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Introduction

A structure refers to a system of connected parts used to support a
load. Important examples related to civil engineering include:

UBuildings,

U Bridges and

UTowers;

and in other branches of engineering,
QShip and aircraft frames,

UTanks, pressure vessels,
UMechanical systems, and
UElectrical supporting structures
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The design of a structure involves many considerations, among which are four major objectives
that must be satisfied:

+The structure must meet the performance requirement (utility).
“»The structure must carry loads safely (safety).
+»The structure should be economical in material, construction, and cost (economy).

«»The structure should have a good appearance (aesthetics).

Once a preliminary design of a structure is proposed, the structure must then be analyzed to
ensure that it has its required stiffness and strength. To analyze a structure properly, certain
idealizations must be made as to how the members are supported and connected together. The

loadings are determined from codes and local specifications, and the forces in the members

and their displacements are found using the theory of structural analysis.
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Classification of Structures

U Structural elements

» Tie rods: Structural members
subjected to a tensile force are often
referred to as tie rods or bracing struts.

Tie rods used for wind bracing. tie rod

» Beams: usually straight horizontal
members used primarily to carry vertical
loads. they are classified according to

simply supported beam fixed-supported beam

the way they are supported. . — o o

cantilevered beam continuous beam

Beams are primarily designed to resist
bending moment; however, if they are short
and carry large loads, the internal shear web =

force may become quite large and this -
force may govern their design. flange ettt

wide-flange beam

flange M v
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Classification of Structures (Cont’d)

LI
»Columns: Members that are generally vertical and resist axial v ‘§,
—_— AL AL
compressive loads are referred to as columns. Occasionally,
columns are subjected to both an axial load and a bending moment
as shown in the figure. These members are referred to
as beam columns.
~ g\ ~
X5

column beam column
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Classification of Structures (Cont’d) \

O Types of structures

» Trusses: Used when the large
spans are required. spans
ranging from 30 ft.

(9 m) to 400 ft. (122 m)

compression

\ Loading causes bending of truss,
! which develops compression in top
> members, tension in bottom
members

%" o) b
l tension J

CE 315-Fall 2021 Dr. Ra'ed Al-Mazaidh 6




Classification of Structures (Cont’d)

» Cables & Arches: Used to span long distances. They are commonly used to support
bridges, and building roofs.

Cables support their loads in tension. Arches support their loads in compression.
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Classification of Structures (Cont’d)

rigid pinned

» Frames: are composed of beams and columns
that are either pin or fixed connected,

Frame members are subjected to
internal axial, shear, and moment loadings.

rigid

pinned

» Surface Structures: They are made from a material
having a very small thickness compared to its other
dimensions. (Thin plates or shells)
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Loads
» Once the dimensional requirements and the structural form has been determined for a
structure, it is necessary to first specify the loads that act on it.

» The design loading for a structure is often specified in CODES.

» A code is a set of technical specifications and standards that control major details of
analysis, design, and construction of buildings, equipment, and bridges.

» The purpose of codes is to produce safe, economical structures so that the public will be
protected from poor or inadequate design and construction.

Uln general, the structural engineer works with two types of codes:

o General building codes: They specify the requirements of governmental bodies for
minimum design loads on structures and minimum standards for construction

1. Standard Minimum Design Loads for Buildings and Other Structures (ASCE/SEI 7-16)
,published by the American Society of Civil Engineers (ASCE).

2. International Building Code (IBC).
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Minimum Design Loads and
Associated Criteria for
Buildings and Other Structures

INTERNATIONAL
BUILDING CODE
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» Design Codes (Structural codes): They provide detailed technical standards and are

1.

used to establish the requirements for the actual structural design

Standard Specifications for Highway Bridges by the American Association of State
Highway and Transportation Officials (AASHTO) covers the design and analysis of
highway bridges.

Manual for Railway Engineering by the American Railway Engineering and
Maintenance of Way Association (AREMA) covers the design and analysis of railroad
bridges.

Building Code Requirements for Reinforced Concrete (ACI 318) by the American
Concrete Institute (ACI) covers the analysis and design of concrete structures.

Manual of Steel Construction by the American Institute of Steel Construction (AISC)
covers the analysis and design of steel structures.

National Design Specifications for Wood Construction by the American Forest & Paper
Association (AFPA) covers the analysis and design of wood structures.
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An ACI Standard

Building Code Requirements
for Structural Concrete
(ACI 318-19)

Commentary on

Building Code Requirements
for Structural Concrete

(ACI 318R-19)

Reported by ACI Committee 318

ACI 318-19

(‘a ci“' American Concrete Institute
L ) Always advancing
g
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Types of loads
«+ Dead Loads

» Loads that are constant in magnitude and fixed in location throughout the lifetime of the
structure. They Include the weights of the columns, beams, and girders, the floor slab,
roofing, walls, windows, plumbing, electrical fixtures....etc.

» Dead loads can be calculated with good accuracy from the design configuration,
dimensions of the structures, and density of the materials.

» Code assumes most dead loads can be simplified as uniformly distributed area load

three-ply felt
with gravel topping
f

2" rigid insulation

1 36" | 36" |
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Table C3.1-2 Minimum Densities for Design Loads from Materials Table C3.1-2 (Continued) Table C3.1-2 (Continued)
Material Density (Ib/f")  Density (kN/m?) Material Density (Ib/#")  Density (kN/m?) Material Density (b/1t%) Density /)
Aluminum 170 27 Silt, moist. packed 96 15.1 Miontar, eamet or e 130 204
Bituminous products Silt, flowing 108 17.0 Particleboand 45 71
Asphaltum 81 127 Sand and gravel, dry, loose 100 15.7 Plywood 16 59
Graphite 135 212 and and gravel, dry, packed 110 17.3 Riprap (not submerged)
Pasaffin 56 8.8 Sand and gravel, wet 120 18.9 Limestone * - a0
Petroleum, crude 55 8.6 Earth (submerged) Sandetone
Petroleum, refined 50 7.9 Clay 80 s
Petroleum, benzine 46 7.2 Soil 70 Sand
Petroleum, gasoline a2 6.6 River mud 90 Clean and dry 90 14.1
Pitch 69 108 Sand or gravel 60 River, dry 106 167
Tar 75 118 Sand or gravel and clay 65 Slag
Brass 526 826 Glass 160 Bank 70 0
Bronze 552 867 Gravel, dry 104 Bak scosii 108 170
Cast-stone masonry (cement, stone, 14 226 Gypsum, loose 70 Machine 96 15.1
sand) Gypsum, wallboard 50 Sand 52 82
Cement, Portland, Toose 90 14.1 Tee 57 9.0 Slate 172 270
Ceramic (ile 130 36 fron Steel, cold-drawn 402 773
Charcoal 12 19 Cast 450 70.7
Cinder fill 57 9.0 Wrought 480 75.4 Stone, quarted, piled .
Cinders, dry. in bulk 45 7.1 Lead 710 s Busalt, grunite, gneiss 96 151
Coal Lime Limestone, marble, quarte a5 149
Anthracite, piled 52 82 Hydrated, loose 32 5.0 Sandstone 82 129
Bituminous, piled 47 7.4 Hydrated, compacted s 71 Shale 92 [
Lignite, piled 47 74 Masonry, ashlar stone Greenstone, hornblende 10
Peat, dry, piled 23 36 Granite 165 Term cotta, architectural
Concrete, plain Limestone, crystalline 165 Vaids filled 120
Cinder 108 170 Limestone, oolitic 135 Veids unfilled 72
Expanded-slag ageregate 100 157 Marble 173 Tin 459
Haydite (bumed-clay aggregate) 90 14.1 Sandstone 144 Water
Slag 132 207 Masonry, brick Fresh P 97
Stone (including gravel) 144 226 Hard (low absorption) 130 204 * = :
Vermiculite and perlite aggregate, 25-50 3979 Medium (medium absorption) 15 18.1 Sea ¢4 o1
nonload-bearing Soft (high absorption) 100 15.7 Wood, seasoned
Other light aggregate, load-bearing 70-105 1L0-165 Masonry, concrete® Ash, commercial white 41
Concrete, reinforced Lightweight units 105 16.5 Cypress, southern 34
Cinder 1 174 Medium weight units 125 19.6 Fir, Douglas, caast region 34
Slag 138 217 Normal weight units 135 21.2 Hem fir 28
Stone (including gravel) 150 236 Masonry grout 140 22,0 Qak, commercial reds and whites 47
Copper 556 873 Masonry, rubble stone Pine, southern vellow 37
Cork, compressed 14 22 Granite 153 24.0 Redwood 28
Earth (not submerged) Limestone, crystalline 147 231 Spruce, red, white, and Sitka 29
Clay, dry 63 99 Limestone, oolitic 138 27 o : - .
Clay, damp 110 173 Marble 156 245 Westem hemlock - 0
Clay and gravel, dry 100 157 Sandstone 137 S Zine, rolled sheet 449 105
Silt, moist, (5.315-Fall 2021 78 123 e e

“Tabulated values apply o solid masonry and o the solid portion of hollow
—————————————




Table C3.1-1b Minimum Design Dead Loads (kN/m’}"

Tablo C3.1-1a Minimum Design Dead Loads (psf)"

CRILINGS

Acoustical ibetboand 005

Ashestos-coment shingles 019
phall shingles 010

Cement dls 07

Clay tle (for mortar add 0.45 kN/n)
Bo m

B
o Ludorvici 0.4

9

s

s

! ‘e, per o oor?
- Lightweight concret, per rum oois
¥ Sand, psr mm oois
I

1

5

— 15
o 13-mm merses bed o
Ceramic or quarry e (19 1m) on 25-mm moriar bed 110
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Example 1:

A three-ply asphalt felt and gravel roof over 2-in-thick insulation board is
supported by 18-in-deep precast reinforced concrete beams with 3-ft- wide

flanges (see Figure 2.2). If the insulation weighs 3 Ib/ft* and the asphalt fhf”}’f’PW ffl‘ .
~ . . wiL ravel loppin

roofing weighs 5% Ib/ft?, determine the total dead load, per foot of length, e ppIng

P ‘

each beam must support. | 2'rigid insulation

Solution 4

Weight of beam is as follows:

ERe average

4 36 " "
Flange UK IO IS0 Ib/IE = 150 /1 b 36— 36—

]6 14 Figure 2.2: Cross section of reinforced
Stem — it X — ft X 1 ft X 150 Ib/ft* = 145 Ib/ft concrete beams.

12 12
Insulation 3162 X 36t X 1 ft = 9 Ib/ft
Roofing SHIB/E X 3t X 1 ft = 16.5 Ib/ft

Total = 320.5 Ib/ft,
round to 0.321 kip/ft
CE 315-Fall 2021 Dr. Ra'ed Al-Mazaidh
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10" 14"
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Example 2:

The floor beam in the figure used to support the 6-ft width of a lightweight plain concrete slab

having a thickness of 4 in. The slab serves as a portion of the ceiling for the floor below, and
therefore its bottom is coated with plaster. Furthermore, an 8-ft-high, 12-in.-thick lightweight solid
concrete block wall is directly over the top flange of the beam. Determine the loading on the beam

measured per foot of length of the beam.
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Solution:

Concrete slab: lightweight Plain concrete (Density=8 Ib/ft? .in) (Table C3.1-1a -ASCE7-16 pp.426)
Load per foot= (8 Ib/ft? .in. ) 4 in. *6 ft. = 192 Ib/ft .
Plaster ceiling: Plaster on tile or concrete (Density=5 |b/ft? ) (Table C3.1-1a -ASCE7-16 pp.426)
Load per foot= (5Ib/ft? ) *6 ft. = 30 Ib/ft.
Block wall: Masonry, concrete Lightweight unit (Density=105 |b/ft3) (Table C3.1-1a -ASCE7-16
pp.430)
Load per foot= (105 Ib/ft3 * 8ft.*1 ft.)=840 Ib/ft.
Total load: (192+30+840= 1062 Ib/ft.=1.06 K/ft).
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++ Live Loads

»Loads that consist chiefly of occupancy loads in buildings. They may be either fully or

partially in place or not present at all, and may also change in location.

»Magnitude and distribution of live loads at any given time are uncertain, and even their

maximum intensities throughout the lifetime of the structure are not known with precision.

»The minimum live loads for which the floors and roof of a building should be designed are

usually specified in the building code.
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< Live Loads

100 psf (Ib/ft2)

50 psf (Ib/ft?)

150 psf (Ib/ft2)
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Table 4.3-1 Minimum Uniformly Distributed Live Loads, L,, and Minimum Concentrated Live Loads

Live Load Multiple-Story Live
Reduction Permitted? Load Reduction Concentrated Also See
Occupancy or Use Uniform, L, psf (kN/m?) (Sec. No.) Permitted? (Sec. No.) Ib (kN) Section
Apartments (See Residential)
Access floor systems
Office use 50 (2.40) Yes (4.7.2) Yes (4.7.2) 2,000 (8.90)
Computer use 100 (4.79) Yes (4.7.2) Yes (4.7.2) 2,000 (8.90)
Armories and drill rooms 150 (7.18) No (4.7.5) No (4.7.5)
Assembly areas
Fixed seats (fastened to floors) 60 (2.87) No (4.7.5) No (4.7.5)
Lobbies 100 (4.79) No (4.7.5) No (4.7.5)
Movable seats 100 (4.79) No (4.7.5) No 4.7.5)
Platforms (assembly) 100 (4.79) No (4.7.5) No (4.7.5)
Stage floors 150 (7.18) No (4.7.5) No (4.7.5)
Reviewing stands, grandstands, and 100 (4.79) No (4.7.5) No (4.7.5) 4.14
bleachers
Stadiums and arenas with fixed seats 60 (2.87) No (4.7.5) No (4.7.5) 4.14
(fastened to the floor)
Other assembly areas 100 (4.79) No (4.7.5) No (4.7.5)
Balconies and decks 1.5 times the live load for the Yes (4.7.2) Yes (4.7.2)
area served. Not required to
exceed 100 psf (4.79 kN/m?)
Catwalks for maintenance access 40 (1.92) Yes (4.7.2) Yes (4.7.2) 300 (1.33)
Corridors
First floor 100 (4.79) Yes (4.7.2) Yes (4.7.2)
Other floors Same as occupancy served
except as indicated
Dining rooms and restaurants 100 (4.79) No (4.7.5) No 4.7.5)

Dwellings (See Residential)
Elevator machine room grating (on area of
CE 315-Fall 2021
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300 (1.33)
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Live Loads Reduction

» For some types of buildings having very large floor areas, many codes will allow a
reduction in the uniform live load for a floor.

* it is unlikely that the prescribed live load will occur simultaneously throughout the entire

structure at any one time.

» ASCE 7-16 allows a reduction of live load on a member having an influence area (K, Ay)

of 400 ft2 (37.2 m2).

where

L = reduced design live load per square foot or square meter of area supported by the member.
L.= unreduced design live load per square foot or square meter of area supported by the member.

L

= L(,(O.Zi +

La(o.zs +

VK Ay

4.57
7) ST units
VK Ar

) U.S. customary units

K..= live load element factor. For interior columns K.= 4. ( Table 4.7-1 ASCE 7-16 pp.17)
A-= tributary area in square feet or square meters.*

CE 315-Fall 2021
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Table 4.7-1 Live Load Element Factor, K,

=
r‘b

Element

Interior columns
Exterior columns without cantilever slabs
Edge columns with cantilever slabs

LR

Corner columns with cantilever slabs
Edge beams without cantilever slabs
Interior beams
All other members not identified, including
Edge beams with cantilever slabs
Cantilever beams
One-way slabs
Two-way slabs
Members without provisions for continuous shear
transfer normal to their span

_—kd D D

“In lieu of the preceding values, K;; is permitted to be calculated.
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UASCE 7-16 allows live reduction:
K; *Ap> 400 ft2 (37.2m?)
S (50% L, for members supporting one floor.
- i4O%L0 for members supporting more than one floor.
No reduction is allowed:
if Ly, > 100 Ib/ft? (24.79 kN/m?)
or
if* The structures used for public assembly, garages, or roofs
CE 315-Fall 2021 Dr. Ra'ed Al-Mazaidh 24

12



The minimum uniformly distributed roof live loads are permitted to be
reduced by ASCE standard as follows:

L,=LRR, (2.2)

where L, = design roof live load
L, = reduced roof live load, with minimum of 12 psf < L, < 20 psf
(0.58 m? < L, < 0.96 m? in SI units) for ordinary flat, pitched,

and curved roofs

R, =1 for A; <200 ft* (18.58 m%); and R, = 0.6 for A; > 600 ft*
(55.74m%); R, = 1.2 — 0.001A7 (R, = 1.2 — 0.011A7 in SI
units) for 200 ft* < Ay < 600 ft* (18.58 m” < A; < 55.74m’)

R,=1.0forflatroofs F<4:R,=12—-0.05Ffor4 < F <12
and K, = 0.6 for F' > 12; where F' = number of inches of
rise per foot of roof slope for pitched roofs in SI: F' = 0.12 X
slope, with slope expressed in percentage)

For a column or beam supporting more than one floor, the term Ay represents
the sum of the tributary areas from all floors.
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Example 3:

A two-story office building shown in the photo has interior columns that are spaced 6.71 m
apart in two perpendicular directions. If the (flat) roof loading is 0.96 kN/m2. Determine the
reduced live load supported by a typical interior column located at ground level.

I I I
wo

6.71m

I I I

Dr. Ra'ed Al-Mazaidh 26
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The interior column has a tributary area or effective loaded area of
A= 6.71x6.71=45 m2

A ground floor column supports a roof live load of

Fr= 0.96 KN/m2x 45 m2=43.2 kN

This load cannot be reduced since it is a roof load.

(=4
[
4

At

o
~
Py
3

]
I
o
N
-
3

For the first floor, the Live Load is taken from table (4.3-1-ASCE 7-16 pp.14): Ly=2.4 kN/m?
I

T I
Lo=2.4 kN/m2 < 24.79 KN/m2 (OK.) L A_
6.71 .71 m

From table 4.7-1 4.3-1-ASCE 7-16 pp.14: K, =4
K. *A;>=4*45=180m2 > 37.2 m2(OK.)
457 ) ( 457 )
L=Ly 025+ ——— =24 025+ —— |=2.4x0.59 =1.42 kKN/m’
TR AT s )

The load reduction here is 442 «100%=59.1% > 50% (OK.)

The Floor load F,.=1.42x45=63.9 kN
The Roof load F=0.96x45 =43.2 kN (No Reduction in Roof load)
F=Fy+F.,=43.2+63.9=107.1kN
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o Highway Bridge loads
m Primary live loads are those due to traffic

m Specifications for truck loadings are reported in AASHTO (American Association
of State Highway and Transportation Officials)

m For 2-axle truck, these loads are designated with H followed by the weight of truck in
tons and another no. gives the year of the specifications that the load was reported.

AT
SIS

32 k 32 k

(14 ft 30 ft)
sclect spacing to
cause maximum
stress
HS 20-44 loading
CE 315-Fall 2021 Dr. Ra'ed Al-Mazaidh 28
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o Railway Bridge loads
m Loadings are specified in AREMA

m A modern train having a 320kN (72k) loading on the driving axle of the engine is designated
as an E-72 loading.
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o Impact loads
m Due to moving vehicles

m The % increase of the live loads due to impact is called the impact
factor, |

CE 315-Fall 2021 Dr. Ra'ed Al-Mazaidh 30
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o Wind loads

m Kinetic energy of the wind is converted into potential energy of pressure when
structures block the flow of wind

m Effects of wind depends on density & flow of air, angle of incidence, shape & stiffness of
the structure & roughness of surface

m For design, wind loadings can be treated as static or dynamic approach

Leeward side

o

>
Wind produces —_

Wind produces

i :
high pressure on j [I!"'“ l » low pressure behind
front of building II i / Iil the building
(pushing). bl A ‘I (suction).
A
Windward side Damage originates at
corners, under eaves, and
Wind entering front of building at the ridge of the roof
increases internal pressure. due to high velocity,
low pressure.
01 012
CE 315-Fall 2021 Dr. Ra'ed Al-Mazaidh 31

)Y

Cross bracing
01_PHOO9
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This pressure q is defined by the air’s kinetic energy per unit volume, q = %2 pV2, where p is the
density of the air and V is its velocity.

According to the ASCE 7-16 Standard, this equation is modified to account for the structure’s
height, and the terrain in which it is located. Also the importance of the structure is
considered, as it relates to the risk to human life or the public welfare if it is damaged or loses its
functionality.

This modified equation is represented by the following equation

g. = 0.00256K.K_K,V?* (Ib/ft*)
q. = 0.613K_K_,K,V* (N/m?)
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where

V = the velocity in mi/h (m/s) of a 3-second gust of wind measured
33 ft (10 m) above the ground. Specific values depend upon the
“category” of the structure obtained from a specified wind map.
For example. the interior portion of the continental United States
reports a wind speed of 105 mi/h (47 m/s) if the structure is an
agricultural or storage building, since it is of low risk to human life
in the event of a failure. The wind speed is 120 mi/h
(54 m/s) for cases where the structure is a hospital, since its failure
would cause substantial loss of human life.

K, = the velocity pressure exposure coefficient, which is a function of
height and depends upon the ground terrain. Table 1.5 lists values
for a structure which is located in open terrain with scattered low-
lying obstructions.

K, = a factor that accounts for wind speed increases due to hills and
escarpments. For flat ground K, = 1.0.

K; = a factor that accounts for the direction of the wind. It is used
only when the structure is subjected to combinations of loads (see
Sec. 1.4). For wind acting alone, K; = 1.0.

