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Chapter 12: Vectors and the Geometry of Space

Section 12.1: Three-Dimensional Coordinate Systems

Definition 12.1.1:

%+ The space can be represented by sketching
thee perpendicular axes called: the x-axis,
the y-axis, and the z-axis that are
intersected at a point called the origin 0.

% These axes (x-axis, y-axis, z-axis) are
called the coordinate axes (&dlasY) ) slaall),

% The plane that contains the:

x-axis and y-axis is called the xy-plane
x-axis and z-axis is called the xz-plane
y-axis and z-axis is called the yz-plane

These planes are called the coordinate planes

Remark 12.1.2:
% We have 3 coordinate axes: x-axis, y-axis, z-axis
% We have 3 coordinate planes: xy-plane, xz-plane, yz-plane.
% The coordinate planes divide the space into 8
parts. Each part is called an octant. The first octant
is the part that contains the positive parts of the
coordinate axes. VRIS

xz-plane

xy-plane

Remark 12.1.3:
A point (pt) P in the space is represented as P(a, b, ¢), where:

a = x-coordinate of P, b = y-coordinate of P, ¢ = z-coordinate of P

The set of all numbers is R = (—oo, ).

The Cartesian product R X R = {(x, y):x,y € R} is called the 2-dimensional (2D or the plane)
rectangular coordinate system. R X R is written as R?

The Cartesian product R x R X R = {(x,y,2):x,y,z € R} is called the 3-dimensional (3D or
space) rectangular coordinate system. R X R x R is written as R3.
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Example 12.1.4: Plot the following points in the space: A(1,2,0), B(1,0,3),€(0,2,3), D(1,2,3),

E(_1I2I3)I F(ll _2'3)' 6(1'2' _3)J H(lJOJO)J I(OJZJO)J](OJOPS)P O(OPOPO)
Solution:

Xx-axis

Remark 12.1.5:

< The graph of an equation in 2D (the plane R?) is a curve, for example if the equation y = x2 is
in the plane, then its graph is a curve.

< The graph of an equation in 3D (the space R3) is a surface, for example if the equation y = x?2
is in the space, then its graph is a surface.

Example 12.1.6: Sketch the graph of the surface whose equation is given by the equation:

El;y = x? (2)Z2=y (3)z =cosy
4)z=3 (B)x* =4

1)




Remark 12.1.7:

(1) The equation of the xy-plane is z = 0

(2) The equation of the xz-planeisy = 0

(3) The equation of the yz-plane isx = 0

(4) In the plane, the equation of the circle centered at the pt. A(a, b) of radius r is
(x—a)*+ @y -b)?=r?

Example 12.1.8:

(1) Identify and sketch the graph of the equation x% + y2 = 4 in R3.

Solution:

(2) Which pts. (x, v, z) satisfy the equations x? + y2 = 4,z =3 inR3

Solution:
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Rule 12.1.9: Let A(a, b,c) and B(d, e, f) be two pts in R3.

(1) The distance between the pts A and B is |AB| = \/(a — d)2 + (b — €)2 + (c — f)?
(2) The midpoint (midpt.) of the line segment (A«iiw 42kd) joining A and B is:
a+d b+e c+f B
=) :
A

Example 12.1.10: Find the distance from the pt. P(2,—1,4) to the pt. Q(—2,0,1) and find the midpt. of
the line segment (Awdiuall 4=Lill) joining P and Q.

Solution: The distance is dist(P, Q) = /(2 — (—2))*+ (-1 - 0)? + (4 — 1)2 =26

The midpt. is (#,"“O,ﬂ) - (0,‘_1,5)

2 2 272

Rule 12.1.11: The standard form of the equation of the sphere centered
at the pt. A(a, b, ¢) of radius r is:
(x—a) + (@ —-b)?+(@=z-c)=1r?
When the center is the origin and the radius is 1, then the sphere
x? + y? + z? = 1 is called the unit sphere.

The standard form of the equation of the sphere is:

x2+2ax+y?+2by+z>+2cz+d=0

with center (—a, —b, —c) and radius r = Va2 + b2 + c?2 —d

Example 12.1.12: Which of the following is an equation of a sphere and write it in standard form and
find its center and radius.

(1) 2x?2 —12x+3y2+2z2+8z=1
(2) 2x%2 —12x + 2y? + 222 + 8z = =30
(3) x?—6x+y?+z2+4z=-13

(4) 2x2 —12x+ 2y?> + 222 +8z=6
(5) 2x*—12x+2z2+8z=6

Solution:

(1) (Coefficient of x?) = 2 and (Coefficient of y?) = 3 = not equal
The equation is not for a sphere
(2) 2x2 —12x + 2y?> + 222 +8z=-30=>x?>—6x+y?>+ 22+ 4z=—-15>
x2—6x+3%2+y2+z2+4z+2%2=—-15+3%2+22
@l QL)
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=> (x—3)2+y%+(z+2)2= -2  which is impossible (<l Jiina Hhill Coiai g 1)
bl i a5

The equation is not for any surface = The equation is not for a sphere.
B)x2—6x+y?+z°+4z=-13>x2—-6x+3%+y?>+224+4z+ 2% = —-13 + 32 + 22

= (x—3)2+y2+(z+2)>=0=x =3,y =0,z = —2 which is the point (3,0, —2)

The equation is not for a sphere it is not a surface but it is the point (3,0, —2)
(4) 2x%2 —12x+2y?> + 22> +8z=6=>x* —6x+y?> + 2z +4z=3
>x?—6x+32+y2+2z2+4z+22=3+3%+22

= (x—3)?2+y2+(z+2)>=16
The equation is for a sphere centered at the point (3,0, —2) of radius 4
The standard form of the sphere is (x —3)?2 + y2 + (z + 2)?2 = 16

(5) (Coefficient of x?) = 2 and (Coefficient of y?) = 0 = not equal
The equation is not for a sphere

Example 12.1.13: Find all values of a and b from which the equation is an equation of a sphere.

(1) 2x% —12x + by? + 2z + 8az = —30
(2) 2x% —12x + by? + 22> + 8az = —6

Solution: (Coefficient of x2, y2, and z2 are equal) = b = 2

(1) Equation = 2x2? — 12x + 2y? + 2z% + 8az = —30
= x2—6x+y%+2z%2+4az=-15

:(x—3)2+y2+(z+2a)2=—15+9+4a2=>—6+4a2>0=>a2>§

:>\/a2>\/§:>|a|>§:>a>§ora<—§:> ae(—oo,—?)u(?,oo)

(2) Exercise (b =2anda € R
Example 12.1.14: Find the equation of the sphere centered at A(0, —2,5) of radius V3

Solution: The equation is (x — 0)* + (y — (=2))* + (z—5)* = V3
= x24+W+2)?*+(z-5?*=3

Example 12.1.15: Find the equation of the sphere if one of its diameters (& ksl 1) has end points
P(2,1,4) and Q(2,-3,0).

Solution: Theradiusisr = %dist(P, Q)

= J@ =27+ (3-1)7+(0-4)? = V32 =4V2=2V2

2

=(2,-12)

)

The center is midpt. = (

242 1+(-3) 4+o)
2’ 2

The equation is (x — 2)2 + (y + 1)2 + (z— 2)? = (2\/5)2 =8
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Example 12.1.16: Find the equation of the sphere in the first octant of radius 5 that touches the
coordinate planes.

Solution: The center is (5,5,5) = The equation is:
(x—5?%?+(y—-52%+(z-5)2=25

Example 12.1.17:
(1) Find the equation of the spheres centered at the point A(1,2, —1) that touches the sphere
2x% —12x 4+ 2y* +22°+8z=6

(2) Find the equation of the spheres centered at the point A(—2,2, —1) that touches the sphere
2x%2 —12x + 2y* 4+ 2z> + 8z = 6.
Solution:
(1) 2x2—12x+2y2+2z2+8z=6 > (x—3)>+y%2+(z+2) =16
The center is B(3,0,—2) and radius 4

Distance between 4 and B is \[(1 -3)2+2-02+(-1- (—2))2 =+v9=3
OAY) Jala Laasal ¢ SN () (imy 138 5 Laaaal el Coai (g aal (i SI 0 3 all G aall ) JasY
The radius of the required (<sk<) sphereis r =4 — 3 = 1.

Theeg.is: (x— 12+ (y—-2)2+(=z+1)?*=12=1

(2)2x2 —12x+2y?2 +2z2+8z2=6 > (x—3)>+y%2+(z+2) =16
The center is B(3,0,—2) and radius 4

Distance between A and B is \/(—2 -3)2+2-0)2+(-1- (—2))2 =+/30

G AV z A Lavas) 0 S o)) i 138 5 Laaaa) jlad Caeai (e ST 05 S0 (53 e G anall o Jaa
The radius of the required (<« stka<) sphere is:
r=+30—4.Theeq.is (x +2)2+ (y—2)%+ (z+1)? = (/30 — 4)?
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Rule 12.1.18: The distance from the pt. A(x, y, z) to the: P(0,y,z)

(1) xy-plane is |z| 0(x,0,2) | 1*,7
i o= 4
(2) xz-plane is |y| [ T (x,y,2)

(3) yz-plane is |x]|

z|

8R(x,7,0)

Example 12.1.19: Find the equation of the largest sphere in the first octant centered at the point
A(3,2,5).

Solution:
D, = Dist(4,xy — plane) = 5
D, = Dist(4, xz — plane) = 2

D; = Dist(4, yz — plane) = 3

The radiUS iS r = mil’l(Dl, Dz, D3) =2
= The equationis: (x —3)2+(y—2)2+(z—5)*=4

Example 12.1.20: Find the equation of the sphere centered at A(1, —2, —5)
and touches the xz-plane.

Solution:

/
The radius is r = dist(4, xz — plane) = |-2| = 2 Prx.o.t%_:‘_iz’
The equationis (x — 1)2 + (y + 2)2+ (z+ 5)? = 4

Rule 12.1.21: The distance from the pt. A(x, y, z) to the:

(1) x-axis is \/y? + z2 (2) y-axis is Vx2 + z2 (3) z-axis is /x2 + y?

Example 12.1.22: Find the distance from the pt. A(1,4, —3) to the:

(1) x-axis (2) y-axis (3) z-axis
Solution:
(1) The distance dist(A4, x — axis) = /42 + (=3)2=5

(2) The distance dist(4,y — axis) = /12 + (=3)2 = V10
(3) The distance dist(4, z — axis) = V12 + 42 = /17

Example 12.1.23: What region in R3 is represented by the inequalities:

(1) x2+y?+2z2> 6z (2) x?+y*+z%2<6z (3) x2=4
4) x<2 (5) z<0 (6) y*+z2<4




Solution:

(1) x2+y?+2z2>6z:=> x> +y2+2z%=6z
= x*+y*+22-62=0
= x24+y24+22-6z4+9=0+9
e Jus
= x2+y?2+(z—-3) =9

(2) x24+y2+z2<6z:=> x?2+y?+z?=6z
= x>+ y*+2z2-62=0
= x24+y24+22-6z+9=0+9
sl Js)

4 x<2=>x=2

5)z<0=>2z=0

6) y+z2<4 = y2+z2=4




Section 12.2: Vectors

Definition 12.2.1: A vector ¥ is a quantity that has both: magnitude (sometimes called length) written

. ©)
as |v| and direction.
N ————

@

Remark 12.2.2:

(1) A graph of a vector is given by a row:
» The magnitude of a vector is the distance from its tail to its tip _
> The direction is indicated by the row. tail

(2) If we move from a pt. A to a pt. B, then the displacement vector (3a!¥) 4ais) ¥ is given by ¥ =

AB. Inthis case |3 = dist(4, B) 5
A/

(3) When we write ¥ = AB, then the point A is called the initial point and B is called the terminal
point.

/ B= terminal pt
A= initial pt

Definition 12.2.3: The zero vector 0 is the vector of length 0 but in any direction = 0] =0
Remark 12.2.4:

(1) The zero vector 0 is be defined as a vector for which its initial and terminal points are the same.
(2) If A,B,and C are pints, then 0 = A4 = BB = CC = |4A| = |BB| = |cC| = o.

Definition 12.2.5: Two vectors % and v are equal, written as # = v, if they have the same magnitude
and the same direction.

Example 12.2.6:

—

u /
—
w

u = v (the same length and the same direction)
u # w (different directions)
v # X (different length)




Example 12.2.7:

U

w (the same length and the same direction)
v (different directions)
y (the same length and the same direction)
% (different directions)

SR T~ A
o0 Ho

w

12.2.8 Scalar multiplication of vectors (3 4siall & yia):
Let ¢ be a scalar (»x) and v be a vector. Then cv is a vector of:

% length |cv] = || Y]
€))
and its
. . . ._(in the same direction of 7,if ¢ > 0
< direction 1s:3, . . . S
———— lin the opposite direction of v,if c < 0

Example 12.2.9: If ¥ is the vector given in the figure with || = 3.

