 

∭ (𝑥2 + 𝑦2 + 𝑧2)2 𝑑𝑉
𝐸

= ∫ ∫ ∫ (𝜌4) 𝜌2𝑠𝑖𝑛𝜙 𝑑𝜌𝑑𝜙𝑑𝜃
1

0

 
𝜋/2

0

𝜋/2

0

 

= ∫ ∫ ∫ (𝜌6𝑠𝑖𝑛𝜙) 𝑑𝜌𝑑𝜙𝑑𝜃
1

0

 
𝜋/2

0

𝜋/2

0

 

= (∫ 1 𝑑𝜃
𝜋/2

0

) (∫ 𝜌6 𝑑𝜌
1

0

) (∫ 𝑠𝑖𝑛𝜙 𝑑𝜙
𝜋

0

) 

=
𝜋

14
. 

 

 
 
 
 
 
 
 
 
 
 
 



Question #4: Triple Integrals in Spherical 
Evaluate  ∭ 𝐱𝐲𝐳 𝒅𝑽

𝑬
, where the region E is a portion of the ball            

𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐 ≤ 𝟒, lying in the first octant 𝒙 ≥ 𝟎,   𝒚 ≥ 𝟎,   𝒛 ≥ 𝟎. 
 
 

Answer: 
We convert the integral to spherical coordinates 

𝐸 = {(𝜌, 𝜃, 𝜙)|0 ≤ 𝜌 ≤ 2, 0 ≤ 𝜃 ≤ 𝜋/2,0 ≤ 𝜙 ≤ 𝜋/2} 

Note that the integrand in spherical coordinates is 

𝑥𝑦𝑧 = (𝜌𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜃)(𝜌𝑠𝑖𝑛𝜙𝑠𝑖𝑛𝜃)(𝜌𝑐𝑜𝑠𝜙) 

= 𝜌3𝑠𝑖𝑛2𝜙𝑐𝑜𝑠𝜙𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 

Therefore we have 

∭ 𝑥𝑦𝑧 𝑑𝑉
𝐸

 

= ∫ ∫ ∫ (𝜌3𝑠𝑖𝑛2𝜙𝑐𝑜𝑠𝜙𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃) 𝜌2𝑠𝑖𝑛𝜙  𝑑𝜌𝑑𝜙𝑑𝜃
2

0

 
𝜋/2

0

𝜋/2

0

 

= ∫ ∫ ∫  (𝜌5𝑠𝑖𝑛3𝜙𝑐𝑜𝑠𝜙𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃)  𝑑𝜌𝑑𝜙𝑑𝜃
2

0

 
𝜋/2

0

𝜋/2

0

 

= (∫ 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 𝑑𝜃
𝜋/2

0

) (∫ 𝜌5 𝑑𝜌
2

0

) (∫ 𝑠𝑖𝑛3𝜙𝑐𝑜𝑠𝜙 𝑑𝜙
𝜋/2

0

) 

=
4

3
 

 

 

 
 
 
 
 
 
 
 



Question #5: Volume 
 
Use a triple integral to find the volume of the solid bounded by the 

sphere 𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐 = 𝟐𝟓, the cone 𝒛 = √𝒙𝟐 + 𝒚𝟐 and the cone                

 𝒛 = √𝟑√𝒙𝟐 + 𝒚𝟐. 
 
 
Answer: 

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝐸 = 𝑉 = ∭ 1 𝑑𝑉
𝐸

 

Since we are dealing with spherical regions, we will use spherical 
coordinates.  
 
Let's first convert the boundary surfaces of E: 

  𝑥2 + 𝑦2 + 𝑧2 = 25 ⇛ 𝜌2 = 25 ⇛ 𝜌 = 5, 
 

𝑧 = √𝑥2 + 𝑦2 ⇛ 𝑧2 = 𝑥2 + 𝑦2 ⇛  

(𝜌𝑐𝑜𝑠𝜙)2 = (𝜌𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜃)2 + (𝜌𝑠𝑖𝑛𝜙𝑠𝑖𝑛𝜃)2 

⇛ 𝜌2𝑐𝑜𝑠2𝜙 = 𝜌2𝑠𝑖𝑛2𝜙𝑐𝑜𝑠2𝜃 + 𝜌2𝑠𝑖𝑛2𝜙𝑠𝑖𝑛2𝜃 
⇛ 𝜌2𝑐𝑜𝑠2𝜙 = 𝜌2𝑠𝑖𝑛2𝜙(𝑠𝑖𝑛2𝜃 + 𝑐𝑜𝑠2𝜃) ⇛ 𝜌2𝑐𝑜𝑠2𝜙 = 𝜌2𝑠𝑖𝑛2𝜙 

⇛ 𝑐𝑜𝑠𝜙 = 𝑠𝑖𝑛𝜙 ⇛ 𝑡𝑎𝑛𝜙 = 1 ⇛ 𝜙 =
𝜋

4
 

 

In the same way,  𝑧 = √3√𝑥2 + 𝑦2 ⇛ 𝑡𝑎𝑛𝜙 =
1

√3
⇛ 𝜙 =

𝜋

6
. 

 

This solid E in spherical coordinates is 

𝐸 = {(𝜌, 𝜃, 𝜙)|0 ≤ 𝜌 ≤ 5, 0 ≤ 𝜃 ≤ 2𝜋, 𝜋/6 ≤ 𝜙 ≤ 𝜋/4} 
 
Therefore we have 

𝑉 = ∭ 1 𝑑𝑉
𝐸

= ∫ ∫ ∫ (1) 𝜌2𝑠𝑖𝑛𝜙  𝑑𝜌𝑑𝜙𝑑𝜃
5

0

 
𝜋/4

𝜋/6

2𝜋

0

 

= (∫ 1 𝑑𝜃
2𝜋

0

) (∫ 𝜌2 𝑑𝜌
5

0

) (∫ 𝑠𝑖𝑛𝜙 𝑑𝜙
𝜋/4

𝜋/6

) 

 

= (2𝜋) (
125

3
) (

√3 − √2

2
) ≈ 41.6 
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