CE 315-Fall 2021 Dr. Ra'ed Al-Mazaidh 34
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o Snow loads

m Design loadings depend on building’s general shape & roof geometry,
wind exposure, location and its importance

m Snow loads are determined from a zone map reporting 50-year
recurrence interval

CE 315-Fall 2021 Dr. Ra'ed Al-Mazaidh 35

nEarthquake loads
m Earthquake produce loadings through its interaction with the ground & its response
characteristics.

m Their magnitude depends on amount & type of ground acceleration, mass & stiffness

of structure
m Top block is the lumped mass of the roof

m Middle block is the lumped stiffness of all the building’s columns —

. . . lumped mass
m During earthquake, the ground vibrates both horizontally of roof
& vertically
[_ lumped mass
s of columns

CE 315-Fall 2021 Dr. Ra'ed Al-Mazaidh 36
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m The horizontal accelerations create shear forces in the column that put the block in
sequential motion with the ground.

m If the column is stiff & the block has a small mass, the period of vibration of the block will
be short, the block will accelerate with the same motion as the ground & undergo slight

relative displacements

m |f the column is very flexible & the block has a large mass, induced motion will cause

small accelerations of the block & large relative displacement

CE 315-Fall 2021 Dr. Ra'ed Al-Mazaidh 37

o Hydrostatic & Soil Pressure

m The pressure developed by these loadings when the structures are used to retain

water or soil or granular materials

m E.g. tanks, dams, ships, bulkheads & retaining walls

o Other natural loads
m Effect of blast
m Temperature changes
m Differential settlement of foundation

CE 315-Fall 2021 Dr. Ra'ed Al-Mazaidh 38
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Design Methods:
o Allowable-stress design (ASD) method:

(It was called Working Stress Design method prior 2005) includes both the material and

load uncertainties into a single factor of safety.

required strength < allowable strength

(R,@— — Nominal Strength
Ry < =
I (Q/ — Factor of Safety

Required Strength
(ASD)

CE 315-Fall 2021 Dr. Ra'ed Al-Mazaidh 39

o The many types of loads discussed previously can occur simultaneously on a structure, but it is very unlikely
that the maximum of all these loads will occur at the same time. For example, both maximum wind and

earthquake loads normally do not act simultaneously on a structure.

o For allowable-stress design the computed elastic stress in the material must not exceed the allowable stress

for each of various load combinations. Load combinations specified by the ASCE 7-016 Standard.

1. D
2. D+ L
3. D+ (L, or S or R)
4. D+ 0.5L +0.75(L, or S or R)
5. D+ (0.6W)
6. D+ 0.75L + 0.75(0.6W) + 0.75(L, or S or R)
7. 0.6D + 0.6W
CE 315-Fall 2021 Dr. Ra'ed Al-Mazaidh
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o Ultimate Strength Design method:

Ultimate strength design is based on designing the ultimate strength of critical sections.

required strength < design strength

Load factor

@t - Z@ <. Nominal Strength/
/ Resistance
Load

Required Resistance Factor

Strength

CE 315-Fall 2021 Dr. Ra'ed Al-Mazaidh
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o This method uses load factors to the loads or combination of loads.

1.4D

1.2D 4+ 1.6L+ 0.5(L, or S or R)

1.2D 4+ 1.6(L, or S or R)+(L or 0.5W)
12D+ 1.0W 4+ L+ 0.5(L, or S or R)
0.9D 4+ 1.0W

12D+ E, +E,+L+02S8

09D —-E, + E,

HNo kL=

CE 315-Fall 2021 Dr. Ra'ed Al-Mazaidh
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CE 315: Structural Analysis

Analysis of Statically Determinate Structures
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Idealized Structure

* In real sense exact analysis of a structure can never be carried out.

* Estimates have always to be made of the loadings and strength of materials.

 Furthermore, points of application for the loadings must be estimated.

* Models or idealization should be made.
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Support Connections

Structural members are joined together in various ways depending on the intent of the designer

The three types of joints most often specified are:

A pin-connected joint and a roller
support allow some freedom for

slight rotation

< Pin connection

typical “pin-supported” connection (metal)
(a)

« Roller support,

ECo et
roller-supported” connection (concrete)

(a)

typical *

CE 315-Fall- 2021 Dr. Ra'ed Al-Mazaidh

% Fixed joint
N | -weta
===
- ol )}
stnllene[a E
|
I.. 47 ~weld
typical “fixed-supported” connection (metal)
(b) S
typical “fixed-supported” connection (concrete)

(b)
02_0028

Fixed joint allows no relative rotation between
the connected members. (Expensive)

CE 315-Fall- 2021 Dr. Ra'ed Al-Mazaidh




Idealized models are used in structural analysis to represent:

1. z;

pin support

()

02_003a

fixed support

CE 315-Fall- 2021

pin-connected joint

fixed-connected joint

Dr. Ra'ed Al-Mazaidh

torsional spring support

k =0, the jointis a pin____

CE 315-Fall- 2021

(c)

02_003c

torsional spring joint

_k =, the joint is fixed.

Dr. Ra'ed Al-Mazaidh




(Sl
[Nl

actual beam
(a)

T
]

ra

N

idealized beam

(b)

02_oon

When selecting a particular model for each support or joint, the engineer must be aware of how

the assumptions will affect the actual performance of the member and whether the assumptions

are reasonable for the structural design.

CE 315-Fall- 2021
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0.590°

+0.0528 in.

@:@‘

-l ! 0.590°

=

/00528 in.
(c)

02_00ac

TABLE 2.1 Supports for Coplanar Structures

Type of Connection

Idealized Symbol

Reaction

Number of Unknowns

1) Mnght cable
[47%

weightless link

3

One unknown. The reaction is a
force that acts in the direction
of the cable or link.

®) ) E_

rollers

rocker

193

B

One unknown. The reaction is a
force that acts perpendicular to
the surface at the point of contact.

(3)

rd

smooth contacting surface

One unknown. The reaction is a
force that acts perpendicular to
the surface at the point of contact.

@
= :iﬁ'

smooth pin-connected collar

CE 315-Fall- 2021
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One unknown. The reaction is a
force that acts perpendicular to
the surface at the point of contact.




1 f e
Two unknowns. The reactions are
F, two force components.
smooth pin or hinge
(6)
M Two unknowns. The reactions
- are a force and a moment.
L".____—s
fixed-connected collar
™ E
M Three unknowns. The reactions are
[ () — F the moment and the two force
* components.
fixed support
CE 315-Fall- 2021 Dr. Ra'ed Al-Mazaidh 9

Rollers and associated bearing pads are used to support the prestressed concrete girders of a highway bridge

A typical rocker support used for a bridge girder.

CE 315-Fall- 2021
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The short link is used to connect the two girders of the highway bridge and allow for thermal expansion of the deck.

CE 315-Fall- 2021 Dr. Ra'ed Al-Mazaidh 11

Steel pin support.
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Idealized Structure

EY
=]

CE 315-Fall- 2021

o

——3m ———*I

actual structure

(a)

Dr. Ra'ed Al-Mazaidh

idealized structure

(b)

13
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H H

idealized framing plan

(b)

14




7
155, 1N
fixed-connected beam
Ll - |
] | | |

idealized beam

CE 315-Fall- 2021 Dr. Ra'ed Al-Mazaidh 15

1dealized beam
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idealized framing plan

(a)

(b)

17
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mgp

(b)

&
—
o)

Q

N
=

o]

Q
=]
. p—
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floor beam
or joist

Load Path

spandrel or -
edge girder

loading

=z

girder

exterior —
column
interior
column

foundation
slab l

Z .~ Spread
footing

strip
footing

(a)

CE 315-Fall- 2021 Dr. Ra'ed Al-Mazaidh
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Tributary Loadings:

It is how the load on the surfaces of structural elements is transmitted to the other elements used

for their support.

There are two ways depends on the geometry of the structural system, the material from which it is

made, and_the method of its construction.

» One-Way System: T

100108t 251t

idealized framing plan

(b)

(a)

CE 315-Fall- 2021 Dr. Ra'ed Al-Mazaidh
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5001b/tt g 550016

1250 1b 1250 1b

25001b

Y Y Y Y \ Y Y D
- Y & E
B
ft.
2 e 51t 5t |

2500 1b
idealized girder

o (d)
idealized beam

(©)

ACI 318 code, if L2 > L1 and if the span ratio (L2/L1) > 2, the slab will

CE 315-Fall- 2021

behave as a one-way slab

Dr. Ra'ed Al-Mazaidh 21

beam

CE 315-Fall- 2021

joist girder
Concrete slab is L, IB
reinforced in
two directions, _|'_
poured on plane
forms. Ly
L
2 +
Ly D
B Ly
b 1
F

Idealized framing plan
for one-way slab action
requires L, /L, > 2.

(b)

Dr. Ra'ed Al-Mazaidh 22
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» Two-Way System:

According to the ACI 318 concrete code, if L2 > L1 and the support ratio (L2 /L1) <2,
the slab will behave as a two-way slab

(a)

CE 315-Fall- 2021

500 Ib/ft

5 idealized framing plan
1] o)

| 10 ft i
B

10 ft

Sft

St

B

idealized beam

(c)

Dr. Ra'ed Al-Mazaidh
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I
I
|
1| 10ft
I
I
|

|

Ai 151t
1
NZ45° 4 452N,/
51t :
|
T
|
I
CLI
|~ 51t ‘ 5ft——51t

idealized framing plan

(a)

CE 315-Fall- 2021

i0

500 Ib/ft

A

RV

“—Sft—“—ﬁft —“

idealized beam

(c)

Dr. Ra'ed Al-Mazaidh

500 Ib/ft
e
L sp—t st sn

idealized beam

(b)

24
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EXAMPLE 1

The floor of a classroom is to be supported by the bar joists shown in the

photo. Each joist is 15 ft long and they are spaced 2.5 ft apart. The floor
itself is to be made from lightweight concrete that is 4 in. thick. Neglect
the weight of the joists and the corrugated metal deck, and determine the

load that acts along each joist.

CE 315-Fall- 2021 Dr. Ra'ed Al-Mazaidh
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Solution:
The dead load on the floor is due to the weight of the concrete slab.
Dead Load: lightweight concrete slab (4 inch)
From ASCE7-16 Table C3.1-1 page 426:

FLOOR FILL
Cinder concrete, per inch
Lightweight concrete, per inch

Sand, per inch
Stone concrete, per inch

DL= (8 Ib/ft?)X (4 in.)=32 Ib/ft2.

Live Load: From ASCE7-16 Table C3.1-1 page 15:

Schools
Classrooms 40 (1.92)
Corridors above first floor 80 (3.83)
First-floor corridors 100 (4.79)
LL= 40 Ib/ft?
CE 315-Fall- 2021 Dr. Ra'ed Al-Mazaidh

oo oo &

—
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Total Load=DL+LL
=32+40= 72 Ib/ft?

->—=—=6>2- 0Oneway slab
The tributary area for each joist= 15x2.5= 37.5 ft2

Total Load on the tributary area= 72x37.5= 2700 Ib

Load/ ft. on the joist= 2700/15 = 180 Ib/ft.

CE 315-Fall- 2021

1350 1b

Dr. Ra'ed Al-Mazaidh

(c) 1350 Ib

27

EXAMPLE 2

The flat roof of the steel-frame building shown in the photo is intended
to support a total load of 2 kN /m? over its surface. Determine the roof
load within region ABCD that is transmitted to beams BC and DC. The
dimensions are shown in Fig. 2-16a.

S

2 ]m

CE 315-Fall- 2021

Dr. Ra'ed Al-Mazaidh
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Solution:

Ll = 4 ft.
L, 7
- —=-=1.75<2 - Two way slab
L, 4
Load on Beam BC = Load of Tributary area (1)+
Load of Tributary area (2)

Tributary area (1)

The peak intensity of this loading=(Total load) X (h)
=2 KN/m2X 2m= 4 KN/m

Tributary area (2)= 4 KN/m (Symmetric)

Total peak intensity loading= 4+4= 8 KN/m

B! 1 C
le ! Im 1 lm«‘

CE 315-Fall- 2021 Dr. Ra'ed Al-Mazaidh 29

Load on Beam DC = Load of Tributary area (3)

The peak intensity of this loading=(Total load) X (h)
=2 KN/m2X 2m=4 KN/m

4 kN/m

CE 315-Fall- 2021 Dr. Ra'ed Al-Mazaidh 30
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EXAMPLE 3

The concrete girders shown in the photo of the passenger car parking
garage span 30 ft and are spaced 15 ft on center. If the floor slab is 5 in.
thick and made of reinforced stone concrete, and the specified live load
is 501b/ ft*, determine the distributed load the floor system transmits to
each interior girder.

CE 315-Fall- 2021 Dr. Ra'ed Al-Mazaidh

31

Solution:

The dead load on the floor is due to the weight of the concrete slab.
Dead Load: reinforced stone concrete (5 inch)

From ASCE7-16 Table C3.1-2 page 430

Concrete, reinforced

Cinder 111 17.4
Slag 138 21.7
Stone (including eravel) 150 236

DL= (150 Ib/ft3)X (5 in/12 in.)=62.5 Ib/ft.

Live Load: 50 Ib/ft? ( Given in the problem)
LL= 50 lb/ft2

CE 315-Fall- 2021 Dr. Ra'ed Al-Mazaidh
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Total Load=DL+LL
=62.5+50=112.5 Ib/ft?

L, = 30 ft.
L, 30

—>L1_1—5=2=2—>Twowayslab

Load on Beam AB = Load of Tributary area (1)+
Load of Tributary area (2)
Tributary area (1)

The peak intensity of this loading=(Total load) X (h)
=112.5 Ib/ft.2X 7.5 ft.= 843.75 Ib/ft.

Tributary area (2)= 843.75 Ib/ft. (Symmetric)

Total peak intensity loading= 843.75+843.75= 1687.5 Ib/ft.

CE 315-Fall- 2021 Dr. Ra'ed Al-Mazaidh

7510 - 7511
T 15t L,
75 ft h| @
A B
©)
1687.5 Ib /ft
.
A1 TB
5
75 ft 150 7.5 ft

Principle of Superposition

o The principle of superposition forms the basis for much of the theory of structural analysis.

It may be stated as follows:

"The total displacement or internal loadings (stress) at a point in a structure

subjected to several external loadings can be determined by adding together the

displacements or internal loadings (stress) caused by each of the external loads

acting separately”.

o For this statement to be valid it is necessary that a linear relationship exist among the

loads, stresses, and displacements.

CE 315-Fall- 2021 Dr. Ra'ed Al-Mazaidh
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% TWO requirements for the principle to apply:
1. The material must behave in a linear-elastic manner, so that Hooke’s law is valid,
and therefore the load will be proportional to displacement.

2. The geometry of the structure must not undergo significant change when the

loads are applied, i.e., small displacement theory applies. Large displacements

will significantly change the position and orientation of the loads.

o Ae T B Ry=Ry + Ry,
A B ) J (b)
= — = + My=My + My,
Wi A Al A2
My ' T // T
Ry P T «_\LC: Ar=Ac +Ap
=
(a) M, l I
Ry P
CE 315-Fall- 2021 Dr. Ra'ed Al-Mazaidh 35
P P
A A
[ H
' B H _
/
-+ Lol # L ||
f |
| ]
A A A
e [ —
\_)M:HL .\)M':HL+PA
P
P
(a1) (b) (c)

CE 315-Fall- 2021

Superposition not applicable:
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Equations of Equilibrium

O For equilibrium:

YF=0 YF=0 YF=0
SM,=0 Y M,=0 ¥ M.=0

O The principal load-carrying portions of most structures, however, lie in a single plane,
and since the loads are also coplanar, the above requirements for equilibrium reduce to

Y F. =0
Y F,=0
Y M, =0

CE 315-Fall- 2021 Dr. Ra'ed Al-Mazaidh 37

> If the internal loadings at a specified point in a member are to be

determined, the method of sections must be used.

Internal loadings

CE 315-Fall- 2021 Dr. Ra'ed Al-Mazaidh 38
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Determinacy

» Equilibrium equations provide both the necessary and sufficient conditions for
equilibrium
» All forces can be determined strictly from these equations

» No. of unknown forces > equilibrium equations => statically indeterminate.

» This can be determined using a free body diagram.

CE 315-Fall- 2021 Dr. Ra'ed Al-Mazaidh 39

*»For a coplanar structure

r =3n, staticallydeterminate }

r >3n, staticallyindeterminate }

r = number force and moment reaction components

n = number of parts

+*The additional equations needed to solve for the unknown equations are
referred to as compatibility equations

CE 315-Fall- 2021 Dr. Ra'ed Al-Mazaidh 40
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EXAMPLE 4

Classify each of the beams shown in Figs. 2-20a through 2-20d as statically
determinate or statically indeterminate. If statically indeterminate, report
the number of degrees of indeterminacy. The beams are subjected to
external loadings that are assumed to be known and can act anywhere on
the beams.

CE 315-Fall- 2021

s =k

Dr. Ra'ed Al-Mazaidh 41

r=5n=15>371)

Statically determinate.

LA

Statically indeterminate to the second degree.

Ez'\ 'ﬂ:"”j\

r=6.n=2.06=3(2)

—

(d)

r=10,n = 3,10 > 3(3)

CE 315-Fall- 2021

Staticallv determinate.

e A e

Statically indeterminate to the first degree. Ans.

Dr. Ra'ed Al-Mazaidh 42
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EXAMPLE 5

Classify each of the pin-connected structures shown in Figs. 2-21a
through 2-21d as statically determinate or statically indeterminate. If
statically indeterminate, report the number of degrees of indeterminacy.
The structures are subjected to arbitrary external loadings that are
assumed to be known and can act anywhere on the structures.

3 5]
d |
(a) (C) (d)
(b)
CE 315-Fall- 2021 Dr. Ra'ed Al-Mazaidh 43
p=T=on=
(a) Statically indeterminate to the first degree. Ans
r=9n=39=9
(b) Staticallv determinate. Ans.
r=10,n=210>6
(€) Statically indeterminate to the fourth degree. Ans.
r— m— I
é ) +—9n=30-= ‘
r=9%n=39=9
(d) Statically determinate, Ans. ‘ - l 9
CE 315-Fall- 2021 Dr. Ra'ed Al-Mazaidh 44
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EXAMPLE 6

Classify each of the frames shown in Figs. 2-22a through 2-22¢
as statically determinate or statically indeterminate. If statically
indeterminate, report the number of degrees of indeterminacy. The
frames are subjected to external loadings that are assumed to be known
and can act anywhere on the frames.

B C
A D
A
——
i (This frame has no closed
loops.)
(a} (b) (¢}
CE 315-Fall- 2021 Dr. Ra'ed Al-Mazaidh 45
B ) ﬂ
A D - -ﬂJ‘ B -61
" 5 L
(a) r=18n=318>9
) Statically indeterminate to the ninth degree. Ans.

.~y . l; 4 ) }—7

r=9n=29>6 | - .41 i ke

Statically indeterminate to the

third degree. Ans. r=18p="diiR>H> = 01p =110 =13
(This frame has no closed Statically indeterminate to the Statically indeterminate to the
loops.) sixth degree. Ans. sixth degree. Ans.

(©)
CE 315-Fall- 2021 Dr. Ra'ed Al-Mazaidh 46
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Stability
To ensure the equilibrium of a structure or its members, it is not only necessary to satisfy the
equations of equilibrium, but the members must also be properly held or constrained by their

supports regardless of how the structure is loaded.

U Two situations may occur where the conditions for proper constraint have not been met

1. Partial Constraints

Instability can occur if a structure or one of its members has fewer reactive forces than equations of

equilibrium that must be satisfied

CE 315-Fall- 2021 Dr. Ra'ed Al-Mazaidh 47

M,

Fa
partial constraints
02_023

on Education, A

Copyrignt ©2018 Paars: i Rights Reservad

CE 315-Fall- 2021 Dr. Ra'ed Al-Mazaidh 48
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2. Improper Constraints

a) This can occur if all the support reactions are concurrent at a point.

¥ = %,
F,u P «I F
d '{ d
P Fy

concurrent reactions

~

02_024

Conyright B2018 Fearson Education, Al Rights Reserved

The summation of moments about point O will not be equal to zero (Pd +0); thus rotation about
point O will take place.

CE 315-Fall- 2021 Dr. Ra'ed Al-Mazaidh 49

b) Another way in which improper constraining leads to instability occurs when the

reactive forces are all parallel.

A

parallel reactions
02_025

Copyright B2018 Pearson Education, All Rights Reservad

The summation of forces in the horizontal direction will not equal zero.

CE 315-Fall- 2021 Dr. Ra'ed Al-Mazaidh 50




r << 3n  unstable

r = 3n unstable if member reactions are
concurrent or parallel or some of the
components form a collapsible mechanism

CE 315-Fall- 2021 Dr. Ra'ed Al-Mazaidh 51

EXAMPLE 7

Classify each of the structures shown in Figs. 2-26a through 2-26d as
stable or unstable. The structures are subjected to arbitrary external
loads that are assumed to be known.

CE 315-Fall- 2021 Dr. Ra'ed Al-Mazaidh 52
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(a) T

The member is stable since the reactions are nonconcurrent and
nonparallel. It is also statically determinate. Ans.

"

(b)
The member is unstable since the three reactions are concurrent at B.

CE 315-Fall- 2021 Dr. Ra'ed Al-Mazaidh
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Ape= g C t P4
(e)
The beam is statically indeterminate, but unstable since the three

reactions are all parallel. Ans.

(& —
(d) y

The structure is unstable since r = 7, n = 3, so that r < 3n,7 < 9.
Also, this can be seen by inspection, since AB can move horizontally

without restraint. Ans.

CE 315-Fall- 2021 Dr. Ra'ed Al-Mazaidh
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Application of the Equations of Equilibrium

B, D, A,
D A B, D, A,
B @
|le—P 1
E
P,
C

(a)

CE 315-Fall- 2021 Dr. Ra'ed Al-Mazaidh 55
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EXAMPLE 8

Determine the reactions on the beam shown in Fig. 2-30a.

fi o 50k
o S g S0kt
A | i
‘ 101t a4 f—| 7 ftJ

Free-Body Diagram.

60 sin 60° k
1ft
A A | ‘ﬁﬂmsﬁﬁ"k S0k-ft
_—
[_mn 4{1_1
A, B,

Equations of Equilibrium.

Lsk =0 A, — 60 cos 60° = 0 A, =300k Ans
(+ZM, = 0 —60 sin 60°(10) + 60 cos 60°(1) + B,(14) — 50 = 0 B, =385k Ans
+1ZF, =G —60 sin 60° + 38.5 + A, = 0 A, =134k  Ans
CE 315-Fall- 2021 Dr. Ra'ed Al-Mazaidh 57
EXAMPLE 9 Equations of Equilibrium.
LsF=0 A, = .
Determine the reactions on the beam in Fig. 2-31a. —XF =0 A, =0 Ans.
15 kN/m +T2Fy =10: A== 6060 =14 B2 N Ans.