Plot the graph of the following vectors: 2v, —2v, %17, and —-.

Also, find the lengths of these vectors.
Solution:

= 28] = 219l = 6, |29 = 215 = 6, [ 5| = 13| =, and |—g

Remark 12.2.10: If = AB, then —% = BA that is —AB = BA. Also,

=

, B ~
AU/V A‘v/

The Sum Rule 12.2.11: Let 1 and v be vectors in which the terminal point of u is the initial point of
¥. The sum of two vectors 1 and ¥ written as % + ¥ is the vector with initial point as that of % and

terminal point as that of ¥, that is if f = AB and # = BC, then

i+3=AB+BC = AC




Remark 12.2.12: To plot the graph of & + v
tep 1

_ N

U

U

Example 12.2.13: Write the vector € as a sum of the vectors

a
d,b, ¢, and d given in the figure
H - - ¢ - 3 P é)
Solution: e =—-a+b+c—d b
c d
Jasy) By pa

Example 12.2.14: Let A, B, and C be three points. Write AB + BC — AC in simplicit form.

—

Solution: AB + BC — AC = AC—AC = AC + (—AC)=AC+CA=44A=0

—

= AB+BC—AC=0

Example 12.2.15: Draw the vector @ — 2b —%E, where

the vectors @, b, and ¢ are given in the figure.

-

Solution: We deal with the vectors: a, —25, —%c:
Letd =d —2b—=¢

Step 1

5
a
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Properties of VVectors 12.2.16: Let i, v, and w be vectors and let ¢ and d be salars. Then

(1) i+v=v+1 (2 i+0=0+u=1d B)i—-u=0
4 W+v)+w=v+@+w) (5) (c+d)u=cu+du (6) c(u+7v)=cu+cv
(7) 0u=0

Component Form of Vectors 12.2.17: Let A(a,b,c) and B(d, e, f) be points in R3. Then the
component formof Gis % = AB = (B—A) =(d —a,e — b, f — c).

The numbers d — a,e — b, and f — ¢ are called the components of ©

—

LetP = (d—a,e—b,f —c)and O = (0,0,0). Then the position vector of ¥ is ¥ = OP
Example 12.2.18: Find and sketch the vector AB where A(1,-1,-3) and B(3,1,0)

Solution:

AB=(B—A)=(3—-1,1—-(-1),0 — (=3)) =(2,2,3)
To sketch AB: we sketch it as a position vector

solet P = (2,2,3) = AB = OP

Rule 12.2.19:

(1) Let ¥ =(a, b,c). Then || = Va2 + b% + c2 (in 3D)
(2) Let ¥ =(a, b). Then |¥| = Va2 + b2 (in 2D)

Example 12.2.20:
(1) Let ¥ =(2,—2,—1).Then |#| = /22 + (=2)2 + (-1)2 =9 =3

(2) Let ¥ = (—5,4/11). Then |¥| = \/(—5)2 +VIT =36 =6
Rule 12.2.21: Letu = (a,b,c), v =(d, e, f) and let a be a scalar.

LDu+v=(a+db+ec+f) @Qu—-v=(a—d,b—ec—f)
(3) au = {(aa,ab,ac) Hhu=v ®@a=db=ec=f

Example 12.2.22: Let @ = (—1,0,3) and b = (2, —1,5). Find |2 G- §|

Solution: First we find the vector 2 @ — —:

2,—1,5 2 -1 5 81
= 2(-1,0,3) — <3—) =(2(-1) - 5.2(0) —3 2(3) - §) = (—5,5,—

13
3)
64 1 169 234

9 TgT T 3




Standard Basis Vectors 12.2.23:
(1) In 3D, let
£ =(1,0,0),7 =(0,1,0), k =(0,0,1)

= (a,b,c) = ai + bj + ck

(2) In2D, leti = (1,0),j = (0,1)
= (a,b) = ail + bj

Example 12.2.24:
(1) 5i—j — 7k = (5,—1,-7) (2) >+ 6k = (-,0,6)

Example 12.2.25: Let d = 5i — j and b = (2,4, —1). Find |2 d@ + 3b|

Solution: First we find the vector 2 @ + 3b"

2d+3b = 2(5—1,0) + 3(2,4,—1) = (16,10,—3) = |2 d@ + 3b| = V256 + 100 + 9 = V365

Notations 12.2.26:

(1) The set of all vectors in R? is written as V.
(2) The set of all vectors in R3 is written as V5.

Example 12.2.27:

(1) 2i —5j and (—1,0.6) are vectors in V,.
(2) —3i+ 2k and (3,—2,7) are vectors in V;.

Definition 12.2.28: A vector ¥ is called a unit vector if || = 1

Example 12.2.29:
(H v= (—1,—3,3) = Y| = /1+3+i =1 = v s a unit vector.
3 3°3 9 9 9

(2) 4=0.5i—0.2j > |ul =0.25 + 0.04 = v0.29 = 1 = 1 is a not unit vector.

(3) The zero vector 0 is not a unit vector.

Example 12.2.30: Find all values of a that make v = (— L1

E'E'a) a unit vector
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Rule 12.2.31: If ¥ # 6, then z and _Z are two unit vectors.

[ 7]

% is a unit vector in the same direction of v
In fact:

v . . N .
~ 5 1sa unit vector in the opposit direction of ¥

Example 12.2.32: Let v = 2i — 2j + k.
(1) Find a unit vector in the same direction of ¥

(2) Find a vector of length Z in the same direction of ¥

(3) Find a unit vector in the opposite direction of v
(4) Find a vector of length +/m in the opposite direction of

Solution: v =2i—2j+k = |v| =3

(1) a unit vector in the same direction of ¥ is
voo2i—-2j+k 2 2 1
B= 3 3 73/t3k
(2) a vector of length Z in the same direction of ¥ is

3/ 3 _3(2_ 2_+1k)__ L
2\[31) T2\3t 73/ T3 T T,

(3) a unit vector in the opposite direction of ¥ is
v 20 —2j +k 2 2 1
BT 3 T~ T3itziogk
(4) a vector of length /7 in the opposite direction of ¥ is

2 2 1 2Vm

>
v

3 3 3 3 3

\/E<—|?>=\/E<——i+—' k>=——z+—'——k

/A

If |¥] = 2 units

Vm
3

Remark 12.2.33: The standard basis vectors i, j, k are unit vectors since |i| = |j| = |[k| =1




Section 12.3: The Dot Product

Definition 12.3.1: Let i = (a, b, c) and ¥ = (d, e, f). Then the dot product of % and ¥ is defined by u -
U =ad + be + cf

Example 12.3.2:

(1) (1,-2,3)-¢(6,3,0) =1(6) + (—2)(3)+3(0) =0
(2) (2,6)-(=52) =2(-5)+6(2)=2
(3) (3i —j) - (—2i + 4k) = 3(—2) + (=1)(0) + 0(4) = —6

Properties of Dot Product 12.3.3: Let 1,7, and w be vectors in V, or V5 and let a, b be a scalar. Then

(1) 0-3=0

M- @G+w)=u-v+u-w

(6) U+ v|? =|ud|*>+2u- v+ |9|?

(8) |lail + b?|? = a?|u|? + 2abu - ¥ + b?|¥|?
(9) |lau — bv|? = a?|ul? — 2abti - ¥ + b?|V|?

Definition 12.3.4: The angle 6 between two vectors 1 and ¥ is the angle between

them when the vectors have the same initial point, where 0 < 6 < m.

Rule 12.35: - 7 = [i] |3 |cos6 ”\9

N — N — 17'17 -1 17'17 1.7,)
Ifu#0andv #0=>cosf === 6 = cos —_
lul|v] [ul [v]

Example 12.3.6: Find the angle between the two vectors i = —i + kand v =3i+j + k

Solution:

. (—1(3) +0(1) + 1(1)>
V2v11

Example 12.3.7: Find the value of x that makes the angle between the two vectors # = (2,1, —1) and
7 =(1,x,0) is%

Solution:

-7 =] |¥]cosh = 2(1) + 1(x) + (=1)(0) = V6v1 + xzcos%

V6vV1+x2
V2

=252x?—4x—-1=0=>x =

= 2+x)?=31+x*)=>x>+4x+4=3+3x?

44/(-4)2-4(2)(-1) _ 4+V24 _ 4426 1+ V6
2(2) T4 4 T T2

=>24+x=
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Example 12.3.8: Find the angle between the two lines in R?: y = 2x —3andy = 7 — 3x
Solution: Takeany2ptsA,Bony =2x—3and2ptsC,Dony =7 — 3x

= A(0,-3),B(1,—1) and €(0,7),D(1,4) Silasiiaeall G Ayl 31 idaadla
Let AB = (1,2) parallel to the line y = 2x — 3 sala Ayl ) A 5 Axdaliiall

Let CD = (1,—3) parallel to the line y = 7 — 3x
= The angle 6 between the two lines is the angle between AB and CD

_1<AB-CD> _1<1—6) _1(—5) _1(—1) 3
Ccos ————- | = COS — | = COS —— | = cos — | = -
|AB| |cD| V510 52 V2 4

A eyl

Example 12.3.9: If % and v are vectors such that |i| = 4, |¥| = 3 and the angle between 1 and ¥ is 2?”
(1) Find % - & (2) Find [2% — 33| (3) Find |3% + 3|
Solution:

= =2 = - _ 2_77.' _ _ E _ l —
1) u-v = |ul|V]|cosh = 4(3)cos(3) = 12( cos 3) =—-12 (2) =—6
(2) 121 — 39| = 4[u)? = 22)B)u- v + 9|9|?> = 4(16) — 12(—6) + 9(9) = 217

= |2u - 37| =217

Q) 13U+ v|? =32|u|? +2(3)u- v + |9 =9(16) + 6(—6) + 9 = 117

= |3u+ V| =vV117

Example 12.3.10: If @ and b are vectors such that |d@| = v/3, |2d — 3b| = V45 and |d@ + 2b| = V27.
(1) Find @ - b (2) Find the angle between @ and b (3) Find | + 3b|
Solution:
(1) |26 - 3b|" = Va5~ = 4ld? - 22)®)a-b +9|B|" = 45
= 43 —12a-b+9|5| =45 = —12a-b+9|| =33
= —4d-b+3[5 =11 ... (D
la+2b =v27° = |al> +2(2)d-b+ )| =27
= V3 +4d-b+4lp| =27 = 4d-b+4[p =24 ...

®+@: 75| =35 = |5 =5 = |5 =5
@:4d-b+4(5)=24 > d-b=1

_1( @b _
(2) 8 = cos™?! <|§||E|> = cos 1(

-1 1 ~ o o
=cos '|—=)= 7504 = 131
) (\/ﬁ) in degrees in radian

3) |a+3b| =ldl2+2(3)d-b+(3)?|b| =3+6(1)+9(5) = 54
= | + 35| = V54 = 3v6

1
V3(V5)




Example 12.3.11: Prove that
-2 -2 -2 L -2 R

(V) |a+b| +|da—b| =2al>+|b|) @la+b| —|da-
Proof:
@la+5| +|a—5" = (1al2+2a-5+|6]") + (a2 —2a 5 +b]) = 2q0al? + 5]

—,2 —,2 - —,2 - -2 -

(@ |a+5| +|a—b| = (lal>+2a-b+|b|] ) - (Idl* —2d-b + [b| ) = 4a- b
Example 12.3.12: If |d| = 3and |B| = 4, find |d + b|” + |d — b|"

—,2 -2 -2
Solution: |d+b| +|a—b| =2(ldl+[b] ) = 2(9 + 16) = 50
Remark 12.3.13:
Two vectors % and ¥ are perpendicular (or orthogonal) written i L v © 4 - v = 0

Example 12.3.14: Show that 2i + 2j — k is perpendicular to 5i — 4j + 2k

Solution:
i+2j—k)-(5i—4j+2k)=205)+2(-4)+(-1D)2)=0

= (2i+2j — k) L (5i — 4j + 2k)

Example 12.3.15: Find all values of a that make ai — 2j + k perpendicular to 2i + j + ak

Solution:
(ai—2j+k)-QRi+j+ak)=0=a)+(-2)(1)+1(a)=0=23a—-2=0

2
> a=-=
3

Example 12.3.16: If ¥ and ¥ are unit vectors such that % + ¥ + w = 0, then find |W|

Solution:

U and ¥ are unit vectors = |u| =1and [¥] =1

u L v (fromfigure) > u-v =0

U+v+w=0>w=—U+7)

S W= -U+DP=u+v?=u*+2u- v+ |¥|?=1+0+1=2
= |w| =2

v

Remark 12.3.17: 4 - v = |u| |V |cos® = cos O = ETEl

(1) @-¥>0 = @0 isacute angle (3= 451 )
(2) 4-U <0 = @ isan obtuse angle (A= i 415l 3)
() u-v=0 = 0 isaright angle (i 45 )
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Example 12.3.18: The angle between the vectors 2i — k and j + 2k is an obtuse angle since
Ri—k)-(j+2k)=-2<0

Definition 12.3.19:
(1) The scalar projection of the vector % onto the vector v is comp U =

v

|
(2) The vector projection of the vector 4 onto the vector ¥ is proj i = ( IIZ) Y

v

Remark 12.3.20:

1) proj 17=<comp u)lﬁl 2) |proj U| = |comp U
. .
2) comp u = |u|cosh

v

L
A\
|

v v

n
»

>
v

Example 12.3.21: Find the scalar and vector projections of ¥ = (1,1,2) onto ¥ = —2i+j — k

Solution: The scalar projection of the vector ¥ onto the vector 4 is:

L dB 1(-2D+11D)+2(-1) -3
comp UV =-5-= =

a || VE+1+1 V6

The vector projection of the vector v onto the vector i is:

— o

N u-v = —3_, 1 1
pr01ﬁv= W 6u=——( Zl+]—k)—l—5]+zk




Example 12.3.22:

(1) If Ju| = 5 and the angle between i and v is 5?” then find the scalar projection of i onto v
(2) If comp 1 = —4 and ¥ = 3j — 4k, then find the vector projection of % onto ¥

v
Solution:

5v3
2

51 T
= |u|cosf = SCOS? =5 (—cos;) =

v Vv9+16 5

=

7 3j—4k _ —12j+16k
(comp 17)— = 42122 =25
v

Example 12.3.23: Show that % — proj u is orthogonal to v

u — Proju
=

>

Remark 12.3.24: Let L a line that pass through the points B and C.