/) S —,
12 m |

s

(a)
Free-Body Diagram.

%(mkN/m)(lZm):ﬂ)kN
(5 kN/m)(12 m) =
e 60 kN
JltlkN/’m i
A ] = e

CE 315-Fall- 2021 Dr. Ra'ed Al-Mazaidh

(+3M, = 0; —60(4) — 60(6) + My =0 M, = 600kN-m Ans.

58
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EXAMPLE 10

Determine the reactions on the beam in Fig. 2-32a. Assume A is a pin
and the support at B is a roller (smooth surface).

500 Iby/ft

CE 315-Fall- 2021 Dr. Ra'ed Al-Mazaidh 59

Free-Body Diagram.

Equations of Equilibrium.
(+ZM4 = 0; —3500(3.5) + (3)Na(4) + (3)Np(10) = 0 Ans.

Np =133151b = 1.33k

L3F =0, A, - $(13315) =0 A, =107k Ans
+13F, =0, A, 3500+ 3(13315) =0 A, =270k Ans

CE 315-Fall- 2021 Dr. Ra'ed Al-Mazaidh 60
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EXAMPLE 11

The compound beam in Fig. 2-33a is fixed at A. Determine the reactions
at A, B, and C. Assume that the connection at B is a pin and C is a roller.

400 Ib/ft

6000 Ib-ft

(a)
Fig. 2-33
CE 315-Fall- 2021 Dr. Ra'ed Al-Mazaidh 61
Free-Body Diagram.
1600 Ib
N Mg t 7777777 B B 6000 I - ft
Aﬂ-—zra% 2ft — ‘B 3ft ?C
B, : C
Equations of Equilibrium.
(+IMo = 0; —6000 + B,(3) =0 B, = 2000lb Ans.
+13F, = 0; ~2000 + C, = 0 C, = 20001b Ans
L3F =0 B, =0 Ans
Segment AB:
(+IM, = 0 M, — 1600(2) + 2000(4) = 0
M, = —48k-ft Ans
+13F, = 0; Ay = 1600 + 2000 = 0 A, = —400lb  Ans
L3F =0 A, -0=0 A, =0 Ans.
CE 315-Fall- 2021 Dr. Ra'ed Al-Mazaidh 62
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EXAMPLE 12

Determine the horizontal and vertical components of reaction at the pins

A, B, and C of the two-member frame shown in Fig. 2-34a.

S kN 3 kaI]'I
3
‘B\B]llllllll C
/// 2m
-
2m
7 D
v 1.5m
/’/
e
S,
AR
I 2m
(a)
CE 315-Fall- 2021 Dr. Ra'ed Al-Mazaidh 63
Free-Body Diagram.
. 6kN
8kN ; .
ANS l | :(.
3 p B, B‘—PL [ <—C,
/// T- 1m —f—1m -T
//2 =) 1.5m B, C,
},—w\ (b)
t“ ~Z2m— "}
AI
Equations of Equilibrium.
Member BC:
(+EZM-=0; =-B2)+6(1)=0 B, = 3kN Ans.
Member AB:
(+EM,=0; -8(2)—-3(2)+ B:(15)=0 B,=147kN Ans.
&, SF,=0; A, + 1(8)-147=0 A, = 987kN Ans
+13F,=0; A, -8 -3=0 A, = 940kN Ans
Member BC:
H3FE =0, 147-C,=0 C, = 147kN Ans.
+12F,=0; 3-6+C,=0 C, = 3kN Ans.
CE 315-Fall- 2021 Dr. Ra'ed Al-Mazaidh 64
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CE 315: Structural Analysis
Analysis of Statically Determinate Trusses
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Common Types of Trusses

o Atruss is one of the major types of engineering structures which provides a practical
and economical solution for many engineering constructions, especially in the design

of bridges and buildings that demand large spans.
o Atruss is a structure composed of slender members joined together at their end points

o The joint connections are usually formed by bolting or welding the ends of the members

to a common plate called gusset plate.

a Planar trusses lie in a single plane & is often used to support roof or _bridges

9\ e
O e®7
o e

gusset plate

CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh




Roof Trusses
> They are often used as part of an industrial building frame
> Roof load is transmitted to the truss at the joints by means of a series of purlins

> Tokeep the frame rigid & thereby capable of resisting horizontal wind forces, knee

braces are sometimes used at the supporting column

# 5 ridge purlins

purling

top cord

knee brace

CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh

5y

E/N/NA

i

8]

AN

Fink
(e)
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< Bridge Trusses

> The main structural elements of a typical bridge truss are shown in the figure below.
Here it is seen that a load on the deck is first transmitted to stringers, then to floor
beams, and finally to the joints of the two supporting side trusses.
sway - topcord
- bracing |

lateral
bracing | |
( 3

portal
bracing

portal
end post 4

’/ floor beam

CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 5

» The top and bottom cords of these side trusses are connected by top and bottom lateral
bracing, which serves to resist the lateral forces caused by wind and the sidesway caused by

moving vehicles on the bridge.

» Additional stability is provided by the portal and sway bracing. As in the case of many long-

span trusses, a roller is provided at one end of a bridge truss to allow for thermal expansion

sway o 1op cord
top hmc.mg f
lateral |
bracing

portal
bracing

portal
end post
p

|
& floor beam

CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 6




o In particular, the Pratt, Howe, and Warren trusses are normally
used for spans up to 61 m in length. The most common form is

the Warren truss with verticals.

o For larger spans, a truss with a polygonal upper cord, such as

the Parker truss, is used for some savings in material.

o The Warren truss with verticals can also be fabricated in this

manner for spans up to 91 m.

CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh

< Assumptions for Design

o The members are joined together by smooth pins
o All loadings are applied at the joints

Due to the 2 assumptions, each truss member acts as an _axial force member

T «—=G >—> T
(a)

C—>€ S C

(b)

CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 8




Classification of Coplanar Trusses

Simple
Compound or Complex Truss
Simple Truss
» Toprevent collapse, the framework of a truss must be rigid

> The simplest framework that is rigid or stable is a triangle

Dr. Ra'ed Al-Mazaidh

CE 315-Structural Analysis-Fall 2021

o The basic “stable” triangle element is ABC

o The remainder of the joints D, E & F are established in alphabetical sequence

o Simple trusses do not have to consist entirely of triangles

B, SF

A B ([:

simple truss

simple truss

CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 10




o Compound Truss

o Itis formed by connecting 2 or more simple truss together.

o Often, this type of truss is used to support loads acting over a larger span as it is

cheaper to construct a lighter compound truss than a heavier simple truss

CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 11

simple
trusses ™

o Type 1

m The trusses may be connected by a common joint & bar. Fig(a)

AR of & 5D
_é. B E e S

o Type 2

m The trusses may be joined by 3 bars Fig(b)
o Type 3

simple ——
trusses

m The trusses may be joined where bars of a large simple truss,

called the main truss, have been substituted by simple truss,

called secondary trusses. Fig(c) ®

secondary .
simple f
truss

main simple truss £
()
Various types of compound trusses

CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 12




Complex Truss

A complex truss is one that cannot be classified as being either simple or compound

Complex truss

CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 13

Determinacy

o The total number of unknowns includes the forces in b number of bars of the
truss and the total number of external support reactionsr.

o Since the truss members are all straight axial force members lying in the same
plane, the force system acting at each jointis coplanar and concurrent.

o Consequently, rotational or moment equilibrium is automatically satisfied at the

joint (or pin).

2F.=0and X F,=0

CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 14




O By comparing the total unknowns with the total number of available equilibrium equations,

we have:

b+r=2j statically determinate

b+r>2j statically indeterminate

Degree of indeterminacy: (b + r-2j)

b: The total number of bars of the truss.

r: The total number of external support reactions.

j: The total number of joints.

CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh
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Stability

o Ifb +r < 2j=> collapse (Unstable)

o Atruss can be unstable if it is statically determinate or statically

indeterminate

o Stability will have to be determined either through inspection or by force analysis

CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh
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o External Stability

m A structure is externally unstable if all of its reactions are concurrent or parallel

m The trusses are externally unstable since the support reactions have lines of

action that are either concurrent or parallel.

P
— A ) G -
unstable — concurrent reactions .
unstable — parallel reactions
CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 17

o Internal Stability

m The internal stability can be checked by careful inspection of the arrangement of

its members

m [f it can be determined that each joint is held fixed so that it cannot move in a “rigid

body” sense with respect to the other joints, then the truss will be stable

m A simple truss will always be internally stable
m If a truss is constructed so that it does not hold its joints in a fixed position, it will

be unstable or have a “critical form”

C L G
D C E & o)
A A 1
A A\ r7 S B F =
B F Yp

CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 18




m To determine the internal stability of a compound truss, it is necessary to identify the

way in which the simple truss are connected together

m The truss shown is unstable since the inner simple truss ABC is connected to
DEF using 3 bars which are concurrent at point O. Thus an external load can

be applied at A, B or C & cause the truss to rotate slightly.

CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh
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m For complex truss, it may not be possible to tell by inspection if it is stable

m The instability of any form of truss may also be noticed by using a computer to solve

the 2j equations for the joints of the truss. If inconsistent results are obtained, the

truss is unstable or have a critical form

b+r<?2j unstable

b+r=2j unstable if truss support reactions
are concurrent or parallel or if
some of the components of the

truss form a collapsible mechanism

CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh
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Example 1

Classify each of the trusses in Fig. 3-18 as stable, unstable, statically
determinate, or statically indeterminate. The trusses are subjected to
arbitrary external loadings that are assumed to be known and can act
anywhere on the trusses.

(d)

CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 21

Fig. 3-18a. Externally stable, since the reactions are not concurrent
or parallel. Since » = 19, r = 3, j = 11, then b + r = 2j or 22 = 22.
Therefore, the truss is statically determinate. By inspection the truss is
internally stable.

Fig. 3-18b. Externally stable. Since b = 15, r=4, j =9, then
b + r = 2jor 19 = 18. The truss is statically indeterminate to the first
degree. By inspection the truss is internally stable.

CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 22
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Fig. 3-18c. Externally stable. Since b =9, r =3, j =6, then
b + r = 2j or 12 = 12.The trussis statically determinate. By inspection
the truss is internally stable.

Fig. 3-18d. Externally stable. Since b = 12, r =3, j = 8, then
b + r < 2j or 15 < 16.The truss is internally unstable.

CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 23

Determination of the member forces
» The Method of Joints

> The Method of Sections

The Method of Joints

o Satisfying the equilibrium equations for the forces exerted on the pin at each joint of the truss

o Applications of equations yields 2 algebraic equations that can be solved for the 2 unknowns
B

_—— 500N
B : ‘
— 500 N Fga Fpc
2m
45°™ g :
sc (compression)
. tension compression
A A Fp, (tension)
1 ;) =i g
| (b)
2m { Fc
Fya
(a) (e)

CE 315-Structural Analysis-Fall 2021

Dr. Ra'ed Al-Mazaidh
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o Always assume the unknown member forces acting on the joint’s free body diagram to

be in tension

o Numerical solution of the equilibrium egns will yield positive scalars for members

in tension & negative for those in compression

o The correct sense of direction of an unknown member force can in many cases be

determined by inspection

o A positive answer indicates that the sense is correct, whereas a negative answer

indicates that the sense shown on the free-body diagram must be reversed.

CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 25

Example 2

Determine the force in each member of the roof truss shown in the
photo. The dimensions and loadings are shown in Fig. 3-20a. State
whether the members are in tension or compression. The reactions at
the supports are given.

2kN

CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 26
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Only the forces in half the members have to be determined, since the
truss is symmetric with respect to both loading and geometry.

Joint A,

Free-Body Diagram.

| Fac

Equations of Equilibrium.

5 sF =0, Fap—8c0s30°=0 Fup=6928kN(T) Ans
L5k =0, Fap—8cos30°=0 Fup=6928kN(T) Ans
CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 27
Joint G, iy
\ 3kN
Free-Body Diagram. . F/
T : GF

Equations of Equilibrium.

Ans.

_FGF=0

Ans.

Ans.

+N\3F, =0; Fgpsin60° — 3cos30° =0
Fgg = 3.00kN (C)
+/7%F, =0; 8 — 3 sin30° — 3.00 cos 60°
Fgr = 5.00kN (C)
+12F, =0;  Fgpsin60° — 3.00 sin30° = 0
Fpr = 1.73kN (T)
as. SIRE=(y; Fpe + 1.73 cos 60° + 3.00 cos 30° — 6.928 = 0

CE 315-Structural Analysis-Fall 2021

Ans.

Dr. Ra'ed Al-Mazaidh

L
3.00 kN
30° l! 60°

6.928kN B Fye
(d)

28
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Zero-Force Members

Q Truss analysis using method of joints is greatly simplified if one is able to first
determine those members that support no loading

U These zero-force members may be necessary for the stability of the truss
during construction & to provide support if the applied loading is changed

O The zero-force members of a truss can generally be determined by

inspection of the joints & they occur in 2 cases.

CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 29

+ Case 1
o The 2 members at joint C are connected together at a right angle & there

is no external load on the joint
o The free-body diagram of joint C indicates that the force in each member

must be zero in order to maintain equilibrium

B C
P " o S8
Fep l Fup
F,
cD Iﬁ‘
AA— X
Fap
d 1 3F, = 0; Fypsin 6 = 0
A LE A D F3R=0Fcz=0 Fyp=0 (since sin 8 # 0)
J - i

HEF, = 0; Fep =0 E3F=0; —Fup+0=0

7 Fap=10

(a)

(b)
(c)
CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 30
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+ Case 2

QO Zero-force members also occur at joints having a geometry as joint D

Fpc
D
FDF FDE
Frg
/ \x F Fp
W
(b) (©)
@ +1 3F,=0; Fcpsin@ + 0=0
+¥ZFE,=0; Fpp=0 Fep = 0 (since sin 8 # 0)
CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 31

o No external load acts on the joint, so a force summation in the y-direction which is

perpendicular to the 2 collinear members requires that Fpr =0

a Using this result, FC is also a zero-force member, as indicated by the force analysis of

joint F
&
Fpe
D
Fpr Fpe
y X
(b)

CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 32




Example 3

Find all the zero-force members of the truss shown in Fig. 3-24a.

3
Fpc
EA
Fpe o X
(b)
3¢
Fre
Fep 7 . o
(a) P
CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 33
Joint D, Fig. 3-24b.
+TS:F). =0; Fp(' sin 8 = 0 F,')(' =0 Ans. |
HsF =0 Fpgt0=0 Fpp=0 Ans. ‘ -
4 -\\\
Joint E, Fig. 3-24c. / ‘\\
«iEF} = (: Fpp=10 Ans. “lﬁ =D
P
y
Joint H, Fig. 3-24d. e
+/‘2Fy =0, Fup=0 Ans. Fup
H
FHF
Joint G, Fig. 3-24e. The rocker support at G can only exert an x \
. . . X
component of force on the joint, i.e., G,. Hence,
+T2Fy =0, Fgqa=0 Ans. i
FGa
G —bL— i
‘ G Fgr
CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 34
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The Method of Sections

o If the forces in only a few members of a truss are to be found, the method of sections generally
provide the most direct means of obtaining these forces.

o This method consists of passing an imaginary section through the truss, thus cutting it into 2

parts.
o Provided the entire truss is in equilibrium, each of the 2 parts must also be in eouilibriumD.
" | : T‘F _ © of—2m 1
2 i —— 2 S ?“’[it»c Fyc 4—4{;; (': T D,
| 7 n 5
‘ 2m 2™ V' 4 ;/F“( F(;('/: 2 0
i - ¢ ’145(}:-— For /:/_..i : 4—\ E
T lG a, F 1 lﬁ i ' G Fer)
2m 2m - 2m - 1000 N (b) ©
1000 N (@)
CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 35

o The 3 eqns of equilibrium may be applied to either one of these 2 parts to determine

the member forces at the “cut section”

o A decision must be made as to how to “cut” the truss

o In general, the section should pass through not more than 3 _members in which the

forces are unknown

D,
2m 5
= L 2m
B ~a D Fi ol |
} T T B—rc Fpot—i== 1 [ D,
| | s 50 / 1
| 5 I/F |
p m GC
! m ///! F(}{_‘/ . 2m
P 1 s 21 B
f 47 —o [ e === F o L 1 1 2
s - P—i“ it G ! GF GF_(',:"‘ -« E,
PZm#Zm#Em—: l % '
1000 N (@) MG (b) ©
CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 36
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o If the force in GC is to be determined, section a-a will be appropriate
o Also, the member forces acting on one part of the truss are equal but opposite
o The 3 unknown member forces, FBC, FGC & FGF can be obtained by applying the 3

equilibrium equations

D,
B CaC D 2m -
- ‘ Ll:i"" c— 2m 4
¥ C Fpot—==3 it D,
I o\ 4 V4
m VF p / i
< 2m 4 GC /
| \ y /,// 1 F(JC'/ 2 m
| 4% o
| L \45, s
A } — = 2 F o | ——
G @ |F E Fzm_ﬂ; i G Tar) o
2m 2m 2m s
1000 N
1000 N (a) (b) (c)
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Example 4

Determine the force in members GJ and CO of the roof truss shown in
the photo. The dimensions and loadings are shown in Fig. 3-26a. State
whether the members are in tension or compression. The reactions at the
supports are given.

300 Ib
Wb, 300 Ib
150 Ib P 150 1b
30° J 30°
1
> I.=0
H =£ *

B
|

A, =115931b [ 3¢ 3ft D3t 1,=1159.3 1b

Fig. 3-26

CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 38
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Member GJ.
Free-Body Diagram.

Equations of Equilibrium.

(+3M; = 0; —Fgy sin 30°(6) + 300(3.464) = 0 i (,;, ?
I*(m—j

Fg; = 3461b (C) 1159.3 b
Member CO.
Free-Body Diagram.
S For
Equations of Equilibrium. 1501b 1k Feo
30° S
— _ = A - -y
(+tEIM, =0 300(3.464) + Fep(6) =0 A @ WF;
Feo = 1731b (T) 6 ft
__________________________ 1159.3 Ib
CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 39
Example 5

Determine the force in members BC and MC of the K-truss shown in
Fig. 3-28a. State whether the members are in tension or compression.
The reactions at the supports are given.

La K J ii H

10t
a=04 ‘J NI 171 \ vt
Am Bl D E I tf G
FIS ft 15 ft =15 ft ~+15 ft
A, =29001b 12001b 15001b 18001b G, = 1600 b
(a)
CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh
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Free-Body Diagram.

Equations of Equilibrium.

(+ZM; = 0; —2900(15) + Fpe(20) = 0
Fge = 21751b (T)

To flnd FMB
From the F.B.D of Joint B

—>ZFy=O—>FMB=12001b

+1SF, =0; 2900 — 1200 + 1200 — Fpy, = 0

Fy = 2900 1b (T)

CE 315-Structural Analysis-Fall 2021

Dr. Ra'ed Al-Mazaidh

Joint M

Free-Body Diagram.

Equations of Equilibrium.

3 3
fan-o ()= () rm -

+13F, = 0 2900 - 1200 = | —
5,0 (o) (
Fyx = 153216 (C) = 15321b (T)

CE 315-Structural Analysis-Fall 2021

)FW =0

Ans

Dr. Ra'ed Al-Mazaidh
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CE 315: Structural Analysis
Chapter 4: Internal Loadings Developed in Structural Members

Dr. Ra’ed Al-Mazaidh

Internal loadings at a specified point

¢+ The internal load at a specified point in a member can be determined by using the method of

sections

+ This consists of:
o N, normal force
a V,shear force

o M, bending moment

CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 2




++ Sign convention

Although the choice is arbitrary, the convention has been widely accepted in structural

engineering
v
M M l
\% v v
M M
N — N ( )

CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh

Procedure for analysis

» Determine the support reactions before the member is “cut”

» If the member is part of a pin-connected structure, the pin reactions can be determine
using the methods of section

» Keep all distributed loadings, couple moments & forces acting on the member in their
exact location.

» Pass an imaginary section through the member, perpendicular to its axis at the point

where the internal loading is to be determined
» Then draw a free-body diagram of the segment that has the least no. of loads on it
> Indicate the unknown resultants N, V & M acting in their positive directions

» Moments should be summed at the section about axes that pass through the centroid of

the member’s x-sectional area in order to eliminate N & V, thereby solving M.

CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh




» If the solution of the equilibrium equations yields a quantity having a negative magnitude,
then the assumed directional sense of the quantity is opposite to that shown on the free-

body diagram.

CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh

EXAMPLE 1

Determine the internal shear and moment acting at a section passing
through point C in the beam shown in Fig. 4-3a.

Fig. 4-3
i 8318 i iR, i s

CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh




T 6t

45k

CE 315-Structural Analysis-Fall 2021

=13k p=
=3*39ft=135k

ZMA = 135 (6) + B,(9) = 0

- B,=9K

ZFy=—13.5+9+Ay=O

- Ay=45K

_r

3 k/ft

O w
|

W

_>V|/C

K/ft

3 ft 6 ft

1
=E*1*3=1.5K

Dr. Ra'ed Al-Mazaidh

45k

+15F,=0; 45-15- V¢

L+EM[- = ():

CE 315-Structural Analysis-Fall 2021

Ve =3k

—4.5(3) + 1.5(1) + M= 10

Dr. Ra'ed Al-Mazaidh

Mc= 12k ft .




Shear & Moment Functions

+» Design of beam requires detailed knowledge of the variations of V & M

+ Internal N is generally not considered as:
» The loads applied to a beam act perpendicular to the beam’s axis.

» For design purpose, a beam’s resistance to shear & bending is more important than its ability

to resist normal force.

» An exception is when it is subjected to compressive axial force where buckling may occur.

CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 9

+ In general, the internal shear & moment functions will be discontinuous or their slope

will be discontinuous at points where:
» The type or magnitude of the distributed load changes

» Concentrated forces or couple moments are applied

e

-]

X |

| -rl gl

P
TRRRY | ] |

X3

(a) (b)

CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 10




+» Procedure for Analysis

o Determine the support reactions on the beam.

o Resolve all the external forces into components acting perpendicular & parallel to

beam’s axis.
o Specify separate coordinates x and associated origins, extending into:

m Regions of the beam between concentrated forces and/or couple moments

m Discontinuity of distributed loading
o Section the beam perpendicular to its axis at each distance x
o From the free-body diagram of one of the segments, determine the unknowns V & M
o On the free-body diagram, V & M should be shown acting in their positive directions
o V is obtained from >, F,=0
o Mis obtained by > M =0

CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh
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The results can be checked by noting that:

am
dx =V
dv

ax "

CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh
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EXAMPLE 2 ]

Determine the shear and moment in the beam shown in Fig. 4-7a as a
function of x.
60 k

4k/ft l)

x; - |
12 ft——‘ | 100 k - ft

X3 | |
20 ft 1
(a)
48k
60k Z M, = —48 (6) — 60(20) — 100 + M, = 0
Ay e l ------ T
L A ; i - M,=1588 K ft
! | |
M, |»(pn i 14 ft {100 k- ft ZFy=—48—60+Ay=0
- A,=108K
CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 13
K

ae (TTETLITIET) !
A

ISSKR-I‘II E 12 ft- - 100 k- ft
20 ft !
4 R
0=x =121t
'[]ﬁ]}:[ j:‘ﬁ +12F,=0; 108 —4x, -V =0, V=108 4x
1sm-n| I (+3Ms=0; 1588 — 108x, + 4-r1(7;]') +M=0
.'l'] =1
M = —1588 + 108x; — 2x?
M
av A -
P

CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 14




108k |

N

12t = x, = 201,

H1SF, =0, 108-48- V=0,

l+ZMg=0; 1588 — 108x, + 48(x, — 6)
M = 60x> — 1300
aM av _

CE 315-Structural Analysis-Fall 2021

1588 k-ft |.

ol k

it

ol

100 k- fit

48k
V=60 U * ------ :
mikf ! 4’M
E—)
1588 k-ft [ O —*~ 60—y
+M=0 %

Dr. Ra'ed Al-Mazaidh
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EXAMPLE 3

function of x.

CE 315-Structural Analysis-5pHiag2021

Determine the shear and moment in the beam shown in Fig, 4-8a as a

30 kN/m

90 kN 90 kN

1
AR e 1 120 kN/m
e 1
e e e e e |
] Y ! 110 kN/m
LF 4.5m -
6m
|> 9m
T5kN 105 kN

Dr. Ra'ed Al-Mazaidh
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__‘ 90 kN 90 kN

!
_ﬂ,_.--»—{""'j"—_‘”_ i}mkN;’m
:ﬂ:- ------------------------------ ! 10 kN/m
45m -
6m
9m
75 kN 105 kN
20 k/ft
/ +12F, =0
e 2 _w
9 x
X
— W= 20)G)
——
x (+2Ms = 0
9 ft

CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh

10w

Lanfs)s
20(%) kN/m
' m KN/m

1 X
75— 10x — [5(20)(5}} -V=0

V=75—-10x — 1.11x%

~75x + (10x)(§) - [%(2())(%).(]% +M=0

M = 75x — 5x% — 0.370x°
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Ap.

Shear & Moment Diagrams for a Beam

O If the variations of V & M are plotted, the graphs are termed the shear diagram and moment

diagram
P, 3
W P, W= w(x) B -
I T I \1 ‘ } [ { / ‘ %
AR T ® | ® 1 ' D
= ¥ B c ) — Yt
' M, M,
x —Ax
(@)

CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh

w(Ax)

— € (Ax)
1
|

le+AM

¥+ AW

(b)
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o Applying the equation of equilibrium, we have:

w(Ax)

e

| I

L1

- e

V]

M(T Ol)M+AM

V + AV

]
(b)

CE 315-Structural Analysis-Fall 2021

+ TZFy =0;

V+wx)Ax -V +AV)=0
AV = w(x)Ax

With anti - clockwise moments as + ve :

2 M,=0;

—VAx — M —w(x)Axe(Ax) + (M +AM) =0

AM =VAx + w(x)&(Ax)?

Dr. Ra'ed Al-Mazaidh
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Dividing by Ax & taking the limit as Ax —x, the

previous equations become:

av
—=w(x

dx

M _
dx

V

Integrating from one point to another
between concentrated forces or couples in

which case

AV =[wdx , AM = [V (x)dx

CE 315-Structural Analysis-Fall 2021

Dr. Ra'ed Al-Mazaidh

av

dx

Slope ol'} _ {Imensily of
Shear Diagram Distributed Load

a _
dx
Slope of |
Moment Diagram} = B

AV = /wdx

Ch . Area under
e
— ’”} = { Distributed Loading

Diagram

AM = /Vn’x

Change in} - {:—‘chu under

Moment Shear Diagram
20

Shear

10



TABLE 4.1 Relationship between

Loadina Shaar, and Mament

dv daM
Loading hear Diagram, —— = w Moment Diggram, == = V
r
il slope = V;
M, M, lope = Vi
slope = V;
() N I
¥, ¥ Ve M
[ & .|
zero slope positive constant slopes
: 0
" —f—] L.
0
My
a Mg
—_—
zero slope zero slope
—v,
o slope = Ve
—wa -
M Mg ) slope ,,/‘-
Vi Ma
( 1 j Vg My
Vi Ve constant slope positive decreasing slope
w2 slope = —wy slope = Vg
Wy lope = —wy slope :/"'
M, My Vi My
( b
v, & negative increasing slope positive decreasing slope:
&
=V,
wy slope = —w, Elenc i
) slope = V;
M v, slope = —wy
My My
Vi My

¥

negative decreasing slope

posilive decreasing slope
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Geometric Properties of Areas

h
4=
.

Triangle

T

n ') T

| 4

-
“Trapezoid
L3
R
A=ta
7
o
|-
)
Scmi-segment of nth degree curve
—
i
— | L .
I
B -
degree curve
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EXAMPLE 4

Each of the two horizontal members of the powerline support frame is
subjected to the cable loadings shown in Fig. 4-11a. Draw the shear and
moment diagrams for these members.

,’/.'4

A B (& D E
' e =
e SRR 15m| A 15m | 15m A 1.5m|
: " ] f A ;
: [ 4 kN | 4 kN [4kN
I 6 kN 6kN
CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 23
A B C D E
N .
1.5 mI 1.5m 1.5m 1.5 mJ
| I8 j
akN | 4KN fakn |
[6kN 6kN

(@) [ ]
Vv (kN 1
4

| A2=2+15=3 |~_| /, 7 |

7§ ~ A4=4+15=6 |
\ 1553 45 [/ 6" (m)

= 'I-'ll.l'l
’ \I:'.E?\|A3=—2*1.5=—3|
I

[41=—4+15=—6] \ ®) Il
V negative constant |
M slope negative constant

V positive constant l: Al + A2+ A3 + A4 |

/N
M (kN-m) / ||| M slope positive consynt
/] ) Slope = —2
LS/ f £l 45 1\
| 1 rizf | T (m

Slope = —4 '—— g Slope = 4
TR Al + A2 + A3

CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh
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EXAMPLE 5

Draw the shear and moment diagrams for the beam shown in Fig. 4-13.
The support reactions have been calculated.

T R2=-8+3=-24 l
[Rl=;*—8*1.5=—6 ]

8§N/m

4 :
15kN-m< T) 2EN
l—15m 3m—

30 kN
V(kN) o .
W negative increasing
V slope negative increasing

S.F.D
x (m)
Starts at~”
zero slope
Ends at
! slope of —8
‘ —30 £
CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 25
V(kN) !

w negative increasing
V slope negative increasing

Starts at
zero slope

Ends at
slope of —8
30 =

[T nl e —
# ] [ “ [ 1
— c L A - —on E A = blh, + k)
| 3 —r—l =
—T—|
5 [
Parabolic spandrel 1

A2 = Eb(hl + h2)

1 1 1

Al==+*bxh—=%1.5%x6=-3 =-*3x(-30 —6) =54
3 3 2
CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh

@
S.F.D /|1-5 45 B'M'D Starts at-

x(m)

zero slopg

1 NS
V negative increasing
M slope negative increasing

x (m)

Ends at
slope of —30—

=15+ A1+ A2
=15—-3 —-54=—42

( Clockwise (+ value)

Counter-clockwise (- value)

26
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EXAMPLE 6

Draw the shear and moment diagrams for the compound beam shown in
Fig. 4-15a. Assume the supports at A and C are rollers and B and E are
pin connections.

n=2-3n=6
r==6
r=3n=6
Statically determinate

20k Sk 3K/t

e Exercise
j—0

CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 27
=2 43%6=9
32 = == x 3%6=9
20k 5K 3k/ a
T i ﬁﬁﬁﬁﬁﬁ 116k L Al % X
60k ft( 4'{{1 Tfr 3 20
0 *
4k
V (k) 10’
?
d 10 16
—16 2 v 4
() X=—=—-—=2
w2
CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 28
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A2 = %(—16)(8) =64 ]

! 24
¥ 6
N2 10 16 20 .

32
a2=6+9}= 54 a—l*6*ﬁ9=18

\ «—| 43=(-21)(4) =88

> Mlal=6+*12 =72
; (c) 32

[ 42 = (-16)(6) = —96 ] [A4=72+54+18+36=180]

%*6*9:36

]

] j
CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh b 29

Shear and Moment Diagrams for a Frame

EXAMPLE 7

Draw the moment diagram for the frame shown in Fig. 4-16a. Assume

the support at A is a roller and B is a pin.
5k

i -15 fi- -

D Mp=5+15+3+5-4,(15) =0~ 4, = 6 K

y
ZFy=—5+6—By=0—>By=1K

Zsz—BX+3=0—>BX=3K

CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 30
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Mg, ZMC=3*5—MCL=0—>MCL=15K.ft 6k

CxL

Sl D E=3-Cu=0-0q=3K ]

A ZFy=6—CyL=O—>CyL=6K

L

CE 315-Structural Analysis-Fall 2021

15k-ft
-+ 3k

Dr. Ra'ed Al-Mazaidh

Mcr | 15 fi ]

ZMC=_1*15+MCR=0_)MCR=15K'ft
ZFx=—3+CxR=O—>CxR=3K

ZFyZ_l—I—CyR:O_)CyR:lK

CE 315-Structural Analysis-Fall 2021

15 k-ft | 150

3k —e-T[

1k

Dr. Ra'ed Al-Mazaidh
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15k Mt 15k-ft 4 151t -
: 3k 3 3k 1k —e)r[ —3k
5t 15 k- ft |k Hl
3k
1k
A
Tﬁ k
CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 33
6k X(ft)
11
I5k-ft
- 3k x (ft)
i A= -3*5=-15
st 1
3k 6
6
A
: M (k-ft
T v (K.ft) = (k1)
6k
-3 Member AC

Member AC

CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 34




V (K.ft)
1
15kt 4 1511 1 A= 1*15=15
3k —H{ —3k X(ft)
1k Hl Member CB
1k
M (k-1t)
3 :
¥ (ft)
Member CHB
CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 35

EXAMPLE 8
Draw the shear and moment diagrams for the frame shown in Fig. 4-17a.
Assume A is a pin, C is a roller, and B is a rigid joint.
40 kN/m
(a)
CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 36
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tan~! (%) = 36.87° 80 kN

B =

=120 KN*sin (36.87)= 72 KN

R =40 KN/m *3= 120 KN

=120 KN*cos (36.87)= 96 KN

D My=-72525-80x6+Cy8=0-C,=825KN

ZFy=—80+82.5+Ay=0—>Ay=—2.5KN

ZFX=120+AX=0—>AX=—120KN

CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 37

72 KN

120 KN

ZMB=—72*5+2*5+72*2.5+MBL=O—>MBL=170KN.m

ZFy=72—2—72+VB=2—>VBL=2KN

120*sin 36.87=72 KN
ZFX=—96+96—1.5+N3=0—>N3 = 1.5KN

120 KN

;/ 170 kN-m -

I = 0 |
07 cos 36.87= 96 K 2.5 cos 36.87=2 KN y /

2.5 5in 36.87=1.5 KN, -
.5 KN k ®
1.5kN v,
2kN R
CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 38
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80 kN
MBR =170 l

(g (B
[ e
(l Ver TC

82.5kN

ZFy:—80+82.5—VB:2—>VB:2.5KN

CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 39

2 KN

170 KN.m

72 KN

Al =486 70 =170.1

V (kN)
TI)
S=-144
72 KN
M (kKN -m)
2 KN
S=70
CE 315-Structural Analysis-5pHiag2021 Dr. Ra'ed Al-Mazaidh 40
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80 kN

A70KN-m l
| lB
( [ | ¢
25 kN 1‘
825 kN
V (kN)
Al =-25%2=-5
25 . 4 x (m)
&
A2 = —825+2 = —165
M (kN -m)

x(m)

CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 41

Moment Diagrams Constructed by the Method of Superposition

» Beams are used primarily to resist bending stress, it is important that the moment diagram

accompany the solution for their design.

» Most loadings on beams in structural analysis will be a combination of the loadings as shown.

M,

—EL

CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 42
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~ parabolic curve

2
—wy L*

*cubic curve

CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 43
Following show the method of superposition for simply supported beam.
40 kN/m
hvd b ds7soknem
Al ) & B
Sm - - 5m -
75 kN 125 kN
40 kN /m
LTI amsoknem M (k-ft)
A y 1 B | 250
I = )
—35m e Sm ‘ —50
75 kN " 125 kN resultant moment diagram
200 kN b tafi M (k-ft) !
(f il | | o
o S5m - —20(]V_
S500kN-m
L M (k-ft) +
y 7S0kN-m !
‘s 1 | x (ft)
—35m - 400'—‘
TS0 kN-nv
1250 kN-m + M (k-t) +
. 500 |
x (ft)
s 10 m 1 |
125 kN -
125 kN
superposition of cantilevered beams
a4

CE 315-Structural Analysis-Fall 2021

Dr. Ra'ed Al-Mazaidh
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The Hashemite University
Faculty of Engineering
Department of Civil Engineering

CE 315: Structural Analysis

Chapter 5- Deflections

Dr. Ra’ed Al-Mazaidh

Deflections

Question: What are Structural Deflections?

Answer: The deformations or movements of a structure and its components, such as beams and

trusses, from their original positions.

» ltis as important for the designer to determine deflections and strains as it is to know the
stresses caused by loads.

» Deflection is caused by many sources, such as, loads, temperature, construction error, and

settlements.

» ltis important to include the calculation of deflections into the design procedure to prevent

cracking of attached brittle materials (concrete or plaster walls or roofs) or to solve indeterminate

problems.

CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 2




Calculation of Deflections

U Double integration method: (Direct integration)
Equations which define the slope and the elastic curve

L Geometrical methods: The strain of an elastic structure is used to determine the deflection.

They are used to obtain the slope and deflection at specific points on the beam.

1. The moment-area theorems method.

2. The conjugate-beam method.

U Energy methods :are based on the principle of conservation of energy.

1. The method of virtual work.

2. Castigliano’s theorem method.

CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 3

Deflection diagrams & the elastic curve

* In this topic, only linear elastic material response is considered

» This means a structure subjected to load will return to its original undeformed position after the

load is removed.

» Usually, before the slope and deflection are calculated, it is important to sketch the shape of the

structure when loaded (deflected shape).

» To do this, we need to know how different connections rotate, 6, and deflect, A ,as a response to

loading.

CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 4




IPin or roller support A=0 I

IFixed connection I

) |

&,

Fixed-connected joint — since
the connection cannot rotate, the
slope of the each member is the
same

CE 315-Structural Analysis-Fall 2021

Fixed support A=0and 6=0 |

IPin connection

P

0,

AN

Pin-connected joint — the
pinned joint may rotate which
results in different slopes for
each member same

Dr. Ra'ed Al-Mazaidh

- ~

- A

- ~S o
7

-————
- -~
- f ~
-
l - S~ o
/

]

Deflected shape

- X
~ ~
~o Deflected shape S -

Deflected shape

L.
T << -
0 ~ -~
~. e
~, -
Sem———

4
D L T Ty yey——

== o
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» If you have a difficult time drawing the deflected shape from the elastic response, try to construct the

moment diagram and then use the sign of the moment to determine the curvature of the structure

P,

M 2\ o

M

positive moment,
concave upward

fe_p

I\ o ZIETT B
anﬂtiVC moment, moment diagram
concave downward

-/H.\:inﬂccli(m point

Inflection point: The point where the curve & —u

deflection curve  + M

changes from concave down to concave up.

CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh

o

M

e

beam

moment diagram

M

inflection point

deflection curve

B.M.D
fcinforcing “tension
steel cracks
simply supported beam Deflected shape

overhang beam

CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh
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B e
P s) P < il
1 ;
% . !
; inflection / '
. / I: . /!
point # inflection ./ inflection mflcc_:ulon ’
- 4 __poi poin 8, . .
point "S—Romt /" inflection
point
Al
(b)
(a) c e
P —5
: i
w j
i, &IIIIIJ e I
= = L =75 |
Afc~-——7 D 1 E i
! \ i I
! \ I P =
| 1 I B|I[H
\ ! \ !
b d ) g :
i ~ v - inflection
inflection inflection : point
point : point i
H G F _MA
c
© @
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Elastic-Beam Theory

The relationship between the internal moment and the deflected shape is derived.

Consider a straight elastic beam deformed by a set of applied loads.

v 0:
HJ 1 e = (ds' —ds)/ds. ...(Q)
A J’ m—— o ds=dv=pd) = (2)
S s ol \p p: The radius of curvature which is measured from

the center of curvature O’ to dx

(l), ) ds M B ds' M
N.A 1 . (_!’_ ‘f‘_)__ ds" = (p = y)df. - (3)

Substitute (2) and (3) in (1)

before
deformation w ‘ _ (p—y)df —pdf (4)
- - € pdb

(b) I .
— — == . (5)
p A}
CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 11
e =c/E. .. (6)
ol
o= —My/l. ‘ y:—ﬁ .......... (7)
Substitute (6) and (7) in (5)
1 M
Z= e (8)
P El
Here
p = the radius of curvature at a specific point on the elastic curve
(1/pis referred to as the curvature)
M = the internal moment in the beam at the point where p is to be
determined
= the material’s modulus of elasticity
I' = the beam’s moment of inertia computed about the neutral axis
The product EI in this equation is referred to as the flexural rigidity,
dx . o
FromEq2 dx = pdf, mmm) p= 20 Then substitute it in Eq. (8)
M
) | d = - dx
El
CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 12




1
If we can express the curvature (;) in terms of x and v, we can then determine the elastic curve for the beam.

1 d*v [dx?
; = TW .......... (9) From calculus
+ (dv/ .

Substitute (9) in (8)

M v /dx? Nonlinear second-order differential equation Its solution, v = f(x),
I = = oA (10)  gives the exact shape of the elastic curve—assuming,
L1+ (dv/dx)” [~ of course, that beam deflections occur only due to bending

Since the slope of the elastic curve for most structures is very

. . dv
small, we will use small deflection theory and assume ™ =0

2
dv M
dx? EI
CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 13

The double integration method

d*v M
dx?2 __EI

» Once M is expressed as a function of position x, then successive integrations of the above equation will

yield the beam'’s slope.

0 ~t e—d"—fMd M
~ tan =a, " ) E x Recall: dG—Ed.l’

» The equation of the elastic curve:

v= f(fgdx)dx

The internal moment in regions AB, BC & CD must be written in terms of x;, x, and x5

a1

X

X3

CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 14




» Once these functions are integrated & the constants determined, the functions will give the slope &

deflection for each region of the beam.
» ltis important to use the proper sign for M as established by the sign convention used in derivation.

= +ve v is upward.
= +ve slope angle, will be measured counterclockwise from the x-axis.

\  elastic curve

+M( ! ) +M *"ﬂd_;\ .
[\ 3
+dv 3 ~— 1 +6

:E ] - 3’

+v

(a)
(b)

15
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» The constants of integration are determined by evaluating the functions for slope or displacement at a

point on the beam where the value of the function is known. These values are called

particular
boundary conditions.
V1,02
P
a b |
v |
Iﬁ\_‘ v ! _—/_.—ig‘
Y

|

Xo

Once the functions for the slope & deflections are obtained, they must give the same values for slope
& deflection at point B.

16
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Example 1

The beam in Fig. 7-14a is subjected to a load P at its end. Determine
the displacement at C. ET is constant.

P
— |
Al e S . ¢

Ue
Ay=P/ x By=3P/2 ‘
(a)
X — M,
M, . l )
L l ) pl‘ 2a 'T v,
Vi = 32
P 2
? Xy =
CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 17

Py 2 Vz
3P
2
X, ‘
’u
M':_E'ﬁ 0=x, =2
Moment Functions. T
M; = > x; + 7(_:: — 2a)
= Px; — 3Pa 2a=x:=3a
Slope and Elastic Curve. d?v _ M
dx? El
d7vy P
a2 P
For x,, dv, _ P, e o Elv, = ~2 + Cix; + G 2)
i T

CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh
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For x;, Bl 1;2 = Px; — 3Pa
dxs5
T D e 3 )
dx, 2
P, 3
Elv, = g_rﬁ - EPHX% + Cxy + Cy (4)

C1,C2,C3, and C4??

4 unknown —» 4 Equations
Boundary Conditions (B.C)

CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 19
Elv ——£x3+Cx + C
1 1291 1X1 2 vveerens (2)
At x,=2a P
— X —| A: v, = O
Elv, = Ex% - éPcvc% + Csxy + Cy eeverens (4) k ‘] ! l
97 7 A s —— e
At x,=0 B Ji"'
A= 171 =02 ___4{? i 7_4 -
———n— |
v = 0atx; =0 0=0+0+ G, At x,=2a
A=v,=0
m)|c=o0
I7 3 . .
v = 0atx; = 2a; 0= - E(Za)' + C1(2a) + C;

# i B E e 4 2
1= 5 = 0atx, = 2a; 0= E(Za)' 2 EP{J(Za)‘ + C3(2a) + C4

CE 315-Structural Analysis-balriz62d 2021 Dr. Ra'ed Al-Mazaidh 20




: Ve 91 = 62
R 4y, d
— — | ) =2 ixoxm2a
dx dy
1 2
dv P
EI-==2==x}—3Pax, + C5 .. (3) o
dx, 2 C =" ;" Previous slide
dv1(2a) d’uz(la) P 12
= . ——(2a)? + C, = = (2a)* — 3Pa(2a) + C
—_— dx; podisisE e
C, = _]{)_ Pa
CE 315-Structural Analysis-Fall 2021 3 Dr. Ra'ed Al-Mazaidh 21
Je: 3 3 2 3
vy = Oatx; = 2a; 0= E(Za)' i EP(J(Za) + Cs3(2a) + C4 Cy = —2Pa’
C = _P:"_ C=0 C; = L Pa> C, = —2Pa’

To find the displacement at C (X=3a) , use eq (4)

| —

Elv, = g\'z - gPaxg + Caxy + C4 (4)
_ Py 3Pa, . 10Pa’>  2Pa’
2T 6EI™ T 2E1M T 3EI *T EI

The displacement at C is determined by setting x, = 3a. We get

Pad (-) Downward
e

El
CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh
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dv, P ,
e — — +

El d, 2 x5 — 3Pax; + G5 (3)
dv, P , 10

El dx, sz 3Pax, + 3 Pa

The slope at C is determined by setting x = 3a

£t 22 2 2 302 ~3paza) + 2 pa?
dxz_Z(a) a(3a) 3 a
dv, 7Pa?
_ — = c = —
de 6EI
(-) Clockwise from the x-axis
CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh
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Conjugate-Beam Method

Heinrich Miiller-Breslau
(1851-1925)

German Civil Engineer.

He developed the Conjugate-Beam
Method in 1885
Also known as “Method of Elastic
Weights”

CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh
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Conjugate-Beam Method

U The basis for the method comes from similarity equations

U Toshow this similarity, we can write these equations as shown:

Or integrating,

dv d*M
=w —=w .
dx dx~ V= /w dx M = /[]w dx } dx
B M 1? M
& av_ M ! ! i I

dx  EI dx?® EI . e
6= /(E) dx v = /{/ (E) thl dx
EI El

Here the shear V compares with the slope 8, the moment M compares with the displacement v,

M
and the external load w compares with the il diagram.

CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 25

To make use of this comparison we will now consider a beam having the same length as the

real beam but referred to as the “conjugate beam”,

The conjugate beam is loaded with the M/EI diagram derived

from the load w on the real beam From the above I TITI ﬁ[ ﬁ T_I—T
e e 1
\

comparisons, we can state 2 theorems related to the ‘

I

conjugate beam: real beam
Theorem 1
—_— M

The slope at a point in the real beam is numerically equal to the k- \ W‘

shear at the corresponding point in the conjugate beam. . [ ] ] 1 | ‘ 1 r s

Ze\ g‘ B

Theorem 2 \
1neorem < L \

The displacement of a point in the real beam is numerically conjugate beam

equal to the moment at the corresponding point in the conjugate

beam.
CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 26




Conjugate-Beam Supports

U When drawing the conjugate beam, it is important that the shear & moment developed at the

supports of the conjugate beam account for the corresponding slope & displacement of the real

beam at its supports.

U Consequently, from Theorem 1 & 2, the conjugate beam must be supported by a pin or roller

since this support has zero moment but has a shear or end reaction.

U When the real beam is fixed supported, both beam has a free end since at this end there is zero

shear & moment

CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 27

I TABLE 8.2 I

Real Beam Conjugate Beam
1) o OIS v ===
A=0 . M=0 .
pin pin
y 0 A
A=0 M=0
roller roller
3) 6=0 V=0
A=0 M=0
fixed ! free
4) 2 [ — Vv )
A free M fixed
5) 4 % Vv
| E——]
A=0 internal pin M=0 hinge
o0 0 Ty v
_ =
A=0 internal roller M=0 hinge
N S Vo
A hinge M .
internal roller

CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 28




real beam

———

fe\

X o

e ©

conjugate beam
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Example 2
Determine the slope and displacement at point B of the steel beam shown
in Fig. 7-254. The reactions are given. E = 29(10°) ksi, / = 800 in*.
5k
Skia __J,—_
(  ——————————————
el 451t 1 4516t !
real beam
(a)
Fig. 7-25
CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 30
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V(K)

'S
5K
A=+22.5 K.ft
> X(ft)
le——4.5 ﬁ—»}a—u H‘
M(K.ft)
X(ft)
22.5 K.ft
-1.5 ft-- 1.5 1t

-

conjugate beam

CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 31
|-1_5 ft-- 7.5 ft 1 ™M,
= ¥
! 1‘ e Vi
: =
s0.625 0.5%(22.5/E1)*4.5=50.625/EI
El e
+13F, = 0; - w — Vg =0
50.625 k - ft?
05 = Vg = —° -
B B EI
_ ~50.625 k- ¢ |
[29(10%) k/in® (12 in.)?/ft%] [800 in*(1 ft*/12 in*
[29(10°) k /in? (12 in. /1] [800 in*(1 ft*/12 in)] . Clockwise
= —0.000314 rad
Dr. Ra'ed Al-Mazaidh 32
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50.625 k - ft?

(+EMg = 0; =
379.69 k - ft*
Ag= Mg = ——————
B B EJ'
—379.69 k - ft*

(7.5ft) + Mg =0

Il

—0.002357 ft = —0.0283 in.

[29(10%) k/in® (12 in.)%/ft?] [800 in* (1 ft*/12 in*)]

5 |
158 7.5 £t M,

A \.
Ap
-A: Downward | D—
B Y
CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 33
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Example 3
The girder in Fig. 7-27a is made from a uniform beam and reinforced 6k 8k 6k
at its center with cover plates where its moment of inertia is larger. l l l
The 12-ft end segments have amoment of inertia of I = 450 in*, and the - —

. . . P 4 . Al 2y B
center portion has a moment of inertia of I = 900 in", Determine the ‘== ind | I’ = 900 in* = 450 i}~
displacement at the center C. Take E = 29(10%) ksi. The reactions [

. 12 ft ft-6 f-p—12 ft
are given.
10k 10k
real beam
(a)
Fig. 7-27

CE 315-Structural Analysis-Fall 2021

Dr. Ra'ed Al-Mazaidh
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6k =k

o

_—_— m
Ar— B

L -
f = 450 in* | I’ = 900 in*{ = 450 in®
12 fit 16 ft--6 n--|- 12 ft —

10 k 10 k
V(K)
N
10K
A=+120K.ft 4K
A=+24K.ft > X(ft)
=-24K.ft ’
}<f12 ft—>|«6 ft =-120K.ft
10K
144 K.ft
M(K.ft) 120 K. 20 K.ft
> X(ft)
CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 35
720
120 120 ir] 7 720 I
7 1 120 _ 720 EI E
0 72 6o S*12x A rf o 1,,,,120 720 1 4,36
BT 2y El i L I NS T G LY
I V] 7207 / o =T 0ve
i EI | a 5 i CY M
A B A [J 4
‘ 8 n f10 nﬂL 81t we | [
12 1t 6fl 6 ft 12[14 A ferl ]
16 60/ 70 1116 |’7l8 ft—
El  m P TE ET
conjugate beam internal reactions
(©) 720 , 72, 720 | 720 (d) (e)
ELTELT EL TR _ 1116
_ 2 El _
. 1116 720 360 18K
+IM~ =0 lS——ll)——’-——Z + Mo =10 N
. < T El (10) G) =& ) c M(K.ft) 120 K, 20 K.ft
11736 k - ft?
M=
El > X(ft)
Substituting the numerical data for EIl and converting feet to inches,
we have
11736 k » f3(1728 in’ / 1t )
Ar=Mq = - = > 7 — —1.55in. Ans
29(109)k /in“(450 in*)
CE 315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 36
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CE 315: Structural Analysis
Chapter 6: Deflections Using Energy Methods

Dr. Ra’ed Al-Mazaidh

External Work and Strain Energy

U For more complicated loadings or for structures such as trusses & frames, it is suggested that energy

methods be used for the computations.
U Most energy methods are based on the conservation of energy principal:
“ Work done by all external forces acting on a structure, U,, is tfransformed into internal work or

strain energy U,”

UY(’. = UYE

U If the material’s elastic limit is not exceeded, the elastic strain energy will return the structure to its

undeformed state when the loads are removed.

CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh




External Work—Force.

U When a force F undergoes a displacement dx in the same direction as the

force, the work done is:  dU, = Fdx. . M4

4 If the total displacement is x, the work becomes: U, = f Fdx
0

U4 Consider the effect caused by an axial force applied to the end of a bar \

O F is gradually increased from 0 to some limiting value F = P

O The final elongation of the bar becomes A G

4 If the material has a linear elastic response, then F = (P/A)x

O Substituting into equation U, = f F'dx and integrating from 0 to A, we get
0

})is (a)

08_001a

U, =

2 —

Copyright ©2018 Pearson Education, All Right

CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh

External Work—Moment
U The work of a moment = magnitude of the moment (M) x the angle (d@) through which it rotates.
dU, = M db

4 If the total angle of rotation is 6 rad, the work becomes:

fa
m:/Mw
0

U4 If the moment is applied gradually to a structure having a linear elastic response from 0 to M, then

the work done is:

df

CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh




Strain Energy—Axial Force.
O When an axial force N is applied gradually to the bar, it will strain the material such that the external work

done by N will be converted into strain energy.

U Provided the material is linearly elastic, Hooke’s Law is valid FoF e
a‘ = EE. .......... (1)
4 If the bar has a constant x-sectional area (A) and length (L)
L A
g = NJA (2)
€ = AJL e 3)
Substitute Eq. (2) and Eq. (3) into Eq. (1) T
A= NL (4) ' ol
AFE N
But U, = %PA ....................... (5)
o N2L
Substitute Eq. (4) into Eq. (5) with P=N ‘ Ui = AE
CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 5
Strain Energy—Bending
U Consider the beam in Fig. (a), P & w are gradually apply 1 i
U These loads create an internal moment M in the beam at a section located a 1 1
==

distance x from the left support. ‘ x—f —

U Consequently, the strain energy or work stored in the element can be

determined since the internal moment is gradually developed

O The resulting rotation of the differential element dx, Fig.(b), can be found
from the following equation, that is:

do = (M /EI) dx.

O Since the internal moment is gradually developed , the strain energy, or work

stored in the element, is determined fromeq. U, = ]jMQ

Hence M? dx
’ 1U. =
T R

CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 6




O The strain energy for the beam is determined by integrating this result over the beam’s entire

length L. The result is

) v, =

L M2 dx
o 2EI

CE315-Structural Analysis-Fall 2021

Dr. Ra'ed Al-Mazaidh

Principle of Work and Energy

U Consider finding the displacement A at a point where the force P is

applied to the cantilever beam.

d The external work:
U, =1PA

U To obtain the resulting strain energy, we must first determine the

internal moment as a function of position x in the beam and then

apply. ,, _ M2 dx
), 2E

A In this case M = —Px, so that:

v "MPax  [H(—Px)tde
' 2EI o 2EI

0
O The external work:
U, = 3PA

CE315-Structural Analysis-Fall 2021

_ 1P
6 EI

.
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U, =U,

§
=]
EX] ‘

Limitations:

4
v
4

Although the solution here is quite direct, application of this method is limited to only a few select problems.

It will be noted that only one load may be applied to the structure.

If more than one load were applied, there would be an unknown displacement under each load, and yet it is

possible to write only one “work” equation for the beam

Only the displacement under the force can be obtained, since the external work depends upon both the force

and its corresponding displacement.

CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 9

Principle of Virtual Work

>
>

Developed by John Bernoulliin 1717 and is sometimes referred to as the unit-load method.

It provides a general means of obtaining the displacement and slope at a specific point on a

structure, be it a beam, frame, or truss.

If we take a deformable structure of any shape or size & apply a series of external loads P to it, it will

cause internal loads u at points throughout the structure

As a consequence of these loadings, external displacement A will occur at the P loads & internal

displacement & will occur at each point of internal loads u
In general, these displacement do not have to be elastic, & they may not be related to the loads

In general, then, the principle of work and energy states

2 PA = 2ud
Work of Work of
External Loads Internal Loads

CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 10




O Consider the structure (or body) to be of arbitrary shape.

W P,

O Suppose it is necessary to determine the displacement A of point A on the ’, ," /

body caused by the “real loads” P;, P, and P53 \'. S “\\

R - \b/

3 Itis to be understood that these loads cause no movement of the supports \&\ A
e = i _/,/v -

U They can strain the material beyond the elastic limit. ST
Apply real loads Py, Py, Py

O Since no external load acts on the body at A and in the direction of A, the

)

displacement A can be determined by first placing on the body a “virtual”

load such that this force P’ acts in the same direction as A

O We will choose P’ to have a unit magnitude, P’ =1. Once the virtual

loadings are applied, then the body is subjected to the real loads
P,, P,andPs.

QO Point A will be displaced an amount A causing the element to deform T
Apply virtual loz
an amount dL

CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh

w1 o P 11

QO As a result, the external virtual force P’ & internal load u “ride along” by A and

/4/—--.‘ P
dL & therefore, perform external virtual work of 1.A on the body and internal P \:, /
virtual work of u.dL on the element. ": 1}% \\\‘.
| | virtual loadings \

. A /i
I+A = Zu-dL \Q\\‘*-k_/f?/
| | \

real displacements P,
where
pro=

(a)
1 = external virtual unit load acting in the direction of A.
it

A=

internal virtual load acting on the element in the direction of dL.
external displacement caused by the real loads.

dL = internal deformation of the element caused by the real loads.

4 By choosing P’ = 1, it can be seen from the solution for A follows directly since

(DDA = ZudL.

Apply virtual load P’ = 1

CE315-Structural Analysis-Fall 2021

(b)
o8_aoss
Dr. Ra'ed Al-Mazaidh 12




QO A virtual couple moment M’ having a unit magnitude is applied at this point
O This couple moment causes a virtual load uy in one of the elements of the body.
O Assuming that the real loads deform the element an amount di, the rotation 6 can be found from the

virtual — work equation.

virtual loadings

10 = Zuy-dlL
real displacements

where
M'" = 1 = external virtual unit couple moment acting in the direction of 6.

ug = internal virtual load acting on an element in the direction of dL.

# = external rotational displacement or slope in radians caused by the
real loads.

dL = internal deformation of the element caused by the real loads.

CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 13

Method of Virtual Work: Trusses

We can use the method of virtual work to determine the displacement of a truss joint when the truss is

subjected to an external loading, temperature change, or fabrication errors.
External Loading

U For the purpose of explanation let us consider the vertical

displacement of joint B of the truss in Fig(a). ‘3 = 4

O Atypical element of the truss would be one of its members 1

X Apply virtual unit load to B
having a length L @)
4 If the applied loadings P1 and P2 cause a linear elastic ,
1
material response, then this element deforms an amount:
NL

AL= "= /
AE g

where N is the normal or axial force in the member, caused by the loads
1 A = Z.r,rw'."L

Ab~--BL_ _---
Apply real loads Py, P,
(b)

on_urm

CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 14




niNL

Ill’» =i = AL

where
1 = external virtual unit load acting on the truss joint in the stated
direction of A.
n = internal virtual normal force in a truss member caused by the
external virtual unit load.

A = external joint displacement caused by the real loads on the truss.
N = internal normal force in a truss member caused by the real loads.
L = length of a member.
A = cross-sectional area of a member.
E = modulus of elasticity of a member.

CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh
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Example 1

Determine the vertical displacement of joint C of the steel truss shown
in Fig. 8-8a. The cross-sectional area of each memberis A = 0.5 in® and
E = 29(10)® ksi.

10 ft
A B C WP
0 11 10 ft lnnglr
4k 4k

CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh
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1. Apply 1 unit force (virtual load) (1 K) at point C
No real loads are applied

" 4 10 ft
2. Analyze t.his truss by method of section and/or A:‘.‘? i,__ C,t‘_ : ,\-;D
method of joints to find the virtual forces n ! o o =
F— ¥ ]
1K
3. Analyze the real truss by method of section and/or
method of joints to find the real forces N
~4k
—0333k 3
N ///x "/:\' ' g \\\ N
AN & . '
&7 B SEE NI, 5 ak 0 NN

/A7 . o N

£ ok 0667k l 0.667 k T 1 4k 1 4k 1 4k

33k 1L 0.667 k 4k 4k 4k 4k

CE315-Structural Analysis-Fall 2021

virtual forces n

Dr. Ra'ed Al-Mazaidh

real forces N

17

Virtual-Work Equation.

1k+Ac, = D)

nNL
AE

4. Construct a table contains the following for each member:

5. Substitute :the value from the table and the
values of E,A in the equation

Member n (k) N (k) L (ft) nNL (k2 - ft)
nNL 24647 k>-ft
. _ , e iE) . E
Member n (k) N (k) L (ft) nINL (k2 )
AB 0.333 4 10 13.33
BC 0.667 4 10 26.67
cD 0.667 4 10 26.67 ” L
DE —0.943 537 14.14 75.42 1k-Ac, = (246'1_1721'{ 'ft_) (Jz m_'/ 2“)
EE —0333 i 10 1333 (0.5n7)(29(10°) k/in%)
EB 0471 0 14.14 0 Ac, = 0204 in.
BF 0.333 4 10 13.33
AF 0471 —5.66 14.14 3771
CE 1 4 10 40
S = 24647

CE315-Structural Analysis-Fall 2021

Dr. Ra'ed Al-Mazaidh
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Method of virtual work: Beams & Frames

A
[T
% The method of virtual work can also be applied to deflection problems involving T{XA
beams and frames.
+ Strains due to bending are the primary cause of beam or frame deflections. L 4 !’

» To compute A, a virtual unit load acting in the direction of is placed on the beam
atA.

» The internal virtual moment m is determined by the method of sections at an

Apply virtual unit load to point A

arbitrary location x from the left support

» When point A is displaced , the element dx deforms or rotates d6 = (%) dx

> The internal virtual work done by the moment m is md6 = m (%) dx.

y—'ivirtual loadings
Apply real load w

1A = Eu-d‘l_
\

real displacements (b)

CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh

19

L
—> l-A:/Mch
0

where
1 = external virtual unit load acting on the beam or frame in the
direction of A.
m = internal virtual moment in the beam or frame, expressed as a
function of x and caused by the external virtual unit load.
A = external displacement of the point caused by the real loads acting
on the beam or frame.
= internal moment in the beam or frame, expressed as a function of x
and caused by the real loads.
E = modulus of elasticity of the material.
I = moment of inertia of cross-sectional area, computed about the
neutral axis.

CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh
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» If the tangent rotation or slope angle 6 at a point on the
beam’s elastic curve is to be determined, a unit couple
moment is applied at the point.

» The corresponding internal moment my m have to be

i
mgM
1:0 = d.
/0 E “

determined.

E—

CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh

e Al

e
Px# p m

Apply virtual unit couple moment to point A

21

v" If concentrated forces or couple moments act on
the beam or the distributed load is discontinuous,
separate x coordinates will have to chosen within
regions that have no discontinuity of loading.

v’ It is not necessary that each x have the same
origin.

v The x selected for determining the real moment M in
a particular region must be the same x as that
selected for determining the virtual moment m or my

within the same region.

CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh

4 e

R
[T T

aa

| f X4 1

Apply virtual unit load

(a)

Apply real loads

(b)

22
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Integration Using Tables

» When the structure is subjected to a relatively simple loading, and yet the solution for a displacement

requires several integrations, a tabular method may be used to perform these integrations.

o The moment diagrams for each member are drawn first for both the real and virtual loadings.

o By matching these diagrams for m and M with those given in the table below (It is on the inside front

cover of the textbook) , the integral [ mM.dx can be determined from the appropriate formula

CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 23
oL
Table for Evaluating / mm' dx
Jo
o parabola
L m' /I m e m" g m
" mm' de my
I I I
L L L
|
T
1
m . ) .
|:| 'L Lot L+ mipt. o't ML
L 2 2 :
I
I
. 1
m
A Lot LomL ‘]Tm-[-;.v‘ +myt 1‘—“,,.,,.1 Jmm'L
L 2 2
I
T
///
my 1 1 —~[mi(2m + my) 1 1,
iy —m'(my + m)l. —m'(m) + 2my)L 6 —[m'Gmy + Smn) | L —m'(m,; + 3m;)L
2 & + admy + 2my|L 12 12
L
I
2
| 1 L mi(l + b+ T imm’{l + EJrEL—Z)L
—mn'L. “mm'(L + a) 6 —mm'[3+ = -0 12 L LU
: 6 il + )] R L |
T
1
,
—“mw‘f. (]—.m-n‘.i ‘]—mllwi +mylL l—mm 'L 12mm L
|
CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 24
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Example 2

Determine the displacement of point B of the steel beam shown in
Fig. 8-17a.Take E = 200 GPa, I = 71.1(10°) mm*,

12 kN/m
IRRERRERERRNRNY
A [ ————
3m 1
CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 25

1 kN
1. Apply 1 unit force (virtual load) (1 KN) at point B 4
No real loads are applied '_'d'f:
S g
2. Take a section at a distance x from point B 29 A
: - x
a.
i 3m
m= —lx
1 kN

3. Take a section at the same distance x (same reference) with real loads m=—lx ( T L |

No virtual load are applied Al Pr—‘

2 12x
M= —6x2 %2‘

real load 4‘

CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 26
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I
mM
NN =A== — dx
! /u EI m= —lx

3(—1x)(—6x2) dx
]{, El

SKN?-m’
TKN-A, = 120 g =

_ 121.5kN - m’
200(10°) kN /m?[71.1(10%) mm*](107"? m*/mm*)

0.008544 m = 8.54 mm

CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh
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Another method : Using Tables

1. Draw B.M.D for real loads

36
12 kN/m
54 KN.m

X (m)

-54
36 KN
2. Draw B.M.D for real loads
v (KN)
p 1kN 1
3KN.m ﬁ l
( ;- =P
ad A
4 ‘ x ‘ A=3 X (m)
1 N 3m |
-3
1KN
CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh

: — - g I
ct -'__'-\‘B A=54 X (m) /
I 3m {

—

m (KN.m)

/

28
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3. Select the formula from the table M (KN.m)

oL
Table forE\/nIu.\ling/ mm' dx
Jo
paratola
7| '
m i (
L L
' —
2 —
: —mm’
Zamt 3
5 1 'L
LI Smn
: : -54
.
1
5l +5my) S Cmy + 3m)L
f
1 a
Lofady, | et M (KN.m)
[ Tr
T
1
Lot —mm'L
Lo i
|

X (m)

L 1 1
= f mm'.dx = me’L =—%—54%—-3%3=1215
0

4
121.5kN - m’
_ 121.5kN? - m’ As

- 200(10°) kN /m?[71.1(10°) mm*] (102 m*/mm®)

1kN-Ay = 3
El = 0.008544 m = 8.54 mm
CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 29
Example 3
Determine the slope @ at point B of the steel beam shown in Fig. 8-18a.
Take E = 200 GPa, I = 60(10°) mm®*,
3kN
l B C}
! 2m ! 2m
(a)
CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 30
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1. Apply 1 unit moment (virtual moment) (1 KN.m) at

B
point B (No real loads are applied) A 1’.; |
oy z
! £1 ! L -
2. Take 2 sections (why?)
1 kN-m
B
| mmo -
5 I -2m - -l Xy - %
v

X — 1

virtual load

3. Take 2 section at the same distances (X1,X2) (same reference) with real loads No virtual moment are applied

3 kN 3 kN

I I

My=—3(2 + x,)

P 11)M.=—3x. !