Then the distance from the point A to the line L is:

% —proj u|,whered = BAand % = BC
5

Example 12.3.25: Find the distance from the point A(1,2,3) and the
line that pass through the points B(2,1,3) and €(0,1,0)

Solution: % = BA = (A — B) = (=1,1,0) and % = BC = (C — B) = (—2,0, —3)

L A A (2>q
U—proj u=1u EE v=1u 13 v

v

2 2 2 9 6
= (1= (-2, 1= 2 (0),0 - = (=3) = (— 75, 1)

13
Dist . L 81 14 36 286 /286
istance = |u — proj u| = = =
3 169 169 169 13

8 i Jl sl 138 Jad Jgl 38y 5l llia
Section 12.4: The Cross Product




Section 12.4: The Cross Product

Definition 12.4.1: The Cross product of two vectors a = (a4, a,, as) and b = (b, b,, bs) is given by:

i j ok
dxb= a; a; az|=(ayb3 —azb,)i — (a;b; —azby)j + (a;b, — ayby)k
by b, bs
= d x b is a vector in V.
Remark 12.4.2:
(1) To find @ x b we must have @ and b in V.
(2) To find d - b, the vectors @ and b may be in V;, or Vs.
(3) a x b is a vector orthogonal () to the vectors d and b and
s0 d@ x b is orthogonal to the plane containing both vectors @

and b. The direction of @ x b is determined by the right hand
rule.

Example 12.4.3: Let d = (3,2,1) and b = (—1,1,0)
(1) Findd x b and b x @
(2) Find two vectors perpendicular (orthogonal) to both a and b

(3) Find two unit vectors orthogonal to both @ and b
(4) Find two unit vectors orthogonal to the plane that pass through the points A(1,2,3), B(4,4,4),
and €(0,3,3)

Solution:

(1)dxb= =i(2(0) — 1(1)) — j(3(0) — 1(-=1)) + k(3(1) — 2(-1))

;o
~1 =i(1(1) = 2(0)) —j(-1(1) = 3(0)) + k(-1(2) — 3(1))
3

=i+j—5k
(2) Two vectors orthogonal to both @ and b are d@ x b and —d X b
= —i —j+ 5k and i + j — 5k are orthogonal to both @ and b

. 5 - axb dxb
(3) Two unit vectors orthogonal to both a and b are |§TB| and — |;75|
—i—j+5k i+j-5

k . . -
— — are unit vectors orthogonal to both a and b
|—i—j+5kK| |i+j—5k]|

—i—j+5k i+j-5k . 5 -
= @ d & are unit vectors orthogonal to both a and b

(4) Letd =AB =(B—A)=(3,2,1) andb = AC = (C — A) = (—=1,1,0)
= @ x b and b x d are orthogonal to both d and b
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= d x b and b x d are orthogonal to the plane containing both @ and b

= —i —j+ 5k and i + j — 5k are orthogonal to the plane containing both a and b

—i—j+5k i+j—5k

— — are orthogonal to the plane containing both a and b
|—i—j+5kK| |i+j—5k]|

—imj+5k i+j—5k
= I and £

N 7 are unit vectors orthogonal to the plane containing both a and b

Rule12.4.4: ixj=k, jXk=1i, kXi=j, jXi=—=k, kxXj=—i, iXk=—j

Properties of Cross Product 12.4.5: Let 1,7, and w be vectors V5 and let a be a scalar. Then

In general
dx(bx?d)#(@xb)xé
(4) (aid) x & = 7 x (aB) = a(@i X ) FOV(E.X“;‘;'E O = i
(B) X B+W) = @xD)+ @ x W) J XU XK =] x L) ==k
6) @+ D) XW=@ExXW) + @ XW Gx)xk=0xk=0

B) OxB=8x0=0

—

Rule 12.4.6: d x (b x €) = (d- &b — (d - b)¢é

daga Bacld

Example 12.4.7: Letd and b be orthogonal such that |@| = 2 and |b| = 3.
Find (b x @) x d and |(b x @) x @]

Solution:
(bxd)xd=—-dx(bxd)= —((a-a)B—(a-B)a) = —(ld[?b — 0d) = —4b
|(b x @) x d| = |—4b| = 4|b| = 4(3) = 12

Example 12.4.8: Simplify (&) (d—b) x (d + b)

Solution: (@ —b) x (@+b)=dxd+dxb—bxd~—
+d x X
axb
Rule 12.4.9:
(1) The length of @ x b is given by: |d@ x b| = |d| |b|sing

(2) The length of @ x b is given by: |d@ x b| = JI&I2|E|2 —(a- 5)2 (Lagrange identity)




|@x

——-and cos@ =
|l |

Proof. (2) sinf =

|@xb

@2 |b|

Now, sin® 8 + cos? 8 =1 =

> |axb| =la?|p| - (a-b) =|axb| = sz 5" - (@-b)°

Example 12.4.10: if & = (2,—1,0) and b = (3,0,4), then |d@ x b| = \/5(25) — (6)% = V89

A
Rule 12.4.11: Let L a line that pass through the points B and C.

Then the distance from the point A to the line L is:
d = Distance
|BAXBC|
|BC|

BC

Distance =
>

. d . BA||BC|sing BAXBC
Proof: sinf = — = d = |BA|sind = |B4||BC|sing _ [BAxEC]|
|B4] |BC| |BC|

Example 12.4.12: Find the distance from the point A(1,2,3) and the line that pass through the points
B(2,1,3) and €(0,1,0)

Solution: BA = (A — B) = (—1,1,0) and BC = (C — B) = (—2,0,—3)

— 2 —2 — ——\2
" pAxse| (IFAE - (FA-B) pam—a@r Vo
Distance = — = = =

|BC| |BC| V13 V13

Example 12.4.13: Find |d@ x b|, where & and b are given

in the figure with |d| = 8, |b| = 6
Solution: | x b| = |dl |B| sing = 8(6)sin (%) = 48 (3) = 24

Example 12.4.14: Find |d@ x b| and @ x b, where |d| = 2 and [b| = - and |d + 25| = 3

-2 b d -2 - -
Solution: |d +2b| =32 = |d|?+4d-b+4|b|] =9 = 4+4d-b+1=9=d-b=1

=>|a><13|=\/|a|2|13|2—(a-13)2= l4() -2 =0 > ax5=0
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Rule 12.4.15: Two vectors @ and b are parallel written @/ /b if @ x b = 0.

Observe the following:

(1) in Example 12.4.12 we have @ x b = 0 50 @/ /b.
(2) If @ is any vector then @/ /0 since d@ x 0 =

Remark 12.4.16: @//b < & = cb or b = cd for some scalar c.

Consequently: Let & = (ay, a,, as) and b = (by, by, bs), Then d@//b < % = ‘;—2 = ‘;—3 where by, by, bs
1 3

2

are nonzero scalars.

Example 12.4.17:

(1) ¢(6,3,15)//(4,2,10) since the ratio 2 : % : % are all equal

(2) (4,6, —28) and (2,3,14) are not parallel since the ratios -:

: _728 are not all equal

Example 12.4.18: Find the value of x that makes a = (2,x — 1, x) and b= (x? —1,0,x + 1) parallel.

x%-1

. +1
Solution: — = al

0 :
— = — = We have 2 equations:
x—1 X
0 x+1
and — =—......
® — =@
x+1

Solving equation (2): % =—_2x= -1

. . 21 0 0 0 0
Check using equation (1): xT =— = _=—=—(noerror)

x—1
S

x=—1 =3
= thevalue of x isx = —1.

. . . L x%-1 0 2
Another solution: Solving equation (1): =D X 1=0 = x=+1

Check using equation (2):
0 +1 0 0 0 . f .
(2): — == = 2= =< = — (which is true) = x = —1 is a correct value
x—1 x 2 -2 -1
x=—1yu=3
0 _x#1

0 0 2 . . .
= > E=6=I(Whlch is false) > x = 1 isa false value = x # 1

x=1 =3

= x = —1 is the only value only for x




Exercise 12.4.19: Find the value of x that makes:

d=(3x2-33,x%2—x—3)and b = (3,1,1) parallel.

Answer is x = —2

Definition 12.4.20: Three points 4, B, C are collinear (s2s) s iiiul Jle) & AB//AC

Example 12.4.21: Determine whether the points A(2,4,—3), B(3,—1,1), C(4,—6,5) are collinear or
not.

Solution:
AB =(1,-54)and AC = (2,—10,8) = f:‘_—ls":fare all equal = AB//AC
= The points A, B, C are collinear

Another solution: AC = 24B = AB//AC = The points 4, B, C are collinear

Rule 12.4.22:

(1) The area (aabw) of the parallelogram determined by the vectors d and bis
A=|dxb|

(2) The area of the triangle determined by the vectors a and bisA = % |EL X I;|

d
Remark 12.4.23: Let A, B, C, D be points.

(1) The area of the parallelogram (& >b=l s 5i) with vertices A,B,C,D is A = |ﬁ x AC
(2) The area of the triangle (<) with vertices 4,B, C is A = %|ﬁ x AC]|

Example 12.4.24: let @ = i + 2j — k and b = j + 3k and let A(1,0,1), B(2,2,0),C(1,1,4), D be four points.

(1) Find the area of the parallelogram determined by the vectors a and b.

(2) Find the area of the triangle determined by the vectors a and b.
(3) Find the area of the parallelogram with vertices A, B, C, D
(4) Find the area of the triangle with vertices A, B, C

Solution:
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Definition 12.4.25: Let & = {a,, ay, as), b = (by, by, bs), and & = {c,, c,, c5) be vectors. The scalar triple

of the vectors d, b, ¢ written @ - (b x &) is defined by
a, a; Aas

a- (E X 5) =|b1 by bs3f= a,(byc3 — bscy) — ay(bycz — bscy) + az(bycy — bycy)

Rule 12.4.26: G- (bx &) =b-(éx @) =&~ (d x b)

Example 12.4.27: 1f @ - (b x ¢) = —3, find 22 (b x 3d)

Solution: 2¢- (b x 3d@) = 2(3)¢- (b x @) = 6 (—d - (b x €)) = —6(~3) = 18

Rule 12.4.28: The volume of the parallelepiped (z skl (s ) si)

= =

determined by the vectors a, b, c is

v=la (Bx3)

Aallaall Aoyl

Remark 12.4.29: Let A, B, C, D be vertices of a parallelepiped not in

the same plane and let @ = AB,b = AC, & = AD. Then the volume of this parallelepiped is

V=ld(bx?d)
T

Example 12.4.30: Find the volume of the parallelepiped:
(1) Determined by the vectors a = (0, —2,5),b = (0,1,2),¢ = (6,3, —1)

(2) With adjacent edges PQ, PR, PS, where P(—2,1,0),Q(—2,—-1,5),R(—2,2,2), and S(4,4,—1).
Solution:

B 0 -2 5
1 da-(bxd)=0 1 2
6 3 -1
=0(-1-6)—(-2)(0—12)+5(0—-6)=0—24—-30=-54

Volume = |d - (b x ¢)| = |-54| = 54
(2) Letd = PQ = (0,—2,5),b = PR = (0,1,2),é = PS = (6,3,—1)
= d-(bx¢&)=—54 (bypart (1))= Volume = |d- (b x &)| = |-54| = 54

Rule 12.4.31:

(1) Three vectors a, b, and ¢ in V; are coplanar (lie in the same plane) if
i -(bx¢)=0.
(2) Four points 4, B, C, D in R3 are coplana if d@ - (b x &) = 0, where @ = AB, b = AC,and ¢ = AD




Example 12.4.32:

(1) Find the value of x that makes a = (1, x, 0),5 = (x,2,1),¢ = (0,1,1) coplanar
(2 Find the wvalue of x that makes the points A(1,—1,2),B(2,x—1,2),
C(x +1,1,3), and D(1,0,3) lie in the same plane.