= )

\ v,

‘ 7 Vi ! 2m
real load

CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh
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Virtual-Work Equation. The slope at B is thus

N e g [
( m) - 6p = . EI X

_[H0)(=3xy) dx, (D32 + xy)] dx,
a fr) El i fn El

5, — IBKN- m?
& El

3 ~18 kN - m?
200(10%) kN/m?[ 60(10°) mm* | (10~ 2 m*/mm®*)

= —0.00150 rad Ans.

The negative sign indicates 6z is opposite to the direction of the virtual
couple moment

CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh
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Another method : Using Tables

1. Draw B.M.D for Vrtual load my (kN -m) |
1EN N.m 1 \
-m
7B ! 1
AN (o 1
] L
x - X - ? 1
1 1
1 1
M (kN-m) | "
2. Draw B.M.D for real loads 1 1
1
S 12KN.m | |
l B C £ f x (m
3. Use the tables A — 5 ]
L 1 , , ! 2m 1 2m - 1
=0+ | -m(m;+mj)L.dx | —i2
0 2 3 KN 1
1
= E * 1 x (—6 - 12) *x2=—18 [me'm : m' I/‘m‘ J”';Clm‘z
B L
—18kN-m?
~200(10% kN /m2[ 60(10%) mm*] (102 m*/mm?) :l”' L Lomrt ‘ L o + miL
n 2
= —0.00150 rad Ans.
CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 33
Example 4
Determine the horizontal displacement of point C on the frame shown
in Fig. 8-20a.Take E = 29(10°) ksi and / = 600 in* for both members.
—8 ft——— |
._‘El-_T 1c
= e a
—— “——.\‘g—l
=
4K/
“: 10 ft
T 1
xn [—f
i VR |
CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 34
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1. Apply 1 unit load (virtual load) (1 KN) at point B (No real

loads are applied)

2. Take 2 sections (why?) then find moments at these sections.

I my = 1.25x| v,

i n; 4%'- —1 k
1k J—l _(241

1.25k
125k

my = 1x, m, = 1.25x;

CE315-Structural Analysis-Fall 2021

‘"—- i = ~|
C

B
T J—] k
—sit T
Cy=1.25K

101t

|

Xy

Ax=1K =y A —

}y=1.25 K

C* ZMA =—1(10) + Cy(8) =0 > Cy = 1.25K 1

125
LY e

Dr. Ra'ed Al-Mazaidh

—Ay+125=0- Ay =125K

Ax+1=0-Ax=1K «

3. Apply the real loads (No virtual load are applied)

My = 40x; — 2x;°

N, M, = 25x,
N;
J Fllf -V,

2 1) v,
4,\’1.‘—“'*’ X - 25k
40 k.‘—l 1L

25k
M, = 40x; — 2x,° M, = 25x,

CE315-Structural Analysis-Fall 2021

4. Take 2 sections , then find moments at these sections.

R=4*10= 40K [
—
4k /it

X

ey

Ax=40 K 't

Ay=25 K

G ZMA=—4O(50)+Cy(8) —05Cy=25K1
+I ZFyz—Ay+50=O—>Ay=25Kl

+
—’ZFX=—Ax+40=0—>Ax=40K<—

Dr. Ra'ed Al-Mazaidh
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a Om,.M 8m,.M _ 2
1.%:]’"1‘4]{ = ™ 1_dx+f M2 "2 i my = 1x, M, = 40x; — 2x,
o EI o EI o EI
Mz = 25x,
1 z . my = 1.25x;
0 EI 0 EI
83333 53333 136667 k- ft’
Ac = 4 =
2 EI EI EI
A — 13 666.7 k - fi?
S 129(10%) k/in2((12)2in2/f2) ][ 600 in (ft*/(12)%in*) ]
= 0.113ft = 1.361n.
CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 37
Another method : Using Tables B C
- T | |
1. Draw B.M.D for Virtual load p——s T
1 10 k-ft 1.25K
10 k-ft — 10 ft
811
B.M.D
S.E.D (Virtual
10 ft —
(Virtual load ) 1K =
load) 1.25K S ———
— :: N - = Pan
25 200 k - ft - — X
I R=4*10= 40K |—
2. Draw B.M.D for 200k-ft | = — 25K
4k/ft[
the real loads B.M.D / t—. 10
S.ED (Real T :
(Real 107 loads) n [
load) i A
o 40K ity —————— 1
N )
CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 25 K 38




200 k-ft

10 k-ft
10 k-ft —— 20 ﬁls o
8 ft
10 ft
10ft

me dx= imm’L + lmm’L
T 12 3
5 1
= E(lO)(ZOO)(lO) + §(10)(200)(8)

= 8333.3 + 53333 = 13666.7k>*ft

CE315-Structural Analysis-Fall 2021

Table for Evaluating

ol

/ mm' dx
JO

~ parabola
p n ' Y ™ m'
» L L
L L L
Il
1
m ) g
Cdr | w | e | e | 2 -
L » 3 4
1
m !
A Lt tnnit Lnio + 2mi %wm! Fmm'L
L : ’
t
mf 1 | L
m Ltny + mt ol + 2l S + sm). 5™ (my+3my)L
L
i
i ‘ L+ L
f Lt Lo § ‘ i) Frie Oy
P - 't o 3+ 32
—L— |
T
1
" . [ 1 —mm'L
Lot 'L Lol )
‘ » |
13 666.7 k- ft®

A =
7 [29(10°) k/in?((12)2in2/f2) ] [ 600 in (f/(12)*in*) ]

= 0.113ft = 1.361in.
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Chapter 7: Analysis of Statically Indeterminate Structures
by the Force Method

Dr. Ra’ed Al-Mazaidh

Statically indeterminate structure:

A structure of any type is classified as statically indeterminate when the number of unknown reactions or

internal forces exceeds the number of equilibrium equations available for its analysis.

U Most of the structures designed today are statically indeterminate. For example, reinforced concrete

buildings are almost always statically indeterminate since the columns and beams are poured as

continuous members through the joints and over supports.

Advantages & Disadvantages

- For a given loading, the max stress and deflection of an indeterminate structure are generally smaller

than those of its statically determinate counterpart.

+ Statically indeterminate structure has a tendency to redistribute its load to its redundant supports in

cases of faulty designs or overloading.

CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 2
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PL PL
Moy = 8 M0y Y
MC _PLC _MC_PLC
7= T 8EI C=TT T aEI
3
PL? max= i
max= 192F] 48EI

The fixed-supported beam has one fourth the deflection and one half the stress at its center of the
' one that is simply supported.

CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh

- Although statically indeterminate structure can support loading with thinner members & with

increased stability compared to their statically determinate counterpart, the cost savings in
material must be compared with the added cost to fabricate the structure since often it

becomes more costly to construct the supports & joints of an indeterminate structure

+ Because statically indeterminate structures have redundant support reactions, one has to

be very careful to prevent differential displacement of the supports, since this effect will

introduce internal stress in the structure.

CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh
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[l Method of analysis
When analyzing any indeterminate structure, it is necessary to satisfy equilibrium, compatibility,
and force-displacement requirements for the structure.
Equilibrium is satisfied when the reactive forces hold the structure at rest, and compatibility is
satisfied when the various segments of the structure fit together without intentional breaks or overlaps.
The force-displacement requirements depend upon the way the material responds; (Here we

assume linear elastic response).

CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 5

+» Force Method:

The force method consists of writing equations that satisfy the compatibility and force-displacement

requirements for the structure in order to determine the redundant forces. Once these forces have been
determined, the remaining reactive forces on the structure are determined by satisfying the equilibrium
requirements.

+ Displacement Method:

The displacement method of analysis is based on first writing force-displacement relations for the members

and then satisfying the equilibrium requirements for the structure. In this case the unknowns in the equations

are displacements. Once the displacements are obtained, the forces are determined from the compatibility

and force-displacement equations

Equations used Coefficients of
Unknowns . §
for solution the unknowns
C tibility Flexibilit
Force Method Forces SR, 2

and force-displacement | coefficients

Equilibrium Stiffness

Displacement Method | Displacements ’ i
P P and force-displacement | coefficients

CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 6
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Force Method of Analysis: General Procedure

o From free-body diagram, there would be 4 unknown support reactions
3 equilibrium equations
Beam is indeterminate to first degree

o Use principle of superposition & consider the compatibility of
displacement at one of the supports

o Choose one of the support reactions as redundant & temporarily
removing its effect on the beam

o  This will allow the beam to be statically determinate & stable
o Here, we will remove the roller at B
o As aresult, the load P will cause B to be displaced downward

o By superposition, the unknown reaction at B causes the beam at B to
be displaced upward

CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh

P
A
F E + = i B
T
(a)
Il
P

2 ' B
- ST ———— e 5%};

primary structure
(b)
<+

o Assuming positive displacements act upward, then we can write the
necessary compatibility equation at the roller as

(+1) 0= —Ap + Ajp

o Here the first letter in this double-subscript notation refers to the point (B)
where the deflection is specified, and the second letter refers to the point
(B) where the unknown reaction acts.

o Letus denote the displacement at B caused by a unit load acting in the
direction of By as the linear flexibility coefficient fpp.

o Since the material behaves in a linear-elastic manner, a force of By
acting at B, instead of the unit load, will cause a proportionate increase

in fpp -

Apg = B, fsg

CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh
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?
% ' = 5
Soien
o The linear flexibility coefficient fz is a measure of the deflection per unit (@)
force, and so its units are m/N, ft./lb . T

o  The compatibility equation above can therefore be written in terms of the E
unknown By as F““ * a%’l—
0=—-A; + B_\, fzs Primnv);;;rucrurc T

+
o  Using the method of virtual work the appropriate load-displacement

relations for the deflection Ag and the flexibility coefficient fz5, can be "  Nm=B, f;”I
obtained and the solution for By can be determined. [

o Once this is accomplished, the three reactions at the wall A can then be B,
found from the equations of equilibrium.

o The choice of redundant is arbitrary Fz; ———————— i ?B_f"”

CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh me 9
o The moment at A can be determined directly by removing the 3
capacity of the beam to support moment at A, replacing fixed F l -5 =
support by pin support actual beam
o The rotation at A caused by P is 6, rl -
o The rotation at A caused by the redundant Ma at Ais 6, , A l
o If we denote an angular flexibility coefficient a4, as the angular R e
displacement at A caused by a unit couple moment applied to A, HA ‘“im“"(';')”w‘“”‘
then Oha = Myceas o
o Thus, the angular flexibility coefficient a4, measures the angular M,
displacement per unit couple moment, and therefore it has units of @ET{ e =5
rad/N, rad/lb. The compatibility equation for rotation at A Van=Macan
redundant M, applied
therefore requires ()
(C+) 0=0, + Myana (e =—"L
Gy
CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh (S) 10
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The beam is indeterminate to the second degree:
P, P, P, P, B,
l B l’ C A l B l C A B (%4
— T 7 - 1 — D
(e —— =m0 + T e
Ap Ac Agp=B,fgr Acs= Byfes
actual beam primary structure redundant B, applied
(a) (b) (:)
- e c; -
+ 4 2 lC D
) e e .
(+1) 0=A; + B,fgp + C,fsc Ape=Cyfpc A cc= Cyfec
: : redundant C, applied
(+1) 0= Ac + Byfes + Gyfee S
1 1
£ B Cl 5 " 31 C -
e ——
fre fec fB Jen
(e)
CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh
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Maxwell’s Theorem of Reciprocal Displacements: Betti’s Law

» The displacement of a point B on a structure due to a unit load acting at point A is equal to the displacement
of point A when the load is acting at point B

» Proof of this theorem is easily demonstrated using the principle of virtual work

fBA :fAB

CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh
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Beam Deflections and Slopes

Loading v+ T o+ ﬁ Equation + T - ﬁ
v
P
o P g _ _PL
| osE =2 v = % (x* — 30+2)
atx = L atx = L &
L x—
v
M ,
0 MoL* o MoL
) = max = Ma
] ) e 2EI El =’
atx = L atx = L 2E1
—X
L
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v
W
RNy e
n, = — = — ; 3 27
! ! ™ T TREl m T T6R] 0= ———(xt — 4L + 6177
atx = L atx = L MEI
__r‘_l
v
JP
& | S =+ FL A I Y R
_alls J— E Vimax ARE] mar = eET v 435( o aLox),
I x— atx = L2 atx =0orx =L 0=x=LJ2
L L
2 T 7
v
lP
Pab(L + b) Phx (L2 — 1
{ S —— - _ 1o
J 1 t 6LEI Y= oL s
Pab{L + a)
—X— Oy = u 0=x=a
g b 6LET
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v
w
L
Umay = — 3
Y Y 3B4ET wl WX o 4 5 1
f Op = = 5 - (-l + L)
_.Q_J o S L 24E1 24E[I
atx = —
2
—X- =
v
wx 3 3 3
' 7P=— l6x” — 24Lx~ + 9L7)
“W 384E1
3wl oy
Y 8, = — 0=x=L/J2
o | L 128E1
e e+ S R
Twl L (g — 241 + 1703 — 1Y)
—X— b = IRLES IBLET T .
L
) .\I(_;
Mgl
L= T
o | Mol 6l Mox
I} Mo Mgx .
pr———r L Umax = v = _ﬁ( — %)
}‘x ON 3ET 9, — .-\‘fOL
L ‘ T
| |
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Table for Evaluating / mm'" dx
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o parabala
' ’ o [g— ,
r n /Im ) m" - :l m
" mm' de my
b L L L L L
|
T
m . .
|:| 'k JTm-n‘i —:mw{ +mpl %wrm‘l’ Zmm'L
L 2 2 :
!
I
m 5 ’
A Lot LomL ]Tm[-;.v‘ + iyt L Smm'L
L 2 3 f 2
f
// 1
iy 1 I =[mi(2m; + my 1 1
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f 2 L] + mimy + 2m|L 12 12
I
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T
1
m b, 1, 1 _— [ —mm'L
e —mm'L. Frm'L Smi2m] + il 'L 12
L 2
|
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Example 1

Determine the reaction at the roller support B of the beam shown in
Fig. 9-9a. EI is constant.

50 kN
1A l @ B
| 6 m 6 m—=_-
actual beam
(a)
CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 17
How to calculate A and f:
1) Tables (Beam deflections and slope)........... (direct) or,
2) Double integration method, or
3) Conjugate —beam Method, or
4) Virtual work method, or
CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 18
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V(KN)
d primary structure 50 |
actual beam
6 x(m)
=~ B[A'yy =B, fus
t
redundant B, applied ! e
m' (KN.m) ()
Compatibility equation
300 ™'
(+1 0= —-Ag + ByJfgs
' V(KN) i
Ap= fmm’.dx Em’(m, + 2my)L l
Xtm
L (300)(6 + 2+ 12)(6) = o | * "
= — * = —
6 EI | (m)
m
m (KN.m) 6 . S xam
‘/'6/
12 m,
CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 19
fon = pPL*  1(12m)’ 576 1113T aiig e |
B8 3E1 3EI EI
v
ll‘
o
s Vpax = “3E
atx = L
x—
(+h 0= —Ap + B,fpp
(+1) 0——M+B(ﬁ) B, = 15.6 kN
~ EH "\ EI oo
M (kN-m) 03.8
S50 kN
344kN ’ 327
(1| | +—x (m)
12kN-m' o m———6m—f 6 12
15.6 kN
=112 (d)
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Example 2

Draw the shear and moment diagrams for the beam shown in Fig. 9-11a.
El is constant. Neglect the effects of axial load.

| 2k/ft
117771
L]
v T
| 10 fi
CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 21
2k/ft 1l

0t ——on | A

(@)

actual beam

Mp

M LA

= A

By

= A=
B \H - (I
O BrR= MB“BIJ

0'ap= Mpaap
redundant moment My applied

=N -

— === 0
Qan= Maasy  0Ba= Maagy

redundant moment M4 applied

(C+) 0 =0, + Mya,, + Mga,y, (1)
(C+) 0 = 0 + Myap, + Mpapp (2)
CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 22
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m Loading | v+ T g+ 'ﬁ

3wL’
T
. 0 — Twl?
primary structure L x— R = 3maEl
L | L
2 2
_ 3wl 320 375 w720 2917
N I8ET 128E1  H B 384EI 384E1  EI
v Mo
M, | ‘3 Mol
L= = -
( ) Mol Sl
i R =" U = = —
gan=Maass 0B8a= Maapy |_x | 9\V/3EI _ ML
R = ey
redundant moment M, applied | L { 3E1

ML 120) 667

Qaq =

ML _ _ — ML _1(20) 333
3EI 3El El 1aBA =

G6EI  GEI  EI

CE315-Structural Analysis-Fall 2021
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Loading | v+ T | 4+ 'ﬁ ‘
+ )] ‘IU
M | Mol
/ M -
] GEL
\ = _ 5 ) | | m
——— e max —
0'ap= Mpayy  O0'B8= Mpagy |—x—-| | IV3E! 8, = Mol
redundant moment Mp applied | L | 3
_ ML 1(20)  6.67 ML 1(20) 333
QApp = L T = o Qg = - = =
3EI 3EI El 6EI  GEI EI
— ML Why?
Qup =@ =
AB BA GEI
Maxwell’s Theorem of Reciprocal Displacements: Betti’s Law
CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 24
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Substituting the data into the compatibility equations:

375 6.67 3.33
WL AR E
EI "\ EI EI

201.7 333 6.67
=g ‘”4(?) ’ *’”ﬂ(?)

M, = —458k-ft My = —208k-ft

2k/ft
1625k 375k

458 k-fl' £ B Tzo.s kAt
10— 101t

CE315-Structural Analysis-Fall 2021

V(k)
1625
10 2
8125 ()
M (k-ft) o —375
202
3.63 . 144 LI
8125
-208
45.8 ()

Dr. Ra'ed Al-Mazaidh
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Force Method of Analysis: Frames

The force method is very useful for solving problems involving statically indeterminate frames that have a

single story and unusual geometry.

Problems involving multistory frames, or those with a high degree of indeterminacy, are best solved using the

slope-deflection, moment-distribution, or the stiffness method.

CE315-Structural Analysis-Fall 2021

Dr. Ra'ed Al-Mazaidh

26

CE315-Structural Analysis-Fall 2021

13



Dr. Ra'ed Al-Mazaidh

CE315-Structural Analysis-Fall 2021

CE315-Structural Analysis-Fall 2021

The saddle bent shown in the photo is used to support the bridge deck.
Assuming EI is constant, a drawing of it along with the dimensions
and loading is shown in Fig. 10~13a. Determine the horizontal support
reaction at A.

40 kN/m

Dr. Ra'ed Al-Mazaidh 27
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Axfan

Redundant force A, applied

0=A2, ~Acfaa

Dr. Ra'ed Al-Mazaidh 28
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To find A4

0KN/m

3
_ _ _ X7 /
oo AT
> » 7 7
5 )
L] T ' ehanah
+— Sm —'|—Yrﬂ S j_ )
X _ — =
L ’g‘ | : s = 200(5 + x;) = 40w 5
200 kN = 1000 + 200x; — 20x7 | 200 kN
L Mm 3 (0)(1x))dx, 5 (200x,)(—5)dx,
AA:]—d.\"ZZ/ +:/
o EI 0 El 0 El
Yy ]5 (1000 + 200x; — 20x3)(—5)dx;
0 El
_ 25000 666667 _ 91666.7
- El EI El
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To ﬁnd fAA

Axfaa
Redundant force A, applied

L 5 2 5 3
mm (1xy)"dx, 2 2
Tn = —dx =2 — +2 [ 5)dx,+2 [ (5)d
0 0 @

o EI
58333
T El
583.33 - 6
_ o = 916667 Ax(sssss) A, = I57kN
El EI EI

CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh
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Force Method of Analysis: Trusses
» The degree of indeterminacy of a truss can usually be determined by inspection; however, if this

becomes difficult, use the following equation:

b+ r>2

Here the unknowns are represented by the number of bar forces (b) plus the support reactions
(r), and the number of available equilibrium equations is 2j since two equations can be written for

each of the (j) joints

» The force method is quite suitable for analyzing trusses that are statically indeterminate to the first

or second degree.

CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 31

Example 4

Determine the force in member AC of the truss shown in Fig. 9-15a.
AE is the same for all the members.