Solution:

1 x O
Ma-(bxé)=|x 2 1|=12-1)—x(x-0)+0(x-1)=1-x2
0 1 1
i (bxd)=0=> 1-x2=0 = x=+1
(2) @ = AB = (1,x,0), b = AC = (x,2,1),and ¢ = AD = (0,1,1)
x ¢) =1 — x? (by part (1))
XZ)=0=> 1-x2=0 = x=+1

Section 12.5: Equations of lines and Planes

Definition 12.5.1: Let L be the line that pass through the pt A(x,, ¥o,Z,) and parallel to the vector
v ={a, b, c). Then

(1) The parametric (param.) eqs of L are: 3 L
X=xg+at, y=y,+bt, z=12z,+ct, wheret € R //

(2) The vector eq. of L is 7(t) = (xq, Vo, 2) + (a, b, c)t, t ER
= 7(t) = (xo + at, y, + bt, z, + ct) A
(3) The symmetric (symm) eqs of L are:
x;x":y;y" =Z %0 whenever a # 0,b # 0,¢ # 0
. X=X _y-

> Ifa#0,c+0,b=0,the symm. Eqs are: == = =

» Ifb#0,c#0,a=0,the symm. Eqs are =22 = =

Example 12.5.2: Find param, symm, and vector equations of the line through the pt A(1,2,3) and
parallel to the vector 6f — 7k. Also:
(1) find two pts on the line other than A.
(2) at what pts the line intersects:
(a) The xy-plane (b) the xz-plane (c) the y-axis

Solution: The parallel 6; — 7k = (6,0, —7)
The param. Eqsare: x =1+6t, y=2+0t, z=3—-7t, teR
>x=1+6t, y=2, z=3-7t, teR

The vector eq is: 7(t) = (1,2,3) + (6,0,—7)t,t e R=>7(t) = (1 + 6t,2,3 —7t),t ER

2_3'y_2:> u_g_z’yzz

Lx=1
The symm. Eqs are: — = A -
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(1) To find pts on the line we use the parmmegs: x =1+6t, y=2, z=3-7t, teR
Takingt =0=>x =1,y = 2,z = 3 = aptonthe line is (1,2,3) which is the pt Taking Takingt =1 =
x=7y=2,z=—-4=aptonthelineis B(7,2,—4)
Takingt =—-1=>x = -5,y =2,z =10 = aptonthe line is C(-5,2,10)

We can find infinitely many pts on the line

(2)

(a) The intersects the xy-planewhenz =0=>3 -7t =0=>t = %

3

In the param. Eqs (x = 1+ 6t, y =2, z = 3 — 7t) substitute t = p

—1+6<3)—25 =2,z=x=3 7(3)—0
X = 7—7,y—,z—x— 7—
. 25

The intersects the xy-plane at the pt (7, 2,0)
(b) The line intersects the xz-plane when y = 0 butin the param.Eqsy =2 # 0

= the line does not intersect the xz-plane
(c) The line intersects the y-axiswhenx =0andz =0

From the param. Egs. x =1+ 6t, z=3 -7t

1+6t=0>t=—- L _ _
= , % ¢ but — < # ~ = the does not intersect the y-axis

3—-7t=0 = t=-

Example 12.5.3: Find a vector parallel to the given line:
1) x=2—-ty=tz=2t—2 (2) 7(t) =(-1,1,0) +(0,1,3)t

Z—x_m _
@) ST =72=4

Solution: The vectors are:
(1) v =(-1,1,2) (2) v = (0,1,3) (3) v =(-3,-2,0)

Remark 12.5.4: Let L, and L, be two lines such that #//L, and v/ /L,

1) L,//L, © U//Vv & Uu=cvorv =cu
& the ratios of the components of % and ¥ remains the same (A6 s 4all)
(2) If L, and L, are not parallel, the they are interesected (cpabliic) or skew (Caillais),

L
! L, and L, in the figure are skew
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Example 12.5.5: Determine whether the given two lines are parallel, skew or intersects. If they are

intersecting, find the pt of intersection:

Q) x=2-3t,y=2t,z=7
x=549s,y=3—-6s,z=1

2 x=ty=3—-tz=2+3t
x=1+s,y=2+s,z=-3
x=6+t,y=-2+4+3t,z=4+2t -32
x=-14+2s,y=—-1-55,z=2-12s

(1) Li:x=2-3t,y=2t,z=7=>u=(-3,2,0)//L,
L,y x=54+9s,y=3—-6s,z=1=>7=(9,-6,0)//L,
Observe that ¥ = —3u = u//V = L,//L,.

U, U Cleaiall o )5l e
YA e Al di ke o) BaY
NS bz sy oY Jad cadll

0 Ceaia

Q) Li:x=ty=3—-t,z=2+3t=>u=(1,-13)//L,
Lyyx=1+s,y=2+s,z=-3>v=(1,1,0)//L,

Ratio method: %_ilg are not equal = L, and L, are not parallel

= L, and L, are interesected or skew

To determine whether they are interesected or skewed:

Assume that the are intersected:

(Al Gaasy 5 Clagiunal) adaliin Y Il 5 Uas Wipa 56 0 65 @iaill Jiatiss ¢ od Slo Lilian 1))

Li:x=ty=3—-tz=2+3t

Lyx=1+2s,y=2+s,z=-3 Jall yililan 040 £ 5 Lab oy pusiies C¥olae 3
t=1+s=>t—-s=1..(0 o LA e an Jall ilibes giaill Alslaa g
=24{3—-t=2+s5s > —t—-s=-1..02 e il 038 (i gai g (38al) Absbaal i 3 s

243t=-3=2t=-1..03)
@Brt=—-1land(D)=>-1-s=1=s5=-2

(@) @): -t —s = -1

e deanid [ SVAlaa g [ S e G (g gl

Bl (i ) )5Sy Aaleall Giami ol (8 )
Al T ghadll 65 il 5 Uaa
:aadll (2) Adaall 5 Jall (3)¢(D) ¥alaall s il (3 ssal) cinn (sf) Adlaall a6
ahi dlagYs Axblite Lashall (S
S dad sl L) Gt dad (i gas adalidl)
~t=—lands= -2 il e LS (e Jeani o ong L,

Jad) ddad

S L)

>—-(-1)—-(-2)=3+-1
Eq (2) does not satisfied = our assumption is false
= the lines are not intersected but they are not parallel

=~ the lines are skewed
B Lix=6+ty=-24+3tz=44+2t = u=(13,-1)//L,
Lyyx=-14+2s,y=-1-55,z=2-2s= v=(2,-53)//L,
Ratio method: %_is_iz are not equal = L, and L, are not parallel

= L, and L, are interesected or skew
To determine whether they are interesected or skewed:




Assume that the are intersected:
Liix=64+ty=—-2+3tz=4+2t
Lyyx=—-1+4+2s,y=-1—-5s,z=2—125

6+t=—-1+2s 2t—2s=-7..0)

=>{—2+3t=-1-55 = 3t+55s=1..02)
442t=2-25s = 2t+25s=-2..03)

:3aill (3) Adleall s Jall (2)¢(1) @V alaall &y
{—3><@: —3t+ 65 =21
2): 3t+5s=1

}=>115=22: s=2

D=>-3t+6(2)=21=-3t=9=>t=-3

~t=-3ands =2

(@) 32t +25s=-2=22(-3)+212)=-6+4= -2

Eq (2) is satisfied

= our assumption is true = the lines are intersected

To find the pt of intersection: substitute t = =3 in L; (ors = 2in L,):

t=-3ix=6+t=6—-3=3
y=-2+3t=-2+3(-3)=-11
z=4+2t=4+2(-3)=-2

The pt of intersection is (3,—11,—2)

:Ly bl A (e adaliil] A o Jall daa (e oSN
s=2:x=-14+2s=-1+22)=3
y=—-1-5s=-1-5(2)=-11
z=2-2s=2-202)=-2
The pt of intersection is (3, —11, —2) (bl uis gl JaaY)

Example 12.5.6: Find param. Eqgs of the line through the points A(1,2,8) and B(—2,8, —4)

Solution:

A vector parallel to the line is AB=(B—-A)=(-2-18-28— (—4)) = (-3,6,12)
1o el Aii)

aniall ansdl 5l i (Saa i a3l DA 4aie sb o (See i (—3,6,12) 4niall ge Jalati il jlaima pe il
(1, -2, —4) 2 4aidl 13 2aall o daiall andl Cogus A Jizad) g J8) 4aial) S je Jrad 220 6l

> A pt.onthe line: A(1,2,8) and a parallel vector: (1, —2, —4)
= Param.Eqsare:x =1+¢t,y=2—2t,z=8 — 4t
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ACa Loy Lgislg J)geall (5 AT Jgla lia 45|
i)l (S (1, —2, —4) 4aiall s B(—2,8, —4) dkaiill e Jal) Ly 131 (1
x=-2+ty=8-2t,z=—4—4t
0588 (—1,2,4) anid) 5 —1 — Lol aniall o jumy AT asie e (815 A(—2,8, —4) Akl e Jall Ly 131 (2
Xx=-2—t,y=8+2tz=—4+4t o xl

Definition 12.5.7: The eq. of the plane P that passes through n

the point A(xg, Yo, Zo) and with

normal (s2s<\e) vector 7 = (a, b, c) is: A(x0, 53, 20)
a(x —x¢) +b(y —yo) +c(z—2,) =0

S ax + by +cz = axy + by, + ¢z,

A vector eq of the plane is: 71 - # = 71 - 7%y, where 7 = (x,y, z) and 7, = (x, Yo, Zo)

Example 12.5.8: Find the equation of the plane through the pt (0, —6,7) with normal vector (2,5,6).
Find the intercepts (48laY) ) slaall 2 Slablall) and sketch the graph of the plane.

Solution: Theeqis 2x + 5y + 6z = 2(0) + 5(—6) + 6(7) > 2x + 5y + 6z = 12

The intercepts:

2x+5y+6z=12
(imall aaial) I x—intercept

» The x — intercept: wheny =0,z=0=2x+5(0)+6(0)=12= x=6

Lall adaidl) 2x+5y;62=12 y—intercept
L.fa

» The y —intercept: whenx =0,z=0=2(0)+5y+6(0)=12= y= %

z phidl
» The z — intercept: whenx = 0,y = 0
2x+5y+6z=12
! z—intercept
= 2(00+50)+6z=12 > 2z=2

The Graph is:

Example 12.5.9: Find the pt at which the line x = 2 + 3t,y = —4t,z = 5 + t intersects the plane
4x + 5y — 2z = 18.

Solution: Substitute (u=3<) the eqgs of the in the eq of the plane:

4(2+3t)+5(—4t)—2(5+t)=18=8+12t—20t— 10— 2t =18

= —10t = 20 = t = —2. Now substitute this value in the egs of the line:
x=2+3(-2) = —4, y=-4(-2)=8, z=5+(-2)=3

The pt of intersection is (—4,8,3)
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Example 12.5.10: Find the eq. of the plane that pass through the pts A(1,3,2), B(3,—1,6), C(5,2,0)

Solution: AB = (2,—4,4) and AC = (4,—1,-2)
i j  k
2 —4 4
4 -1 =2
=@ i(—4(-2) — 4(-1))
0j(2(-2) - 4(4))
@ k(2(-1) — 4(-4))

= 12i 4+ 20j + 14k is normal on the plane

OSs Mill s La) asiall Ll se il asiall S8 2 e 4dend (Kayy o S 4ilS je 4l Ulias (53 aniall o)) Y
6 siwall le Lo sale

. 12i+20j+14k
= A vector normal to the plane is; ——2——

=60+ 10j + 7k and a pt is A(1,3,2)
The eq of the plane is: 6x + 10y + 7z = 6(1) + 10(3) + 7(2)

= 6x+ 10y + 7z =50

6x+ 10y +7z=6(3) +10(—1)+ 7(6) =18 —10 + 42 = 50

W Ll (i A ¢ s Japentil) 2y i) Aslaall o 2aaDld € 51 B L (e (sl aladinly (5 sinsall Aalas aa Ol ¢Sy

Mie (aliaa )

Example 12.5.11: Find param. eqgs of the line of intersection of the two planes:

Pi:x+y—z=1andP,:3x—3y+2z=3
Solution: First we find 2 pts on the line of intersection of P; and P,:
Take x = 0:

2y=4 >y=-2
Py:: N @__2_ _q
Py3x—3y+z=3 = —3y+z=3 ....Q2 ' Z=

= z=-3
A pt on the line is B(0,—2,-3)
Take x = 1:

Piiix+y—z=1 = y—z=0 —y=0=y=0
{P2:3x—3y+z=3 = —3y+2z=0 @}ﬁi @;}O;fzo }
A pt on the line is €(1,0,0)

= BC = (1,2,3) parallel to the line of intersection

To find param. egs of the line of intersection we use the point B(0,—2,—3). The egs are:

x=0+1t,y=-2+4+2t,z=3+(-3)t=>x=t,y=-2+2t,z=3+ 3t
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Example 12.5.12: Find the eq of the plane through the pt A(—3,1,1) and contains the line of
intersection of the two planes P;:z =y and P,: x + z = —1.

Solution: First we find 2 pts on the line of intersection
of P; and P,:

4d3a N4
Cpilviaall (3a8 Adadi &y i Ol ymaie 3 o Cailalae Ll IS 1)
Oialaal) 8 Lgda gaiy <l puaiall Y dad 23l L Ley o gid
shoGaall bl dad o iy (piblae oo dianid
adais Lia )l ol bl 0l Cppuiall af e Jeanil (g sl
(A B e ALl Alaall s 5 3

Take x = 0:
{Pl:z =y

Prx+z=-1=>0+z=-1=2z=-1 ...

A ptonthe line is B(0,—1,—1)
Take x = 1:

{Pl:z=y

Pox+z=-1>1+z=-1>2z=-2 ....

A pt on the line is €(0,—-2,—2)

Line of intersection

z=-1
> —y+(—1)=0}
@} { > y=-1

z=-2
= —y+(—2)=0}
@} { > y=-2

Since the line in the required plane = the pts B(0,—1,—1),C(1,—2, —2) are in the plane
In our plane we get 3 pts: A(—3,1,1),B(0,—1,-1),C(1,-2,—2)

i slhall (5 giuall e (53 galall aniall aiia 3 51 <l Example 10 Jis dall mual

AB = (3,—2,—2) and AC = (4,—3, —3)
ik
ABxAC=13 -2 =2

4 -3 -3

=@i(6-6)0j(=9—-(-8) ® k(-9 —-(-8)

= j — k is normal on the plane

To find the eq. of the plane we use the point A(—3,1,1). The eq is:

Ox+1y—1z=0(-3)+1(1) - 1(1) =2y —2z=0




Example 12.5.13:

(1) Find the eq of the plane through the pt A(—3,1,1) and perpendicular to the line:
x=ty=-2+2t,z=3+3t
(2) Find the eq of the plane through the pt A(—3,1,1) and perpendicular to the line of intersection of
the two planes P;:z = yand P,:x + z = —1.

Solution:
(1) A vector parallel to the line is:
v = (1,2,3) = v normal to the plane
The eq of the plane is:
1x+2y+3z=1(-3)+ 2(1) + 3(1)
>x+2y+3z=2
First we find two on the line of intersection:
See example 12: the pts B(0,—1,—1),C(1,—2,—2) areon the
line of intersection
BC = (1,—1,—1)// line of intersection P,
= BC = (1,—1,—1) normal to the required plane
To find the eq. of the plane we use the point A(—3,1,1). The
eq is:

Ix—1y—-1z=1(-3)-1(1)-11)>-y—z=-5=>y+z=5

A(-3.11
= )

Line of intersection

Definition 12.5.14: Let P; and P, be two planes and let77; L P, and 7, L P,.

(1) P//P, &1,/ /1,
(2) P, and P, are intersected (at a line) < 71, and 71, are not parallel

Rule 12.5.15: Let P, and P, be two planes and let 77, L P, and 71, L P,. If P, and P, are intersected, then

the angle 6 between P, and P, is the same angle between 7, and 7i,, that is cos 8 = % S 0=
1 2

cos™! (%) where0 <9 <Z
|71 1722 ] 2

Example 12.5.16: Find the angle between the planes P;:x —y =3 and P,:x 4+ 2y —z =1
Solution: 1, = (1,—1,0) and n, = (1,2, —1)

—1<ﬁ1'ﬁ2> —1(1_2> —1(_1> 106.7°
cos ———|=cos7!|—==)=cosT!|—=)= :
|72, |72, V2v6 2V/3

=60 =180—-106.7 =733 =6 =733
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Example 12.5.17: Find all values of a (if exist) that make the planes P;:4x + 3ay — 2z = 1 and
Pz:gax + 9y —3z=10: (1) perpendicular (2) parallel

Solution: 71, = (4,3a,—2) and 11, = (g a,9,—3)

(1) P, perpendiculartoP, & 1, L1, o 1,-1n,=0 = 4 Ga) +3a(9) —2(-3)=0
=>6a+27a+6=0=>33a=-6> a——%—
(2) P, and P, parallel = 7, and 7, are parallel
3
-a
9 -3 =

3a = = =4
Ratio Method: 2— =5 4 which is impossible

There is no value of a that make P, and P, parallel

Rule 12.5.18: The distance from the pt A(x,, yo, zo) to the plane P:ax + by + cz+d = 0 is:
laxy + by, + czy + d|

If the distance equals 0, then the point A is on the plane.

distance =

Example 12.5.19: Find the distance from the pt A(—1,2,3) to the plane 2x — 4y +z =1

Solution: Eqoftheplane 2x —4y+z=1= 2x—4y+z—-1=0

= distance = ZCD4@31 _ 8 8

J@)2+(-9)2+(1)2 V21 V21

Rule 12.5.20: Let P; and P, be two planes.

(1) If P, and P, are intersected then the distance between P; and P, is zero 0
(2) The distance between two parallel planes:
ax+by+cz+d,=0andax+by+cz+d, =0 is

|d, — d|
VaZ+ b+ 2
Example 12.5.21: Find the distance between the given two planes:
(1) Piix—2y+z=3and P,:2x—y+2z=6
(2) P;:10x+ 2y —2z=5and P,:5x+y—z=1

distance =

Solution:
(1) 1, =(1,-2,1) and ﬁz (2,—1,2) = To check if 71, and 71, are parallel or not:

Ratio Method: = —1 2 are not all equal = 7, and 71, are not parallel
= P, and P, are mtersected = distance between P, and P, is 0

(2) 7, =(10,2,—-2)and 11, = (5,1,—1) = To check if 77, and 7, are parallel or not:
Ratio Method: ?%:—i are all equal to 2 = 7, and 7, are parallel
ralilaia (2, y, z) COllae ()5S O el Ol LUS i
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P1:10x+2y—22=5=>5x+y—z=§=>5x+y_z_§:0
Py:5x+y—z—-1=0
3o
(5)Z+(D)2+(-1)?

The distance between P; and P, is distance(4, P,) =

Section 12.6: Cvylinders and Quadric Surfaces

Definition 12.6.1: Cylinders are surfaces that results (ziu) by moving a curve in a direction of a fixed
axis (line).

Example 12.6.2: Each of the following are cylinders:
(1) z = x? (we move the curve along the y-axis)
(2) x? + y% = 4 (we move the curve along the z-axis)
(3) The plane x — 2y + z = 1 (we move line L in the plane along a line in the plane perpendicular
to L)
(4) All planes are cylinders = x = 3,2x —z = 1,and 2x + 3y — z = 2 are all cylinders

Example 12.6.3: Each of the following are not cylinders:
(1) x?=3+z=5 (2) x + 2y = cosz (3) z=e*—3Iny

Definition 12.6.4: A quadric surface is the graph of a second-degree equation in the form
Ax? 4+ By?+ Cz?+ Dxy+ Exz+ Fyz+ Gx+Hy+1z+] =0,
where A, B, C, ..., ] are scalars.

Example 12.6.5: Identify (~Y' kel) the trace of the quadric surface 2x2? + y? — z% = 16 in the:
(1) plane z =1 (2) plane y = 4

Solution: (1) Substitute z = 1 in the surface = 2x2 + y? — 12 = 16

= The trace is 2x? + y2 = 17 which is an ellipse (u=it &kd) in the plane
(2) Substitute y = 1 in the surface = 2x2 + 12 — z?2 = 16

= The trace is 2x? — z2 = 15 which is a hyperbola (2 &) in the plane

Example 12.6.6: Identify the trace of the quadric surface x? + y + z2 = 2 in the:
(1) plane z =1 (2) planey =1

Solution: (1) Substitute z = 1 inthe surface > x>+ y+1 =2

= The trace is y — 1 = —x? which is a parabola (s« k) in the plane
(2) Substitute y = 1 in the surface = x? + 1 + z2 =

= The trace is x? + z? = 1 which is a circle (3_3) in the plane




Remark 12.6.7:

Surface

Equation

Equation

All traces are ellipses

Horizontal traces are ellipses.

Ifa = b = ¢, the ellipsoid 1s Vertical traces in the planes
a sphere. x=kand y = k are
7,

hyperbolas if £ » 0 but are

.
(il Il/’,’,’.'ll q"q'v‘\\-
‘*\\\\“‘ \"‘"»"
pairs of lines if k& = (.
PRANY L
aan W
G \\\‘\\\\

Horizontal traces are ellipses
Vertical traces are parabolas
The vanable raised to the

first power indicates the axis

of the parabolod

2 2
Example 12.6.8: Use traces to sketch the surface x2 + y; +=- = 1. Show the intercepts and give the
name.

Solution: The surface name is Ellipsoid

Intercepts:
2 2
x-intercept: y = 0,z = 0: x? +0?+OT =l=ax?=1>x=1,—-1

=1=2y2=9=>y=3,-3

2 2
y-intercept: x = 0,z = 0: 02 + >+ OT

2 2
z-intercept: x = 0,y = 0: 02+%+ZT= 12z2=4>2=2,-2

Example 12.6.9: Classify and sketch each of the following surfaces:
(1) x?2+2z2—-6x—y+10=0 (2) x2+2z2—6x+y+10=0.

Solution:

1)




Example 12.6.10: Identify and sketch the surfaces:

(1) z=4x%2+y?

2 2 2 2 2
BE-y+Z+2z=1. (4)z" =2x"+y

I
I
|
l
I
1
2

(5) z2 =2x*+y




(Nz=y2x*+y° (8)z = —2x2 +7




Chapter 13: Vector Functions

Section 13.1: Vector Functions and vector curves

Definition 13.1.1: A vector function, denoted by r(t), is a function in the variable t with domain A <
R and its range is the set of vectors:

r(6) =(f(©), g, h(O)) = f(O)i+ g(&)j + h(Dk, tEA
that is A = dom r(t) = dom(f) N dom(g) N dom(h)

Example 13.1.2: Find the domain of r(t) = (tz%l, In(3 —t),Vt).
Solution:
> t

t
S = t2—1#0>t+# +1=dom (tz_ ) = (—o0,0)\{£1}.

» n(3—-1t):=>3—-t>0=>t<3=dom(In(3—-1t)) = (—x,3)
> Vt:=>t>0=dom(Vt) = [0, )

=>domr(t) = dom(

t
t2—-1

) N dom(In(3 — £)) N dom(VE) =dom r(t) = [0,1) U (1,3).

Geometrically 13.1.3: The vector function:

r(t) =(f (), g(t), h(t))

Defines a vector curve C traced out by the tip of the moving
vector r(t). The direction of C is as the direction of the
moving tip when t increases as shown in the figure. The
vector r(t) is called the position vector. The parametric eqs
of Care:x = f(t),y = g(t),z = h(t)

P(f(1), g(1), h(r))

FIGURE 1
C is traced out by the tip of a moving
position vector r(f).

Example 13.1.4: Sketch the curve and show the direction for each of the following vector functions:
1) r()=(1+t3—4t,—2+5t) (2) r(t) = costi+sintj+tk
(3) r(t)=(1+4sint,3cost) (4) r(t) = (t,sint)

Solution:
1) r(t)=(1+t3—-4t,—2+5t)=>x=1+t, y=3—-4t,z=-2+5t 0p.-1.3)
= The curve is a line in 3D
To determine direction: Find 2 pts on the curve
» t=0=>x=1,y=3,z=-2=P(1,3,-2)
> t=1=>x=2,y=-1,z=3=0Q(2,-1,3)
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(2) r(t) =costi+sintj+tk=x=cost,y=sint,z=t
=>x2+y2=cos’t+sin’t=1
the curve lies on the circular cylinder x2 + y2 =1
Since z = t, the curve spirals upward around the cylinder as t increases.
This curve is called a helix.
To determine direction: Find 2 pts on the curve
» t=0=>x=cos0=1,y=sin0=0,z=0=P(1,0,0)

[ T . T A s
> t—;:x—cos;—O,y—sm;—1,Z—;=’Q(0;1;;)

(3) r(t) =(1+4sint,3cost)= x =1+ 4sint,y = 3cost
:sint=xT_1and cost=§

_1)2 2
cos?t +sin?t = 1=+ L = 1 (Ellipse)
To determine direction: Find 2 pts on the curve
» t=0=>x=1+4+4sin0=1,y=3cos0=3=P(1,3)

> tzgﬁx:1+4sin%:5,y=3cos§=0=>Q(5;0)

(4) r(t) =(tsint)=> x=t,y=sint=>y=sinx
To determine direction: Find 2 pts on the curve
» t=0=>x=0,y=sin0=0= P(0,0)

T T . T T
> t—;ix-;,y—SII’lE—lﬁQ(E,l)

Exercise 13.1.5: Sketch the curve defined by the vector functions
Dr)=(1- %cos t,4t,3 + 2sint).
(2) r(t) =(t,5 — t?).