400 1b
DB ot
\ 61t
| 0
|
A *L{ (AL

FhE e = oo =0 () RO RO S st deoree

CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 32
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actual truss primary structure redundant F - applied
Compatibility Eq. 0= Aue + Eicfacac
CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 33
To find Agcac
e ELIE ]
. D —
nNL - o
Ayc = 2, - 7
AL +300 0 0
400 Ih-—] =
2 . ANL A +4iNh
W= E AE 300 1k 300 b
; (—0.8)(400)(8)]  (—0.6)0)(6)  (—0.6)(300)(6)
= 2= | e
AE AE Al 08
{10 =500)(10) (10 10) J'} C
- - - : ! -~
AE AE e f
- 11200 X} " (L6
AE +1
A B
—(.5
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To find fAC

n'l

_f1r',1r' = z AFE

[(—08Y(8) ]
AE

7

[ (—0.6)%(6)
AE

_ 34.56
T AE

0= Auc + Facfacac

11 200 .56
AE AE

4 1b(T)

|
=
]
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X4

—(1.5

Ly
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Chapter 8: Displacement Method of Analysis( Moment
Distribution)
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General Principles & Definition

» Displacement method requires satisfying equilibrium equations for the structures.

» The unknowns displacement are written in terms of the loads by using the load-

displacement relations.

» These equations are solved for the displacement.

» Once the displacement are obtained, the unknown loads are determined from the

compatibility equations using the load displacement relations.

CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh




» Moment distribution is a method of successive approximations that may be carried out

to any desired degree of accuracy.
» The method begins by assuming each joint of a structure is fixed.

> By unlocking and locking each joint in succession, the internal moments at the joints are

“distributed” & balanced until the joints have rotated to their final or nearly final positions.

CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh

1) Sign Convention

» Clockwise moments that act on the member are considered positive, whereas

counterclockwise moments are negative.

( I W,m})

Mz

CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh




Fixed End Moments

L i
2) Fixed-End Moments (FEMs) e =
. o (A . ];h ,;) (A %
The moments at the “walls” or fixed joints o - 22 o -5 ro (G )
H A ! 5 B
of a loaded member are called fixed-end S=snsns

moments. These moments can be

determined from the table on the inside

back cover of the textbook, depending

upon the type of loading on the

member. 4 ) ( MM,
T — . =
FEM] b (FEM, - FEMD _-‘;‘;
11 ﬂ me 11 ey
) r—r—— [} ear——
i, - 25 a2 ‘”M“ﬂ_%uf
@ @— 2 S
— P
wen),, - SH2 My - L FEMY, ; - 2E2
CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaigh L 7 L c

For example, the beam loaded as shown in figure below has fixed-end moments of

PL  800(10)
FEM =— =

— =1 N.m.
3 3 000 N.m

Noting the action of these moments on the beam and applying our sign

convention, it is seen that

M,z _ _1000N.m.and Mg, = 1000N.m.

800 N
M, 5 l Mg
/ b
A B
- S5m = Sm -~

CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 6




B
3) Member stiffness factor 4 | . = l.% ) M
— Sx. / A "”,’
Consider the beam in the figure, which is pinned at one e .
end and fixed at the other. Application of the moment M ",
2R -
causes the end A to rotate through an angle 6, .Using H ] I -THTT
, f_’T"r*a—
the conjugate-beam method M can be related to 64 as =S =nyy lJH H H
follows: Yy,
V=6, conjugate beam el
(b)
1 MAE L 1 MBA 2
4E1 M, =0 =22 |=- |- ==
M,z :< >9 K:T CH+IMy =0 L( El )LL {2(51 )L 0
i M M 2
Far End Fixed C+3My = 0; {%(%)L}%—{%( 58)1“}%_@4;‘:
K is referred to as the stiffness factor at A and can - ) - )
be defined as the amount of moment M required to
rotate the end A of the beam 6,=1 rad.
CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 7

4) Joint stiffness factor

If several members are fixed connected to joint and each of their far ends is fixed,

then by the principle of superposition, the total stiffness factor at the joint is the sum

of the member stiffness factors at the joint.

Member stiffness factors

> The total stiffness factor of joint A is % - IOONKAB = 4000
D

K; =2 K =4000+5000+1000 =10000 e = 5000 a

(a)

CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 8




5) Distribution Factor (DF)

If a moment M is applied to a fixed connected joint, the connecting members will each

supply a portion of the resisting moment necessary to satisfy moment equilibrium at the

joint. That fraction of the total resisting moment supplied by the member is called the

distribution factor (DF).

A | DF, = Mi _ K6
D 5 ' M 6K
-
M = 2000 N-m
K
DF = —
2K
C
(b)
CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 9

Kap = 1000 4 Kag= 4000

Kac=5000 B

For example, the distribution factors for members AB, AC, and AD at joint A

DE, z = 4000/10 000 = 0.4 The sum of the distribution factors
DFE,~ = 5000/10 000 = 0.5 for all members at the same Joint

DF,, = 1000/10 000 = 0.1 must equal 1.0 @

As a result, if M =2000 N . m acts at joint A, Fig. (b), the equilibrium ¥ % { B

M = 2000 N-m

moments exerted by the members on the joint, c, are

C

M,z = 0.4(2000) = 800 N - m -
My = 0.5(2000) = 1000 N*m -
M =2000N-m
Myp = 0.1(2000) = 200 N - m )'
200N-m 800 N-m
mMm
(c)

CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 10




6) Member relative stiffness factor

» Quite often a continuous beam or a frame will be made from the same material E will

therefore be constant

> In the case, the common factor 4E will cancel from the numerator and denominator when

the distribution factor for a joint is determined.

CE315-Structural Analysis-Fall 2021

1
i ==
ETL

Far End Fixed

Dr. Ra'ed Al-Mazaidh
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7) Carry-over (CO) factor

M
P —
My = 4L£8A My = %BA A LB - ’_(i/i ________
Solving for 8, and equating these equations, o
M g=0.5M,,
The moment M at the pin induces a moment of M’ = 0.5M at the wall

In the case of a beam with the far end fixed, the CO factor is +0.5

CE315-Structural Analysis-Fall 2021
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Moment Distribution for Beams

Moment distribution is based on the principle of successively locking and unlocking the joints of a

structure in order to allow the moments at the joints to be distributed and balanced. The best way to

explain the method is by examples.

O Consider the beam with a constant modulus of elasticity E and having the 240 Ib/ft

dimensions and loading shown in Fig(a). %ﬁ i} l l l l l l’ 1M c
1,5 =300in* |

STEP 1: Determine the member stiffness factors on either side of B. =R

4E(300)
15

|
- 15 ft -+ 20 ft

= AEQO /I Kye = T

Kp = = 4E(30) in*/1t

ISTEP 2: Determine the distribution factors at the two ends of each span.

4E(20) 4E(30) 4E(20) 4E(30)
=— " 04 DFge=-—r =06 = - DFp = =
DFga 2EQ0) + 4E(30) 0.4 BC ™ 4EQ0) + 4E(30) > DFag + 4E(20) 0 @ 4E(30)
Recall: Memb lati iff f = .
ecall: Member relative stiffness factor Kr = I |The wall stiffness factor is infinite. |
CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 13
ZA0 16,11
)"i H'UHHHHQ
STEP 3: Determine the FEMs Ly=300i* T Ipc=600in* |
M-Lz ,)40(,_)0)2 151t -1+ 20 ft |
(FEM)pe = — = "7 = -80001Ib-ft Counterclockwise (@)

12 12

wl?  240020)°

(FEM ey — L~ 2020 oo Clockwise ( HHI#HHM‘BD

L

STEP 4: Determine the unbalanced moment acting at the initially (FEM),, = wL* FEM),, = WL
“locked” joint (B) SV ST
v Assume joint B is fixed or locked (Fig.b) L
A
v The fixed-end moment at B does not represent the actual equilibrium 5l 7 c
8000 1b- it
situation at B, since the moments on each side of this joint must be . ) BODOA 3-8
joint B held fixed
equal but opposite. (b)
STEP 5: Unlock the joint and apply an equal but opposite unbalanced moment BO00 G T
to correct the equilibrium (Fig.c) - = c

correction moment applied to joint B
(©)

CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 14




STEP 6: Distribute the moment among the connecting spans
based on their DFs
8000 1b - ft

&. A’
1600 b ft=— 3200, 1b-ft 4800, 1b-ft —2400 Ib- ft
momentat B digiributed
8000 X 0.4 \(d) /8000 X 0.6

B ———

4E(20) [ 4E(30) )
Dy =20, g 1 D, = 4EG0
B4 7 4EQ0) + 4E(0) B000 b4 DFsc = 7500) + 4£G0)  °

STEP 7: Carry the moment in each span ovelrbto its other end
8000 Ib-ft

B i
1600 1b ft=— 3200 Ib-ft 4800 Ib- ft
oment at B distribu

/i
16001b-ft Vi, =3201b V, = 20401b ity Ve=27601b

400 Ib-ft u ‘T) ( “

156t—| 3200Ib:f | b 20ft—] 10400 Ib-tt

V,=3201b
3200X0.5" ~ 1800 X 0.5 hm —
1 | Joint A B C
2 Member, AB | BA | BC CB Unbalanced
3 DF 0 04 | 0.6 0 .~ Moment
gt based on DFs
FEM —8000"8000
4 Dist.CO| 1600-x3200 | 4800~ 2400
SM | 1600 | 3200 |-3200 |10 400
16001b-ft  Vi,=3201b v, =2040 lb%r . “f/“, + Ve=27601b
(|met) (4 1)
Vy=3201br—— 151t %I 3200 Ib-ft }-7 20ft———+ 10400 Ib-ft

(f)

CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 16




240 Ib/ft

A Bl |

Jlllll‘ll%g

Lip=300in* =
l 151t l 20 ft 1
(a)
_AE(30)
DFcp = 1EG0) Locked

Ly = 300 in*

151t
(a)
CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 17

Joint A B C
Member AB BA BC CB
DF 0 04 0.6 11

" FEM [—s000 | so00 |2
Dist. 3200 4800 |-8000 | 3
co —4000 | 2400 | 4
Dist. | 1600 | 1600 2400 2400 | 5
co -1200 1200 | 6
Dist. 800, 480 720 [-1200 |7
co —600 T 360 |8
Dist. 240 240 | 360 | -360 |9
Cco i —~180 T 180 |10
Dist. 120 7 108 | —180 | 11
co 7 90 T 54 |12
Dist. %, 3% | 54 | -5 |13
co -27 27 |14
Dist. 18, 108 1621 =27 |15
Cco =135 81 16
Dist. 54 | 54 8.1 81| 17
Cco i 405" 405 18
Dist. 2T 1.62 243, —405 19
CcO ’ -202]7 122 20
Dist. 081 | 080 12| -122| 21
co —061 061 22
Dist. 0.40 024 037| -061 23
SM | 2823 | 5647 |-5647 | 0 |24

CE315-Structural Analysis-Fall 2021

Dr. Ra'ed Al-Mazaidh
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EXAMPLE 1

Determine the internal moments at each support of the beam shown in
Fig. 11-7a. EI is constant.

CE315-Structural Analysis-Fall 2021

250 kN

20 kN/m
ST e ¥ ol

Dr. Ra'ed Al-Mazaidh

19

_ 4kl
AB 12
_ 4EI
BC i5
_4El
CcD 8

DFAE = DFDC =0

DFp, = DFge = 4ur 12 =05
Ba — TUBC T 4EIN10 + AEIN12 T
DF . — 4EI/12 .
B 4EI/12 + 4EI/8
4E1/8
DF(_‘D = 06

4EI/12 + 4EI/8

CE315-Structural Analysis-Fall 2021

Dr. Ra'ed Al-Mazaidh
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The fixed-end moments are
wl?  —20(12)? wl?  20(12)?
(FEM)pc = —">-= ——-—— = ~240kN-m (FEM)cg = ">~ = — - = 240kN'm
PL  —250(8 PL  250(8
(FEM)ep = ——5 = s( ) sk (FEM)pc = 5~ = BU)  eokim
W
(o TS )
L
2 g2 250 kN
(FEM),, — g (FEM),, — & 20 kN/m
12 12 A BJIIJIIIIIlC D
alle, _ ‘
P
l 12m l 12m [—
4m 4m
¢ =)
2 2
PL PL
(FEM)p = — (FEM)p, = —
8 8
CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 21
Locked
Joint A B & D 1
Member| AB BA BC CB €D DC 2
DF 0 0.5 0.5 0.4 0.6 0 3
FEM —-240 240 =250 250 4
Dist. 120 120 4 6 5
CcO 60 2 60 SN6
Dist. | =1 -1 % -24 =) i 7
cO —{I}5] =12 -0.5 =18 8
Dist. 6 6 0.2 0.3 4
CcO 3 0.1 3 02 |10
Dist. SOOI (03 =T =1 11
CO -0.02 -0.6 -0.02 Al |
Dist. | 03| 03 001 | o001 13
M 62.5 1252 [E=125.2 125155 M| ES 23158 W 2343 (11 4
CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 22
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250 kN

20 kN/m
62.5kN-m, 315-6 kN 107.0 kN 133.0 kN 1309kN , 1, 119.1kN
( | — ) ( fm—= P ( | )
: - 1252 kN - B z 281.5kN- : !
1566 W o = & 12m = AR D 3343 kNm
M (kN-m) 2421
160.9
62.5
\4.0 12 N 24 . 32
: 17.3 28 )
-125.2
—-234.3
—2815
CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 23
Stiffness-Factor Modifications £ ;
M= T‘f) ?M N
1) Member Pin Supported at Far End (. ) I ),
AW ‘&ﬁﬁ """"""
_ 0 v _ M 2 locked
CH+EMp = 0; Vi) Q(E[)L(zL) =0 unlocke locked
B joint
Vg ML joint
A= YT 3E ol 3
or A(V e B
3EI _&g p—
M==0 T e
L end
Thus. the stiffness factor for this beam is rcal(b;:am pmn
a
 3EI 1(M
= El |~~~ __‘fz () w
I St
| =

Far End Pinned
or Roller Supported

» The carry-over factor is zero, since the pin at B does not

support a moment.

CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh

conjugate beam

(b)

24

12



Fixed End Moments

I3

e

n "
My - M -

G %@

,““_7_ u-v:,-f

C%D

@My - g My - 2

(/1 —— ") (A Ea B

_ Wi wil T
v - e - 5 anis - 2L

(A - ll) (4 R a;
B 3EIA e
CE315-Structural Analysis-FallQQ2d e e B 25
2) Symmetric Beam and Loading sternal
P moments P
M L ,l, l
+EMe = 0; V) + = =) =0 4
C 2] C p(L) E[( )(2) - 3
ML
V=0 = — \
’ 2EI ‘
or
2E1
M= 6
The stiffness factor for the center span is therefore L L__
Vg 2 2 Ve
2E] o >
K=— 0 '
L ! ¢
1
Symmetric Beam and Loading fmmmmm oo i ‘‘‘‘‘‘‘‘ M
EI
M
EI
conjugate beam
(b)

CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 26




internal
moments

3) Symmetric Beam with Antisymmetric Loading

e - L)

—9= ML
6EI

- (&) @)

= &

Il
=)
=
>
<
]
\
\
\
\
Iﬁ_g
\
i

T 1 B’
o: -
The stiffness factor for the center span is, therefore, i L e 5 ' l
| -
_ ok vt - Ve
L 7 1 {M\(L
. . BE |l
Symmetric Beam with 2 \EI/\2
i : ) (12-6)
Antisymmetric Loading conjugate beam
(b)
CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 27
EXAMPLE 2
Determine the internal moments at the supports of the beam shown in
Fig. 11-14a. The moment of inertia of the two spans is shown in the figure.
240 1b/ft
L4 = 300 in*
R 15 ft ! 20 ft -J|
(a)
CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 28
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4EI _ 4E(300)

Kaz =T =715
3EI 3E(600)
Kee=""=""7% =
80E
DF,p = R T 80E 0
SOE
DFgy = ————— = 0.4706
BA ™ 80E + 90E
90E
DFpc = =———— = 0.5294
B¢ = goE + 90E ~ 0%
90E
DF¢gp = ﬁ =1

CE315-Structural Analysis-Fall 2021

= 80E

Iy =

240 Ib/ft

Y

Y\

300 in*

Ipe = 600in* =

Dr. Ra'ed Al-Mazaidh

15 ft { 20 ft

29

(4

wil
(FEM),p = —

2 24020)
(EEM)r = e — = Q0 15000 1b-fi
8 8
Joint A C
Member AB BA BC CB
DF 0 04706 | 0.5294 1
FEM ~12.000
Dist. 56472 | 6352.8
74
Co 2823.6
SM | 28236 | 56472 | —56472 0

CE315-Structural Analysis-Fall 2021

Dr. Ra'ed Al-Mazaidh

TITTTITRITIY!

B

1

L

5]

240 Ib/ft

Ly = 300in*

Y

Y 0

Ipe = 600 in* =

| 15 ft {

20 ft

30

15



No Sidesway and Sidesway frames

No Sidesway frame

1) It is restrained against sidesway.

Restrained frames

CE315-Structural Analysis-Fall 2021

2) The frame geometry and loading is symmetrical.

T

» The frame will not be displaced to the right or left. frame does not sidesway if:

T

— %,

Dr. Ra'ed Al-Mazaidh

Symmetrical frames

31

Sidesway frame

A frame will sidesway, or be displaced to the side, when it is not restrained against sidesway or the

loading acting on it is nonsymmetrical

~

Not restrained against sidesway

CE315-Structural Analysis-Fall 2021

A

Non

Dr. Ra'ed Al-Mazaidh

Sm

D

symmetrical loading

32
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EXAMPLE 3

Determine the internal moments at the joints of the frame shown in
Fig. 11-15a. There is a pin at E and D and a fixed support at A. EI
is constant.

CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 33

4E1 4E1 3EI 3EI
KAB:F Kﬂ‘(,‘:ﬁ KCD:F (,‘E:E

DF,; =0

4EI/15
e 20k
DEpa 4EI/15 + 4EI/18 i

DFjpc = 1 — 0.545 = 0.455

DF ¢z = =Ll = 0372
CE " 4EI/18 + 3EI/15 + 3EI/12

DFep = ot = 0.298
€D " 4EIN8 + 3EI/15 + 3EI/12

DFcp =1 — 0372 — 0298 = 0330

DFpc=1 DFge=1

CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 34




wi? 50187

(FEM)p == === = == = =135k ff
(FEM)cp = ";7;2 = 5(11;;}2 = 135k -ft
Joint | A B @ D E
Member| AB | BA| BC | CB | CD | CE | DC | EC
DF 0 ]0.545 |10.455|0.330 | 0.298 | 0.372| 1 1
FEM —135| 135
Dist. 73.6 | 614 |-44.6 |—40.2 |-50.2
CO | 36.8 =273 418304/
Dist. 122 || L =100 || =91 =115
CO 6.1 =S I Sl
Dist. 2.8 2oy, =y || Sl || =1l
COo | 14 —TEHE 12
Dist. 0.4 04, -04 | -04| -04
CO 0.2 -027" 02
Dist. 0.1 0.1 -0.1 00| -0.1
XM | 445 | 89.1 |-89.1| 115 |-51.2|-64.1
CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 35
101 k - ft
=0 ket
—80.1 k- ft —89.1k-ft —64.1 k- ft
=115 ft
445 k- ft
(c)

CE315-Structural Analysis-Fall 2021

Dr. Ra'ed Al-Mazaidh
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Moment Distribution for Frames: Sidesway

CE315-Structural Analysis-Fall 2021

P

A D

artificial joint applied
(no sidesway)

Dr. Ra'ed Al-Mazaidh

A D

artificial joint removed
(sidesway)

37

EXAMPLE 3
16 kN
1 m 4m
B (&
5m 5m
A D
(a)

CE315-Structural Analysis-Fall 2021

Determine the moments at each joint of the frame shown in Fig. 11-18a.

EI is constant.

Dr. Ra'ed Al-Mazaidh
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16 kN

A D

(b)

+

c

B ; R
Al | |D

(c)

Fig. 11-18

CE315-Structural Analysis-Fall 2021

SOLUTION

First we consider the frame held from sidesway as shown in Fig. 11-18b.

We have
FEM)pe = —2 W) _ 024 kNm
(5)°
(FEM) ¢ = Iﬁ(])‘,(‘:) = 2.56kN-m
(5)°
K Ko = _ 4E1 _ 4E1
AB — “BC — I\¢D — L - 5

DF4py = 0 (Fixed end)
4EI , AEI 4EI

DFpay = Kap/(Kap+Kpc) = — /(+—) =0.5

DF(BC) =1- DF(BA) = 050

4El , AEl 4EI
DFcpy = Kpc/(Kpc+Kep) = —/(+7) =0.5

DF(CD) = 1 - DF(CB) = 050
DFp¢y = 0 (Fixed end)

Dr. Ra'ed Al-Mazaidh

(4

Pb'a
(FEMjyp = =

P
e b
uﬂ* B)
L

FEM)gsy = 7‘
( Y/ 7
8. I3

16 kN

A 2]

(b)

+

c

B ; R
Al LD

(c)

Fig. 11-18

CE315-Structural Analysis-Fall 2021

SOLUTION

First we consider the frame held from sidesway as shown in Fig. 11-18b.