Remark 13.1.6: In general, the curve defined by the vector function
r(t) ={a+bcost,c+dsint,et)
is called a Helix. When b = d it is called a circular Helix.

Example 13.1.7: Find a vector function that represents the curve of intersection of the two surfaces:

(1) 9(x—1)2+2y?2=36,z=xy
(2) x*+z2=1,y=x?>-2°
Solution:
x—1 y

_1)2 2 _ (Gt Vil A =1\ (v )\ _
D 9x-1D*+2y*=36= 4 +18_1:>(2)+(\/E) =1

Leth_lzcost,\/%zsintﬁ x=1+4+2cost,y=+v18sint =y = 3v2sint

z=xy = (142cost)(3V2sint) = 3V2sint + 6vV2costsint = 3v2sint + 2v2sin(2t)

The vector function is r(t) = (1 + 2 cost, 3v2sint, 3v2sin t + 2v/2 sin(2t))




(2) x*+z2=1>x=sint,z=cost
y =x? —z? =sin?t —cos?t = —(cos? t —sin? t) = — cos(2t)

The vector function is r(t) = sinti — cos(2t)j + cost k

Example 13.1.8: Find a surface on which the vector curve lies on:

(1) r(t) = (cost,sint,t) (2) r(t) = (tcost,tsint,t)
(3) r(t) = (et, t? + 2e24,t) (4) r(t) = (cost,sint,— cost)

Solution:

(1) x=cost,y=sint,z=1t
= cos?t +sin?t = 1= x?+y2 = 1= The curve lies on a cylinder

(2) x=tcost,y=tsint,z=t

yZ

tZ

2
cos’t+sin’t=1= x—2+ =12x2+y2=t2=x24y2 =72
t

= z2 = x? + y? = The curve lies on a cone

(8 x=ety=t?+2e%,z=t=>y=2z?+2x?= The curve lies on a paraboloid
(4) x=cost,y=sint,z= —cost =z = —x = The curve lies on a plane
Also, since cos?t +sin?t = 1 = x2? + y? = 1 = The curve lies on a cylinder

Remark 13.1.9: A vector function for the line segment (d«iiuall 2kdll) from the pt P to the pt Q is

r(t) =((1 —t)P + tQ), where 0 <t < 1.

Example 13.1.10: Find a vector function for the line segment from the pt (1,0,2) to the pt (2,3,1).

Solution: r(t) = (1 —t)P + tQ), where0 <t < 1
>r(t) =(1-¢)(1,02)+t(2,3,1))=(1+¢3t,2—t),where0<t <1

D:a € dom(r(t))}

Rule 13.1.11: The vector function r(t) is continuous att = a © {@ limr(®) = r(a)
' t-a o

t 1

Example 13.1.12: Find where the vector function r(t) = (tan(t) S

,In(t)) is continuous.

Solution: #(t) is continuous on its domain

t ot
tan(t) - tan(t)

> i is continuous on: R\{1}

is continuous on: R\ ({O, 47, +27, ...} U {i g

» In(t) is continuous on: (0, o).

= r(t) is continuous on its dom(r(t)) = (0, )\ {1% n,%", 271,57"
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Section 13.2: Derivative and Integral of VVector Functions

Definition 13.2.1: Let r(t) be a smooth curve. Then the derivative of r(t) is defined by:

dr y r(t+h) — r(t)
At hoo h

If the limit exists. The derivative % is written as % =r'(t).

Moreover, if r(t) = (f(t), g(t), h(t)) is a smooth curve, then r'(t) = (f'(t), g'(t), h'(t))

Geometrically 13.2.2: Let C be the curve defined by the vector function r(t) at a pt P on the curve C.
(1) r'(¢t) is a tangent vector to the curve C at P points in the direction of increasing t.
(2) The vector r'(t) is called the tangent vector to r(t) at the pt P.

(3) The unit tangent vector to the curve is given by T(t) = |:’Eg|

The tangent line to the curve C at the pt P is the line parallel to the tangent vector r(t).

Example 13.2.3: For the curve r(t) = v/ti + (2 — t)j, find r’(t) and sketch the position vectors
r(1) and r'(1) 2

Solution: r'(t) = 2#\/{ —j. To sketch r(1) and r’(1): First we need to sketch

the curve r(t) = Vti+ (2 —t)j (We are in 2D)
Sx=+ty=2—-t=>t=x?>=>y=2—x%isaparabola
r() =i+j=(L)andr'(1) =5 —j=(,—1)

Example 13.2.4: Find a tangent vector and a unit tangent vector to the curve:
r(t) = (1+ t3Int,sin(wt))
Q) att=1 (2) at the point A(9,In2,0)
Solution: (1) r'(t) = (3t2,%,ncos(rrt)) = r'(1) = (3,1, —m) is a tangent vector to r(t)

. . '@ _ (31-m
The unit tangent vector is T(1) = | = T

(2) At A(9,In 2, 0) we have to find the value of t:
A(9,In2,0):x=9,y=In2,z=0=>1+t3=9,Int=1In2,sin(nt) =0=>t =2

1
(2) = (12 .1 Vi : , : _re __4zm
r) = (12,2,71) is a tangent line = The unit tangent vector is T(2) = @ Vet

Example 13.2.5: Find all unit vectors parallel to the tangent line to the parabola y = x? at the point
(2,4).

Solution:
Step 1: We write the curve y = x?2 in parametric form: Letx =t =y = t2
= the curve is r(t) = (¢, t?) = r'(t) = (1,2t)
Step 2: We find the value of ¢t atthe pt (2,4): x =2,y =4butx =ty =t?=>t=2
Step 3: A vector parallel to the curve at (2,4) is r'(2) = (1,4)
r'(2) (1L4)

. 1 4
The unit vectors are + ol iﬁ =x (ﬁ,ﬁ
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Example 13.2.6: Find parametric equations of the tangent line to the curve:
x=2cost,y =sint,z=tatthe ptA (0,1,%).

Solution:
> First we write the vector function of the curve: r(t) = (2 cost,sint,t)
=>r'(t) =(-2sint,cost,1)

» Second we have to find the value of ¢ at the pt A (0,1,%):
s

x=0y= 1,Z=gbutx =2cost,y=sint,z=t=t =3
A vector parallel to the line is: 1’ (g) = (—2sin (g) ,COS (g) 1) =(=2,0,1)
Parametric equations of the tangent line are:

x=0+(-Dty=1+0tz=7+1t=> x=-2t,y=1z=7+t

Properties 13.2.7: Let u(t), v(t) be vector functions, f(t) is a function and a, b are scalars. Then
1) % (au(t) + bv(t)) = au’(t) + bv'(t)
(2) £ @® - v(®) = u(®) v () + ' (1) - v(t)
(3) = (u(t) X v(£)) = u(t) X V' (£) + u'(t) X v(t)

(4) (Chain Rule): % (u(f(®)) = f'Ou' (@)
Example 13.2.8:

(1) Show that = (r(t) X r'(£)) = r(t) X 1" (t).
(2) Let r(t) be a smooth curve such that |r(t)| = C (constant for all t). Show that r(t) is

orthogonal to r'(t) for all ¢
Proof:

(1) = (r(®) X' () = 1() X1 () + 1'(£) X 1'(t) = r(t) X 1" (£)
=0

@ IOl =C=r@®F = 2= r@®)-r@) = 2= = (r@) 1)) = (C?)
>r@) re)+r@®) r@)=0=22r@) r'@)=0=>r)-r'(t)=0
= r(t) L r'(t)
Rule 13.2.9: Let r(¢) = (f(¢), (), h(t)). Then [ r(t) dt = ([} f(©) dt, [} g(e)dt, [, h(t) dt)
Example 13.2.10: Letr(t) = 2costi+ sintj + 2tk. Then
(1) [r(®)dt = (f 2costdt)i+ ([sintdt)j+ ([ 2tdt)k
= (2sint + ¢))i+ (—cost +¢cy)j + (t? + c3)k

= 2sinti— costj+ t?k + C, where C is a vector constant of integration

@ [ r(e) de = (fogZCostdt>i+(f?sintdt)]'+(fothdt>k

= 2sin t]]g/zi — cos t]]g/zi + tz]]g/zk

2 2

= 2(sin (g) —sin0)i — (cos (g) — cos 0)j + ((g) - 0O)k=2i+j+ %k
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Section 13.3: Arc length and Curvature (sbsiy) s (wsdll J oh)

Definition 13.3.1: The arc length (u+s8) Jsk) of the curve r(t),a <t < bisL = f:lr’(t)l dt

Example 13.3.2: Find the arc length of the helix r(t) = 4 costi+ tj + 4 sint k from the pt A(4,0,0)
to the pt B (0,%,4)

Solution:

Step 1: r'(t) = (—4sint, 1,4 cost)

= |r'(t)| = V16sin2t+ 1+ 16 cos?t = \/1 + 16(sin?t + cos?t) = V17
Step 2: We find the values of t at the pts A and B:
> A(400)=>x=4,y=0,z=0butx =4cost, y=t,z=4sint=>t=0

T

> B(O,§,4)=>x=0,y=§,z=4butx=4cost, y = t,z=4sint=>t=;

=>0<t<

Step 3: L = [2[r' ()| dt = [2V/17 dt =

17
2

Example 13.3.3: Find the arc length of the following curves:
(1) r(t) =costi+sintj+ ln(cost),%ﬂ <t<m

(2) r(t) =4costi+tj+4sintk from the pt A(4,0,0) tothe pt B (0,%,4)

3
@) r®=(2tt25),0<t<1
(4) r(t)=(\2tetet)0<t<2
Solution:
(1) Step1l:r'(t) = (—sint,cost,
= |r'(t)] = Vsin2t+ cos?2t+tan?t =1 +tan2t = Vsec2 t = |sect|
Step 2: L = [ax|r'(t)| dt = [in|sect|dt = — fmsect dt = —In|sect + tan t|15
4 4 4

4
= —[In|-1 40| = In|-V2 + (-D|] = In(v2 + 1)
(2) Step 1L:r'(t) = (—4sint, 1,4 cost)
= |r'(t)| = V16sin2t + 1+ 16 cos?t = /1 + 16(sin?t + cos? t) = V17
Step 2: Find the values of t at the pts A and B:
» A(4,00)=>x=4,y=0,z=0butx =4cost, y=t,z=4sint=2t=0

T

> B(O,g,él):>x=0,y=§,2=4butx=4cost, y=t,z=4sint=>t=;

—sint .
- Y =(—sint,cost,—tant)

=>0<t<

Step 3: L = [Z|r'(t)| dt = [217dt = 17

2
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Step 1:1'(t) = (2,2t,t2) = |[r'(t)| = VA +4t2+t* = /(t2+2)2=t2 +2
3 1

Step2: L= [JIr'(®)ldt = [ (> +2)dt ==+ Zt]]o =
Stepl:r'(t) = (2,2, t2) = |r'(t)| = Va+4t2+t*=/(t2+2)2 =t2+2
Step 2: L = [|r'()|dt = ['(t? + 2) dt =£+2tﬂ1 =(3+2)- (=1

p ) 0 0 3 0 3 3
Step 1: r'(t) = (v2,et, —e7t)

S = 2+ (@)2+ (—e )2 =V2+el +e 2
= Je 2t (2e2 + et + 1) = e 2t et + 22t + 1

=etJ(e2t+1)2=et(e?* +1)=et +et

2

Step2: L = [ |r'(t)|dt = [ (et + e™) dt = et + _—1}]0 =(e?—e)-(1-1)=e?—e?

Exercise 13.3.4: Find the arc length (or the length of the arc) of the following curves:

LD r=i+t})j+t3k0<t<1
(2) r(t) =12ti+8t3%j+3t’k,0<t <4

Example 13.3.5: Find the arc length of the curve of intersection of the parabolic cylinder x? = 2y and
the surface 3z = xy from the origin to the pt A(6,18,36)

2
Solution: First we parametrize the curve: y = x? and z = %

2 2 3 2 3 2
letx =t =y =%andz =%=%=>r(t) = (t,%,%) =>r1'(t) = (Lt%)

L= fS W= 5|03 a= [0 e s G a= 7 e e
= [/ (14 5t2)2dt = [ (1+ 32 dt = [t + 3t°] = 6+ 36 = 42

Definition 13.3.6:

v’ @)xr" ()]
T GIE

(2) The curvature of a curve y = f(x) (a curve in the plane) is defined by x(x)

(1) The curvature (s4~3Y) of a curve r(t) is defined by k(t) =
__ "=l
[1+(f'(x))2]3/2

Example 13.3.7:

(1) Find the curvature of the curve r(t) = (t, t2,t3)

(2) Find the curvature of the curve r(t) = (t* — t + 1,In(1 — t), (1 — ¢) In(1 — t)) at the point
(1,0,0)

(3) Find the curvature of the curve with parametric equations x = sint,y = cost, z = sin 5t at the
point A(0,1,0).

(4) Find the curvature of the parabola y = 1 — x?2 at the point (2, —3).




Solution:

(1) r'(t) =(1,2t,3t?) =>r"(t) =(0,2,6t)
Ir'(t)| = V1 +4t2 +9t*and |r”(t)] = V4 + 36t2

(D) X 1 ()] \[ ORI @12 = (@) - 1)
KO="ror . - THOE
V(@ +4t2 +9t4) (4 + 36t2) — (4t + 18t3)?
B (14 4t2 + 9t*)3/2

2 r(®)=(*—t+1,In(1—-1t),(1 —t)In(1 — t)) at the point (1,0,0)

> t2—t+1=1=2t?-t=0=>t(t—-1)=0=>t=00rt=1.

but In(1 — ¢t) is undefined at t = 1. So, we must have t = 0.

> r'(t) = (2t, —%_t,—1 —In(1-106))=r'(0) = (0,—1,—1)

> () =2 ) 2 (0 = (211)

> r'(0)| =2, |r"(0)| =v6and r'(0) - r"(0) = -2
Foyxe )] JIF @2 (0)[2=(r(0)1" (0))*

> (0) = HOE = ! HHOE
_V2(6)—(-2)2 V8 2v2 .
OO NN
r(t) = (sint,cost,sin 5t)
At the pt A(0,1,0) > sint = 0,cost = 1,sin5t =0=>t =10
r'(t) = (cost,—sint,5cost) = r'(0) =(1,0,5)
r’(t) = (—sint,—cost,—25sint) = r”’(0) = (0,—1,0)
Ir'(0)| = V26, [r"(0)| = V1 and r'(0) - r"(0) = 0
> k(0) = e @xr" ()] _ \/Ir’(O)IZIr”(O)|2—(r’(0)-r”(0))2 _ V% _ 1
Ir'(0)[3 Ir’(0)[3 (26)%3/2 26

flx)=1—x2atthept (2,-3)=>x =2, f'(x) =—2xand f"(x) = -2
= f'(2)=—-4and f"(2) = -2.
= K(2) = '@l -2l 2 2

[1+(f’(2))2]3/2 PR an D
Example 13.3.8:

(1) Find the curvature of the curve with parametric equations x = sint,y = cost, z = sin 5t at the
point A(0,1,0).

(2) Find the curvature of each of the following curves: (a) y = tan x (b) y = xe*

(3) Find the curvature of the parabola y = 1 — x?2 at the point (2, —3).

>
>
>
>




Example 13.3.9:

(1) Show that the curvature of any line is zero.
(2) Show that the curvature of any circle of radius a is %

Proof:

(1) First we give a vector function of the line in 3D:
xX=xotat,y=y,+bt,z=2zp+ct,t, <t<ty
Let r(t) = (x, + at, y, + bt, zo + ct) =r'(t) =(a,b,c) = r"(t) =(0,0,0)

I’ (&) x " (¢)| \[|r’(t)|2|l‘”(t)|2 —(r'@®)- r”(t))2
“O="ror - OE

Ir'(t) x r'" (¢)| \[|r’(t)|2|l‘”(t)|2 —(r®-r®)°
G TIGIE

_JIPOPO-(0? _
- Iror

(2) First we give a vector function of the circle in 3D: x2 + y2 =a%,z=0
Letx = acostand y = asint,z = 0 = r(t) = (acost,asint,0)
=>r'(t) = (—asint,acost,0)and r”’(t) = (—acost,—asint,0)

Ir'(t)| = \/a2 sin?t + a2 cos?t = \/az(sinz t +cos?t) = \/E =a
Ir'"(t)| = \/a2 cos?t+ a?sin?t = \/az(cosz t +sin?t) = \/ﬁ =a
r'(t)-r’(t) = —asint (—acost) + acost (—asint) =0
I (8) X £ ()] JW“W“%ﬂP—O%%W%DZ
o N GIE. THGIE
B Jaz(a?) — (0)2 B a?® 1
a (a)3 T @@ a

Definition 13.3.10: Let r(t) be a vector function.

T'(t)

T (O

(2) The Binormal vector is defined by B(t) = T(t) x N(t).
Example 13.3.11:

(1) Find the unit normal and binormal vectors of the circular helix

r(t) =costi+sintj+tk

(2) Find the unit normal and binormal vectors of the circular helix
r(t) = costi+sintj+ t k at the point (1,0,27)

(1) The unit normal vector is defined by N(t) =

Solution:
(1) r'(t) = —sinti+costj+ k= |r'(t)| = Vcos2t +sin2t +1=+2
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_r@ I . . — __sint cost 1
T(t)_|r'(t)|_ﬁ( sinti+ costj+ k) = 7z ﬁ,ﬁ)

T,(t)z%(_COSti—Sint]‘) = |T,(t)| — co;zt_l_sir;zt.:
The unit normal is:

T'(t) %(-costi —sintj)
T ()] 1

V2
i j
_ _ sint cost . i cost
B(t) =T xN(®) = | -2 == ~j(0+ f)+k(ﬁ +2
—cost —sint

= —costi—sintj = (—cost,—sint,0)

N(t) =
The Binormal vector is:
sint_. cost,

" T EE

r(t) =costi+sintj+tk = ptoncarveis (cost,sint,t)

At the pt (1,0,27) we have (1,0,2m) = (cost,sint,t) =t = 2n
N(t) = (—cost,—sint,0) = N(2r) = (—cos 2, —sin 2, 0) = (—1,0,0)

B(Y) = (45, - <=, 2 > BQn

)_ (sm 21 cos2mt 1 1

Z'Va @ =0 v‘f)

Example 13.3.12: Let r(t) be a smooth curve. Show that the unit tangent vector T(t) is orthogonal to
unit normal vector N(t)

Proof: T(t) is a unit vector = |T(t)|?=1=>T()-T(t) = 1, forall t
(T - T@®) == (W) = TE - T'(®) + T'(6) - T(t) = 0

2(T()-T'(t)) = 0> T(t)- T’(t) =0
Divide (1) by |T’(t)| we have: |T,(t)| (T@®)-T'(t)) =0

> T(t)- ;:Eg =0 = T(t)-N(t) = 0= T(t) L N(t).

Exercise 13.3.13: Find the vectors T, N, B at the given point:

(1) r(t) = (t2,§t3,t), (12 1)
(2) r(t) = (cost,sint,In(cost), (1,1,0).




Chapter 14: Partial Derivatives

Section 14.1: Functions of Several Variables

Definition 14.1.1: A function f of two variables is a rule that assigns
to each ordered pair of real numbers x,y inaset D a unique real
number denoted by f(x,y). The set D is the domain of f and its range

is the set of values that f takes on, that is,
D ={(x,y) € R% f(x,y) € R}and Range = {z € R: z = f(x,y), (x,y) € D}.

Example 14.1.2: Let f(x,y) = x + In(y? — x). Then f(3,2) =3 +In(22-3) =3 +1In1 =3

Example 14.1.3: Find and sketch the domain of the functions:

(1) f ) =20 (@ f(x,y) = In(y* —x) @) f(x,y) = xZ+yZ =9
@ f(xy) = Jxy B f(x,y) =y +/25 —xZ— y?

Solution:
(1) Dom(f) ={(x,y) ER*:x +y+1=>0,x # 1}

x+y+1=20x#1l:x+y+1=0

>x+y=-1

(2) Dom(f) = {(x,y) € R*:y* —x > 0}
={(x,y) € R?:y% > x}

y2>x=>y?=x

(3) Dom(f) = {(x,y) € R>:x?2 + y2 — 9 > 0}
={(x,y) € R?®:x? + y? > 9}

(@) Dom(f) = {(x,y) ER*xy =0}
xy = 0:
= x = 0andy > 0 (first quadrant)
or x < 0andy < 0 (third quadrant)




(5) Dom(f) = {(x,y) € R*:y > 0,25 —x* —y? > 0}
={(x,y) € R%:y > 0,x% + y? < 25}

|
Example 14.1.4: Find the domain and range of the function £ (x,y) = 2 — 3,/9 — x2 — y2
Solution: Dom(f) = {(x,y) € R%:9 —x2 — y2 > 0} = {(x,y) € R?:x? + y? < 9}.
Forrange f: Letz = f(x,y) = z=2—3,/9—x2— y2.S0,
JI9-x2-y220 =3/9-x2-y2>0= —-3,/9—x2—y2 <0
= 2-3,/9—-x2-y2<2=2<2
X2 +y220=> —x2-y2<0= 9-x>—-y><9 = [9—x2—y2<9=3

= —3,/9-x2-y2>2-9 = 2-3,/9-x?-y2>22-9=>2z>-7
So, =7 <z <2 = Range = [-7,2]

Example 14.1.5: Find the domain and range of the function:
fx,y) = x* 4 2y?
Solution: Dom(f) = {(x,y) € R?} = R2.
Forrange f:Letz = f(x,y) = z =2+ x? + 2y2.So,
x24+2y2>20= 2+x%2+2y?>2= z>2= range(f) = [2,0)

Definition 14.1.6: If f is a function of two variables with domain D, then the graph of f is the set of
all points (x,y,z) in R3 suchthat z = f(x,y) and (x,y) € D.

Example 14.1.7: Sketch the graph of the functions:
(D) fx,y) =6—3x—2y (2) flxy)=y9—x*—y?
@) f(x,y) =6 —/x% + 2y? @ f(x,y) =x*+2y?
Solution:

D z=f(x,y)=z=6—-3x—2y = 3x+ 2y + z = 6(isaplane)
Intercepts:

x-intercept: y =z =0

= 3x+2(0)0+0=6 = 3x=6=>x=2

y-intercept: x =z =10

= 3(0)+2y+0=6 = 2y=6=y=3

z-intercept: x =y =0

= 3(0)+2(0)+z=6 = z=6

@z=f(xy) = z=,9—x?—-y?
= z2=9—x?—y2withz>0
= x? 4+ y? 4+ z% = 9 with z > 0 (is a hemisphere)
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B)z=f(xy)= z=06—./x2+2y? (4)z=f(x,y)= z=x?+ 2y (paraboloid)

= z-6=—/x%+2y?

= (z-6)% =x2+ 2y? (cone)

Definition 14.1.8: The level curves of a function f of two variables are the curves with equations
f(x,y) = k, where k is a constant (k € range(f) ).
% The level curves f(x,y) = k are just the traces of the graph of f in the horizontal plane z =
k projected down to the xy-plane.

Level curves

«» The graph of several level curves in the plane is called a contour map of the function f

Example 14.1.9: Sketch the level curves of the function f(x,y) = 6 — 3x — 2y for the values
k=-6,0,6,
Solution: The level curves are: A
6—3x—-2y=k = 3x+2y=6-k
» k=—-6 = 3x+ 2y =12 (line with slope — z)

» k=0 = 3x+2y=6 (1inewithslope—§)

» k=6 = 3x+2y=0 (linewithslope—z)

» k=12 = 3x+ 2y = —6 (line with slope — g)




53

Example 14.1.10: Sketch the level curves of the function f(x,y) = /9 — x2? — y? for the values k = 0,1,3
Solution: The level curves are: f(x,y) =k
= J9—x?2—-y?2=k for k=0,123
= 9—x?2—y2=k* for k=0,1,2,3
= x2+y2=9—-k? for k=0,1,2,3
> k=0 = x?2+y2=9 (circle)
> k=1 = x?*+y2=8 (circle)
> k=3 = x?2+y2=0
=x=0,y=0 = Apoint (0,0)

Functions of Three or More Variables 14.1.11:
A function f of three variables is a rule that assigns to each ordered triple (x,y,z) inadomain D in
R3 a unique real number denoted by f(x,y,z).

Example 14.1.12: Find and sketch the domain of the function:
(@) f(x,v,2) =In(z — y) + xy sinz.
(b) fCx,y,2) =z —x* = 2y?
Solution:
(@) Dom(f) ={(x,y,2z) E R®:z—vy > 0}
={(x,v,z) ER3:z >y}
To sketch Dom(f):
z>y. = z=1y(plane)
So, Dom(f) is a half-space consisting of
all points that lie above the plane z = y.

(b) Dom(f) = {(x,y,2z) € R®:z — x% — 2y? > 0}
={(x,y,2z) € R%:z > x?% + 2y?}

To sketch Dom(f):

z>x%+2y% = z=x?%+ 2y?(paraboloid)

So, Dom(f) is the region inside and on the

paraboloid z = x? + 2y?