We have P
16(4? ——u—-l——h—
(FEM)gc = — (4),(“ = —1024kN-m (A B)
(5)° - L .
16(1)%(4) (FEM)p = E (FEM)py = Fi
(FEM) ¢y = GF 2.56 kN+m L L
4El 4EI
Kap = Kpc = Kep == ===

DFapy = 0 (Fixed end)
4EI , 4El 4EI

DF(gay = Kap/(Kap+Kpc) = — /(+) =0.5

DF(BC) =1- DF(BA) = 0.50

4E1 | 4EI AEI
DF(cpy = Kpc/(Kpc+Kcep) = — /(+—7) =0.5

DF(CD) =1- DF(CB) = 050
DFpcy = 0 (Fixed end)

Dr. Ra'ed Al-Mazaidh
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CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh

Joint | A B c D iy S 0= = LT ey
Member| AB | BA | BC | CB | CD | DC Vlr J'
DF | 0 | 05 | 05 | 05 |05 0 p‘f_ —
16 kN [ FEM 1 '_10'24' 2.56- i 7 578 kN-m C||2.72kN-m
c i Dist. 512 | 5120 -1928[-128
g L CO | 2567 -0.64"% 2.56 —0.64| [lsm Sm
Dist. L 032 | 032/ -128]-1.28
CO | 0167 -0.64" 0.16 N -0.64
_Dist. 032 | 032008 -0.08 A| |2.88kN-m D| [132kN'm
A D CO | 0167 -0.04” 0.16 -0.04| =2 Pl
> - Dist. 0.02 0.02 | -0.08| -0.08 A’.= 1.73kN 4D’ = 0.81 kN
;=173\ O8N s T ogg | 578 [-578] 272 [-272 | -1.32 t f
() (e)
ZMB =0- A, =173KN
SF,=0; R=173kN — 0.81kN = 0.92kN

41

(4

6EIA

(FEM)yg = ——
AR e

v

’)
L
BEIA

(FEM)gy = ——
BA e

BEIA

—100 kN-m

CE315-Structural Analysis-Fall 2021

—100 kN-m

(FEM) 5 = (FEM)p, = (FEM)¢p = (FEM)pe = —100kN-m

Dr. Ra'ed Al-Mazaidh 42
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Joint A B (% D
Member| AB BA BC CB CD DC

DF 0 0.5 0.5 0.5 0.5 0
FEM [-100 |-100 -100 |-100
Dist. 50 50 50 50

(elg) 25 25 25 25
Dist. ~12.5 [-12.5 ) -12.5 |-12.5

CO | -6.25 -6.25 7| -6.25 -6.25
Dist. 31250 3125125 a 12

CO 1.56 1.56 1.56 1.56
Dist. -0.78 [-0.78 .| -0.78 | —0.78

CO | -0.39 -0.39 “1~0.39 -0.39
Dist. 0.195| 0.195| 0.195] 0.195

IM | -80.00 -60.00| 60.00 | 60.00 |—60.00 |—80.00

()

CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 43

Since both B and C happen to be displaced the same amount A',
and AB and DC have the same E, I, and L,the FEM in AB will be the
same as that in DC. As shown in Fig. 11-18f, we will arbitrarily assume
this fixed-end moment to be

(FEM),p = (FEM)g,; = (FEM).p = (FEM)pc = —100kN - m ZMC =0- Dy =28KN
A negative sign isnecessary since the moment must act counterclockwise 'I' 'l
on the column for deflection A’ to the right. The value of R’ associated
with this =100 kN - m moment can now be determined. The moment — —
distribution of the FEMs is shown in Fig. 11-18¢. From equilibrium, B [|60kN-m C||60kN-m
the horizontal reactions at A and D are calculated, Fig. 11-18A. Thus,
for the entire frame we require G B
SF, = 0 [ R =28 + 28 = 56.0kN
- \(‘ R’ A 80 kN-m D! /80kN-m
( -~ -—
1A,=28kN D,=28kN
Mg =0- A, =28 KN
Z B = Ay (h)
A D
< <+
A, =28kN D,=28kN
CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 44
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Hence, R’ = 56.0 kN creates the moments tabulated in Fig. 11-18g.
Corresponding moments caused by R = 0.92 kN can now be determined
by proportion. The resultant moment in the frame, Fig. 11-18a, is therefore
equal to the sum of those calculated for the frame in Fig. 11-18b plus the
proportionate amount of those for the frame in Fig. 11-18c. We have R
M,, = My, (no — sidesway) + 7 M,, (sidesway)

M,p = 2.88 + 22 (-80) = 1.57kN-m Ans.
Mgy = 5.78 + 22 (-60) = 479kN-m Ans.
Mpge = =578 + 22 (60) = —4.79kN -m Ans.
Mcg = 2.72 + 2% (60) = 3.71kN'm Ans.
Mcp = —2.72 + ¥2(-60) = —3.71kN-m Ans.
Mpc = —1.32 + 22 (-80) = —2.63kN-m Ans.

CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 45




The Hashemite University
Faculty of Engineering
Department of Civil Engineering

CE 315: Structural Analysis

Chapter 10: Beam and Frame Analysis Using the
Stiffness Method

Dr. Ra’ed Al-Mazaidh

Member and Node Identification

» Each element must be free from load and have a prismatic cross section.
» The nodes of each element are located at a support or at points where members are connected
together, where an external force is applied, where the cross sectional area suddenly changes, or

where the vertical or rotational displacement at a point is to be determined.

7

rF\

= = EGNE

o O

v 3 Elements
v' 4 Nodes

@
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Global and Member Coordinates

» The global coordinate system will be identified using x, y, z axes that generally have their origin at a

node and are positioned so that the nodes at other points on the beam all have positive coordinates,

» The local or member x’, y’, z coordinates have their origin at the “near” end of each element, and

the positive x axis is directed towards the “far” end.

» In both cases we have used a right-handed coordinate system, so that if the fingers of the right hand are
curled from the x (x’) axis towards the y (y’) axis, the thumb points in the positive direction of the z (z')

axis, which is directed out of the page.

y

P
6
5 2
—
'
o 1] z,ik u
(&
CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 3

Degrees of Freedom

» Consider the effects of both bending and shear, then each node on a beam can have two degrees of
freedom, namely, a vertical displacement and a rotation.

» The lowest code numbers will be used to identify the unknown displacements (unconstrained degrees
of freedom), and the highest numbers are used to identify the known displacements (constrained

degrees of freedom)

P
6 7 3 8
5 2 4 1
| I X

CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 4




Beam-Member Stiffness Matrix

» Displacements:

 dy! dgs,
Iny Ay Iy dpy Gry dry

( + " dNZ( T @%@% v

y' displacements

(a) (b)

CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh

> Rotations:

Ny N Fy 7%
F 12E1 6E1 1261 GEL|[ ]
Iny' IE 12 L 12 Ny'
GEI Al GEI  2H (]
qnz’ L;!, L Lz L Nz’
T | 1B 6Bl E 6E .y
qry I3 12 I I2 '
GEI 2EI  _GEI  4EL ||
| qr; | B L1 L Lz L B Fz' |

These equations can also be written in abbreviated form as
q=kd

CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh




Beam-Structure Stiffness Matrix

Once all the member stiffness matrices have been found, we must assemble them into the structure

stiffness matrix K. This process depends on first knowing the location of each element in the member

stiffness matrix. Here the rows and columns of each k matrix are identified by the two code numbers at the

near end of the member v,.~.) followed by those at the far end (. E.). Therefore, when assembling the

matrices, each element must be placed in the same location of the K matrix.

Member forces

q=kd + qg

q, :Fixed-end reactions

CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh

Example 1:

Determine the reactions at the supports of the beam shown in Fig. 15-8a.
EI is constant.

|
|

N

(a)
Fig. 15-8

CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh




6 5 2
A ~ : ) _
T 4 3 1 12E1 6EI 12EI 6EI
X | % : I3 V2 e
6EI 4EI  GEI 2K
— A m @_.—L._/ \ll @ K= 2 L 12 L
— e - 12E1 6EI 12E1 6EI
E L L
Member Stiffness Matrices. GEI 2EI  6EI  4EI
| 2 L fix L |
Node (1)........ 2
(1) (2) 12EI
5 =Elz =15E
6 4 5 6EI _ .6 _ . cp
1.5 15 -15 1516 L2 22
1.5 2 =15 1 4
by SEE( e Sis s =15 3 ? = EI% = 2El
15 1 =15 2 3
2EI =El-=1.0EI
= =1.
CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 9
Node (2)........ (3)
5 kN
5 3 2 1 6 s 2
15 15 -15 155 T . 4 1
1:5 2 -1.5 il 3
k, = EI \
2 S SR SERT | 5D O —— ')
155 1 15 2 1 e @ ‘l, @
: = — —
K=k1+k2
1 D 3 4 5 6
6 4 5 3 " 2 -15 1 0 i 15 0
1.5 15 -15 156 12 ;-S —12 1-5 ; 15 15 -15 0 i-15 0
s 2 =y i 4 - . -L
k, = EI k, = EI 15 -15 15 -1512 ErI 1 =il5 il 0 1.5
-15 -15 15 -15|5 g o : - _
3 15 1 _15 2 1 ..,Q ,,,,,,, Q ....... ]: ....... 2. ....... ]_ .5. ..... 1._5_

1% 1 =115 2

CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 10




Q= Dy 6 5 2
Qz—_s DZ T 4 ‘\3 d
Q = QB_O D3 V\ * 1
Q=0 DD4O ‘>
Qs 5 = =
Qe De=0 a o= L2 Q
Q =KD

1 2 8 4 5 6
Q1= 2 -15 1 qd | 15 o D,
Q;=-5 - = \—

_ 155 1.5 155 0 =15 0 D,
Q;=0 : D
Q,=0 1 —1.5 4 1 0 1.5 3

El y i Dy
Qs o o S 4 75 LSipi=o
Qs et 5— 5 [Dg =0
— + += S5
CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 11

0=2.D]_15D2+D3+0

5
—57 = ~15Di + 15D, = 1.5D; + 0

0= D, — 15D, + 4Ds + D,

0=0+0+ D, + 2D,

16.67 26.67 339
Qs = 1.551(— 7) = 1.551(— F) = I.SEI(E)

1667 = 10kN |

o EI Qs=0+0+ 1.551(—ﬂ) +1.551(ﬁ)
26.67 El El
- EI = —SkN |
6.67
T EI
_ 33
T

Solving,

CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 12




Example 2:

Determine the moment developed at support A of the beam shown in
Fig. 15-11a. Assume the roller supports can pull down or push up on
the beam. Take E = 29(10%) ksi, I = 510 in*.

CE315-Structural Analysis-Fall 2021

12k
2 k/ft l
== &
' 240 4ft'4ft
(a)

Dr. Ra'ed Al-Mazaidh
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(t3)

i

4t

- 24 ft ‘ T

Dy
D,
D3=O
D4=O
D5=O
D6=O

CE315-Structural Analysis-Fall 2021

The matrix analysis requires that the external loading be
applied at the nodes, and therefore the distributed and
concentrated loads are replaced by their equivalent fixed-
end moments, which are determined from the table on the

gy = —
BA g

inside back cover. i
T ) (4 D)
A B L L
( L '_?_4"_T_’
wi? wi? PL
(FEM)ap = T (FEM)ga = e (FEM)yp = ? (FEM
PL (12)(8)
Wi _ 24 g6y 4. —= = 12K. ft.
12 12 8 8

Dr. Ra'ed Al-Mazaidh
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FEMs

12 2)(242 ﬁ—w—lﬂ(ﬁ
2 = B ) g6  fr. g~ g = L»Kft
G 9 BN I B & 2 GO
96 K.ft -96 K.ft (% Kft .12 K_jt 12 K.ft 12 K.ft 12 K.ft

96-12=84 K.ft.

=84 K.ft.X(1ft/12in)

(1

CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 15
Member Stiiness Matrices. 4 3 5 2
i 3 ¢ 7.430 1069.9  —7.430 1069.9 ] 4
E 1 k= | 10699 205417 -1069.9 102708 |3
E @ 1] ~ o2 ~7430 —1069.9 7430 10699 |5
Dok-ft— 12k-ft =1008K-in. 3kt 144k in. 1069.9 102708 —1069.9 205417 | 2
bcaln‘] to be analyzed by stiffness method Node (2) -------- (3)
12E1 6ET 12ET 6EI | Member 2.
3 VN g 7l 12(29)(10°)(510
L 3 L 7 lzl:.' _ 12(29)( )1( e
K= OEL 4Bl OEL  2EI L [8(12)]
= Iz L L? L 3
6EI  6(29)(10%)(510
12E1 6EI  12EI  6EI = L)() = 962891
T A L [8(12)]°
6ET 2ET 6EI  4EI . 3
e . =l 4 4(29)(10°)(510
M 2EI 2(29)(10%)(510)
Node (1)......(2) T smy o8B
i . 5 ) 6 1
12E1 _ 1229)(10)(510) _ . .. 200602 962891 —200.602 962891 5
(i [24(12))? k, = | 962801 616250 —962891 308125 |2
6EI _ 6(29)(10°)(510) ~200602 962891 200602 962891 | 6
2T paE Sl 962891 308125 —962891 616250 ] 1
4EI  4(29)(10%)(510)
b A e
= 24(12) 205 417
r o 2(29)(10%)(510
261 _ 23RN0 _ 3p 708

L W Dr. Ra'ed Al-Mazaidh 16




K=K1+K2

1 2
616 250 308125

308 125 821667 | 102708

5
0

4 5 6
0 962891 —9628.91

1069.9  8559.03 —9628.91

0 102708 | 205417  1069.9 —1069.9 0
0 10699 | 10699 7430 —7.430 0
962891  8559.03 ! —1069.9 —7.430 208.032 —200.602
—9628.91 —9628.91 ! 0 0 —-200.602  200.602
Q = KD
1 2 ] |
144 616250 308125 ! ) B.91
1008 308125 821667 i 102/708  1069.9 853 B.91
0y | _ “ HR-FO8——205F—Hr99
o) Q0 1069-9 10605 7436
Qs 0628.91  8559.03 1 10609 ] 662
Q(, —0628.91 =028 01 : ) 3
Solving in the usual manner,
144 = 616 250D, + 308 125D,
1008 = 308 125D, + 821 667D,
D, = —0.4673(107%) rad
D, = 1.40203(107%) rad
Clo__ _o . S — - Or. Ra'ed Al-Mazaidh 17
wl  (2)(24)
2 2
q; = kidy + (qo),
4 3 5 2 25K
s 7430 10699 —7430  1069.9 0 24 1296 KN.in = 108K. ft
g | _ | 10699 205417 -1069.9 102708 0 1152 22.5KN
qs —7430 —1069.9 7430  —1069.9 24 —864 KN.in = -72K.ft
q> 1069.9 102708 —1069.9 205417 1.40203 =157

CE315-Structural Analysis-Fall 2021

Dr. Ra'ed Al-Mazaidh

18




S L] F. D
|
|
|
|
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Frame-Member Stiffness Matrix
- o | AE AE Te =
qne = U 3 == U o dyy
12E1 6] 12E1 [
Ny [ Iz B 7z | | dny
v 6El 4E1 _ 6EI 2E1
' \ i 2 L 12 T ||
oy gy _
Ny ANy AE AE
qr T 0 0 I 0 0 dpy
gy dny gy dyy 12E1 0Kl 12E1 [
dry e T2 I3 E dpy
6E] 2E1 6E1 4r1
| 9= | i 12 L - Iz e | 7dpz'7
—
q= k'd kl
CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 20
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Frame- Displacement and Force Transformation Matrices

d =TD
_d_.\rx'_ i cos(0) si1_1(0) 0 0 0 'ﬂ_ _D,n..x_
d_,,—_‘.r — sin(9) cos(6) 0 0 0 0 DM‘
T= dy. _ 0 0 1 0 0 0 Dy.
dpy' 0 0 0  cos() sin®) 0 || D,
dpy 0 0 0 = sin@) cose) 0 || Dpy
| dp | 0 0 0 0 0 1 || D, |
Frame- Force Transformation Matrix
[0y, ] [cos® —sm@0 0 0 0][qu
Oy sin(@) cos(@) 0 0 0 0 ANy’
On: | 0 0 1 0 0 0 qnz'
O | | 0 0 0 cos(6) — sin® 0 || gp
Or 0 0 0  sin@®) cose) 0 qry’
L QF; _| L 0 0 0 0 0 1 1 LqF
Q =Ty
CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 22
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Frame-Member Global Stiffness Matrix

q=K'TD

Q =Ty

Q = T'k'TD

k=TKkT

CE315-Structural Analysis-Fall 2021

Dr. Ra'ed Al-Mazaidh
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(%) (v) (~») F, F, F,

[ (aE, 1281, AE  12EI 6E1 AE ,  12EI , AE  12EI 6EI |
NI T oM ey T\ ATy T\ T MY Ty
AE 12ET AE : 12EI : 6EI AE 12ET AE - 12ET - 6El
T oM ThyTTEN oA T\ M T\ThtT TN e

6Fl [ 4E1 oET 6EI 2ET1
Y T2 A 7 7y ~a M a
iL L 15 I L iL
k=
AE 9 12ET 2 AE 12ET 6FE] AE , 12E1 2 AE 12ET 6El
ATy T\ )M oy Tt Ty T DM Ty
AE 12ET AE 2 12ET , 6El AE 12EI AE 2 12ET , oFEl
T M TN T \ToTE )M YT TE N Tk
6FE1 6ET 2EI 6ET 6EI 4EI
Y ™ T Lz T T
A, = cos(9)
A, = Ssin(0)

CE315-Structural Analysis-Fall 2021
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Example 3: J s

5k
Determine the loadings at the joints of the two-member frame shown in —
Fig. 16-4a. Take I = 500in*, A = 10in% and E = 29(10%) ksi for both
members. 20ft

(a)

1
016
0|7 e
Dk — 0l8 Qk =013
019 o s
015
CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh
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AE 12E1 , AE 12ET 6ET AE 12ET , AE 12E1 6FET
TNty T M Ty sty T T M Ty

AE 12ET AE 3 12E1 2 6FEl AE 12EI AE 2 12E1 9 6El

— - —A —A |- —|=—A +— —

i L3 = L 2 ix L I = L as 2

6ET1 6El 4ET 6ET 6ET 2EI

Y Vi T =Y M T

k=

AE 5 12E1 : AE 12E1 6E1 AE z 12E1 5 AE 12E1 6El
\tMtTeYy T\ )M oy AT T T )M TN
AE 12ET AE - 12ET z 6ET AE 12ET AE P 12ET B 6ET

B x'ty - _J\y + 3 A __ZAI - 3 ity Ty + 3 A __ZA

L L3 L L 15 L L L - 15 L

6Fl 6ET 2ET 6El 6FEl 4ET

i v s T 7 e T

CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh




AE _10[29(10°)] _
T — W = 1208.3 k/ll’l.
12 29(10%)(500
e [(7)(1)] = 12.6k/in.
L’ [20(12) ]}
6[29(10%)(500
&1 _ S20060)] _ 15104
T [20(12) ]2
4EI  4[29(10%)(500) | .
; 20012) = 241.67(10*) k - in.
2EI  2[29(10%)(500)] .
T — W — 120.83(10 )k m.

CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh
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Member 1.
Node (1)........(2)

Substituting the data into Eq. 16-10, we have

cos(0) = | - sin(0) =

4 6 5 1 2
1208.3 0 0 —1208.3 0
0 12.6 1510.4 0 -12.6
k, = 0 1510.4 241.67(10%) 0 -1510.4
~1208.3 0 0 1208.3 0
0 -126  -15104 0 12.6
0 1510.4 120.83(10%) 0 —1510.4

CE315-Structural Analysis-Fall 2021

Dr. Ra'ed Al-Mazaidh

0

3
0
1510.4
120.83(10%)
0
-1510.4
241.67(10%)

W= N B

28
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Node (2)........(3) €0s(270) = ¢ sin(270) = -1
Substituting the data into Eq. 16-10 yields
1 2 3 7 8 9
12.6 0 15104 =126 0 1510.4 1
0 1208.3 0 0 —1208.3 0 2)
k, = | 15104 0 241.67(10°) -—1510.4 0 120.83(10°) | 3
=12.6 0 -15104 12.6 0 —-1510.4 7
0 —1208.3 0 0 1208.3 0 8
15104 0 120.83(10°) —1510.4 0 241.67(10%) | 9
CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 29
The structure stiffness matrix is determined by assembling k; and k.
The result, Q = KD, is
1 2 3 4 s b 3
57 ™ 12209 0 1510.4 ~1208.3 0 : b6 ) 15144 ][]
0 0 12209 —15104 0 ~1510.4 P —1ps ) —12083 ( D,
0 15104 —15104 483.33(10%) 0 120830107 | 151p4  -151p4 ) 12483¢10% | | Dy
0 ~1208.3 0 0 12083 0 b ) i ( D,
oL o osmosaoy o aseao) Dashe b o @
@, = Tt : 151
Qx e =1208 L 0o 0 il 12083 A 0
| Q| | 15t6 — iR 3 +¢ SHEHA— - |
CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 30
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Displacements and Loads. Expanding to determine the
displacements yields

5 1220.9 0 15104 —1208.3 0 || Dy
0 0 1220.9 —1510.4 0 —15104 || D,
0|=| 15104 -15104 483.33(10°) 0 120.83(10°) || Dy
0 —-1208.3 0 0 1208.3 0| Dy
0 0 —15104 120.83(10%) 0 241.67(10°) || Ds
CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 31
Solving, we obtain
D, 0.696 in.
D, ~1.55(107%) in.
D; | = | —2.488(107%) rad
D, 0.696 in.
Ds 1.234(107%) rad
Using these results, the support reactions are determined from Eq. (1)
as follows:
1 2 3 4 2
Os 0 =12.6 15104 0 1510.4 0.696 0 SRk
0| _| 126 0 ~15104 0 o || -155(107%) 0 =500k | Apg
Oy 0  —12083 0 0 0 —2.488(107%) 0 1.87k
Q9 1510.4 0 12083(10°) 0 0 0.696 0 750 k +in.
1.234(107%)
CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 32
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- 6 5 1 2 3

1208.3 0 0 -1208.3 0 0 100000 0.696 4
0 12.6 1510.4 0 -12.6 1510.4 010000 0 6
q =KTD = 0 15104 241.67(10°) 0 —~15104 120.83(10°) | [0 0100 0 || 1.234(107%) | 5
-12083 0 0 1208.3 0 0 000100 0.696 1
0 —-12.6  —15104 0 126 -1510.4 000010]|| —-155(107%) | 2
0 1510.4 120.83(10%) 0 15104 241.67(10°) 000001 || —2488(1073) | 3
CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh 33
Solving yields
q4 0
ac -1.87k
0
el Ans.
q1 0
qda 1.87k
qs =450k -in.

CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh
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1.87 k

450 k - in.

5k,
@ 34
|
yp
1.87 k @
5k
X 750 k-in.
@ @ 1.87 k
450 k-in.
1.87k il
CE315-Structural Analysis-Fall 2021 Dr. Ra'ed Al-Mazaidh
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