Example 14.1.13:

(@) f(x,v,2) =% = Dom(f) = {(x,y,z) € R%:x # 0}

(b) fF(y) =+ = Dom(f) = {(x,y) € R?x # 0}

(©) f(x,y,2) =2e*? = Dom(f) ={(x,y,2z) e R®} =R?

(d) f(x,v,z) =x+y = Dom(f) ={(x,y,2z) e R®} =R3

() f(x,y,zw) =vw —z= Dom(f) = {(x,y,z,w) € R w — z > 0} = {(x,y,z,w) € R*:w > z}
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Example 14.1.14: Find the domain and range of the function f(x,y,z) = 2 + Vx2 + 3
Solution:
flx,y,2) =2++Vx2+3 = Dom(f) = {(x,y,2) € R3} = R3
To find range(f): Letw = f(x,y,z)
= range(f) ={w e Rew = f(x,y,2), (x,y,z) € Dom(f)}
> Vx2+320=22+Vx?+3=22=>w=2
> x220=2x24+3>23=2Vx2+32>2V3=22+Vx2+3>22+V3=2w>2++3.....02)
% Intersection of (1) and 2) = w € [2 +V/3,0) = range(f) = [2 + /3, )

Definition 14.1.15: The level surfaces of a function f(x, y, z) for the value k are the surfaces given by
the equation f(x,y,z) = k, where k is a constant, that is if the point (x,y,z) moves along a level
surface, the value of f(x,y,z) remains fixed.

Example 14.1.16: Find and sketch the level surfaces of the function f(x,y, z) = x? + y? + z2.
Solution: Observe that f(x,y,z) = x> +y24+2z2 >0
= the values of k are k > 0 since for the level surfaces we have /
fl,y,z) =k '
Fork=0: f(x,y,z2) =0 = x> +y2+22=0

= x=0,y=0,z=0= we have a point (0,0,0)
Fork=1: f(x,y,z2) =1 = x?+y?+2z?2=1

= A sphere of radius 1 centered at (0,0,0)
Fork>0:: f(x,y,2) =k = x?+y2+z2=k

= A sphere of radius vk centered at (0,0,0)

Section 14.2: Limits and Continuity

Definition 14.2.1: Let C: x = f(t), y = g(t) be a path (curve) in the xy-plane. Then

C passes through the point Py(a, b) in < there exists t, € R such

Definition 14.2.2: Let Py(a,b) in R? and let C be a path that pass through the point P,(a, b) when
t=ty. Then lim F(x,y) = lim F(f(t),g(t))
(x,y)—Pg t=tp
along C

Definition 14.2.3: Let Py(a,b) be a point in R? and let L € R.
(1) lim F(x,y) =L (exists) & lim F(x,y) =L for all paths C in Dom(F(x,y)) that
(x,y)—Po (x,y)-Po

along C
pass through the point P,.




Glua s Py dkaiilly 5l (curves Clhisiall) paths <l el g8 23l o) Lale 18363 g0 dilgdl) o) LBy
Lild Lgabun L 51 5 33 520 g Al cilS o AL Al <l jlasal) d3e oY il g Jaaticia 138 5 cleDIA (pe dlgal)
dudﬁ\dﬁuﬂ@da\ym;‘ssubhmﬂemy
Ciliday gl aladi 9 @ _pal) 9 Jalasil) 9 s gadl)
Lals GBI aly ity Sl

(2) Let C; and C, be two paths in Dom(F(x,y)) that pass through a point P,. If

lim F(x,y) ;t lim F(x,y),then lim F(x,y) dose not exist (DNE)
(x,¥)~Pg x,y)—>Pg (x,¥)—=Po
along C; along G2

Ge 3aly US DA e Algdl) lung Py il le LagalS (sl 2n3 ) e tBasase né dulgdd) () cildy
Csilin ilgill Llea (9 Guny ylesdl)

Example 14.2.4: Find each of the following limit, if it exists:

. x*4+x2y2—6y*
1) (x’yl)lf(lolo) e (2)

lim 5
(x'Y)_)(_lJl) yi+x

2 2 4 2 2 4
li x“=5xy“+4y 4 li xX“=3xy“—4y
( )(x,y)lir(l4,2) Vx-2y ) ey)otan)  VE-2y
Solution:
44,22 2 2 2_oa,2

lim 2 2 - 2 2
(x,y)-(0,0) x=+3y (x,¥)-(0,0) x°+3y (xy) (0 0)
6 2 3 3

2 1i AR SN P+ -x) _ ) =2
()(x.y)ir{l—l,n y3+x (xy)ir(n—l,n y3+x (xy)*( 11)(y x) =

. x2-5xyZ+4y* _ (4)2-5(40)(2)%+4(2)* _ _
3) (x,yl)lir(l4,2) vx-2y Va-2(2) = —24

. x%2-3xy2%—4y* . x%2-3xy%—4y* x+2y . x%2-3xy?%—4y*

- s s — - - X
(4) (x,yl)lir(l4,1) Vx—2y (x y)ir(l4 1) Vx-2y Vx+2y (x,y)l—r>r(14,1) x—4y? 4
(x — 4yH)(x +y?)

=4 lim =4 llm x+y?)=4(5) =20
(x,y)—~(4,1) x —4y? (xy (41)( 9 )

sm(@) tan(0)

Remark 14.2.5: Recall that (1) 1 im — = =1 (2) 1 im

—0 sin (9) =1 @]

=1 @) Im=5= 600 tan(6)

Example 14.2.6: Find each of the following limit, if it exists:
sin(2xy?)
(D) wpo0-n  x 2)

lim 4x% —y?
(x, y)—>(1 2) tan(4x — 2y)

Solution:
(1) Let® = 2xy2. When (x,y) - (0,—3) we have x » 0andy —» —3.

Then 6 - 0.S0,  lim = SRCWH _ gy sm@oH 1 g, sin@oh) o2xy
T (y)~(0,-3) X (xy)-(0-3) 1 x  (xy)-(0,-3) 2xy? x

i sin(2xy?) . 2xy?
(xy)-(0-3) 2xy? (xy)=(0-3) x

= 1im 3@«  im  2y2=1x2(=3)2 =18

2

=1
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Q) Letf = 4x — 2y When (x,y) - (1,2) we have x > 1andy - 2 =6 — 0. S0,
4x? — y? : 1 4x?% — y?
lim ——— = lim X
(x, y)a(l 2)tan(4x — 2y) (xy)~(12) tan(4x — 2y) 1
lim 4x — 2y 4x?% — y?
T @ y)ﬁ(l 2)tan(4x — 2y)
lim 4x — 2y
T @ y)ﬁ(l 2) tan(4x — Zy)

4x — 2y
_ 4x?% — y?
lim ———
(xy)—(12) 4x — 2y
o X y@x+y)
(0y)~(1,2) 2(2x —y)
2x+y) 1 4

T i x==2
oty 2 2

= i X
(x,y)l—rfgl,z) tan(60)
= li X
850 tan(0)
Remark 14.2.7: When (x,y) — (0,0) and we have the terms x? + y?2 in the limit, we must think of

using of the substitutions: x = rcos(8) and y = rsin(0). Thenx2? + y2 = r2? and when (x,y) - (0,0)
we have x - 0and y —» 0. So,r - 0" and we have

lim F(x,y) = llm L F(rcos(0), rsin(8)), where 0 < 6 < 2.
(x,¥)~(0,0)

Example 14.2.8: Find the following limit, if it exists:
. x’y
lim
)=00) \[x2 +y2 +1 -1
Solution: Let x = rcos(8) and y = rsin(8) = x?>+y? =72 and (x,y) -
= r - 0". So,

x2%y — lim (rcos(@)) (rsin(6)) _ — lim
x2+y2+1-1  ro0+ Vri+1-1 r—>0+

Vr2+1+1 2 .
X T X cos (0)sm(9)>

(0,0)

r3cos?(6)sin(6) _ lim

3
i
N BV <m_1

X cosz(e)sin(9)>

lim
(x,y)—(0,0)

li r3

m

root \Vr2+1-1
r3 % Vr2+1+41

Observe that:

= lim
r—>0+ Vri+1-1  vri+i+1
Vr2+1+1

li r3
= l1im
r—0+ \ (r2+1)-1

X cosZ(G)sin(9)>

X cosZ(G)sin(9)>

. rd . .
rll)rggr <r—2 X cosz(9)51n(9)> X rll,%1+ ((\/r2 +1+ 1))
lir(§1+(rcosz(9)sin(9)) X 2
ro

=0x2=0

—1 < cos?(8)sin(0) < 1

=>-r<

rcos?(0)sin(8) < r

= lim (-r) = 0 and
r-ot

limr=20

r—0

So, by the squeeze

theorem:

lirg1+rcosz(9)sin(9)) =0




Example 14.2.9: Find the following limit, if it . (6y —4x—1)°—-1
. m
exIsts (x,y)—(1,1) (ZX — 3y)8 -1

—4x—1)°— - - —1)5—
Solution: Observe that  lim (&=l (2Cx039) )71
(xy)-(1L1) x-3y)%-1  (xy)-(1,1)  (2x-3y)°-1

So, let 8 = 2x — 3y. When (x,y) - (1,1). Thenx - 1 and y — 1.

—4x—1)5— 99 _1\5_ o p_1\4(_ 4,
So. 8- —1.Then i (6y=4x=1°-1 _ . (220-D°1 _ . 5(20-D*2) _ S(*2) _

(x;y)_’(l;l) (2x—3y)3—1 0--1 68-1 60-—-1 807 8(—1)7

Remark 14.2.10: Recall the following:

®,

% LetC:x=f(t), y=g(t) be apath (curve) in the xy-plane. Then

C passes through the point Py(a, b) in < there exists t, € R such f(t,) = a
R2 (525 and g(t,) = b.

Let Py(a, b) in R? and let C be a path that pass through the point Py(a, b)

when t = t,. Then lim , F(x,y) = lim F(f(2), 9(£))

along C

Let C, and C, be two curves that pass through a point Py(a, b). If
lim F(x,y)# lim F(x,y),then lim F(x,y) dose not exist (DNE)
(x,y)—>P0 (x,y)—>P0 (xiy)_)PO
along C; along C;

DI e el Cliang Py 3l e LaglS (C,) 5 (C1) Crsbowa 35 o Lo :Basaga pé Aulgdl) o) iy
LOplida Grledl) Llsa (5S Cumn Golesal) (e 2al5 S

lim F(x,y)# lim F(x,
(x,y)—>P0 ( Y) (x:y)_)PO ( y)

along C, along C,

Example 14.2.11:

2
(1) Find (xy)lir(ri _2)% along the path C;: y = 2x — 4

2
(2) Find ( )lira 2)%3;5 along the path C,: x = 3t,y = 1 — 9¢t.
xX,y)—=>(1,—

. 243y+5 . .
(3) Is (x y)hf(ri _2)% exists? Justify.
Solution:
1) li x2+3y+5: . x2+3(2x—4)+5: . x2+6x—7: L D7) g (7))
(x,y)-(1,-2) 2x+y x—>1 2x+(2x-4) x—-1 4x—4 x—1 4(x-1) x—1 4
along C4

(2) We must find the value of t, when the point (1,—2) is on C;:

The point (1,-2): x=1, y=-2
OnCZ x:3t0,y:1_9t0

2

x-coordinate on path = x-coordinate in point= 3t, =1 = t, = %

5
4




Observe that we can find t, from y component: We have the same

y (on path) = y (inpoint) =1 -9t, = -2 = ¢, = é value for ¢,

x2+3y+5 .. (3)2+3(1-90)+5 _ ..  9t?-27t+8 _

li = = ==
(xy)~(1,-2) 2x+y ol 2(3t)+(1-9t) sl 13t
along C, 3 3

. 243y+5 . . 243y+5 . 243y+5
li T 227"° DNE (does not exist), because: ~ lim *—2>— i B A
(xy)->(1,-2) 2x+y (xy)-(1,-2) 2x+y xy)-(1,-2) 2x+y
along C; along C;

(3)

Example 14.2.12: Find the limit, if it exists _ lim  “Sm(E=D
(xy)—>(1,0) x*+y?-x

along y=In(x)

Solution:
xsin(e¥-1) _ . xsin(eM®-1) xsin(x-1) 0

(x)-(1,0) x2+y?-x x—-1 x2+(n(x))%-x  x-1x2+(n(x))?-x 0
along y=In(x)
xcos(x—1)+sin(x—1) 1cos0+sin0 _ 1
2In(x) 21n(1)_1 -
x 1

= lim

x-1 2x+ 1 2+

2_ a2 _
Example 14.2.13: Find the limit, if it exists:  lim 22X —2y-1
(xy)~(2,-1) (x—2)2+(y+1)?

Solution:
» Cix=t+2,y=0+(-1)= Ci:x=t+2, y=-1.50,(x,y) > (2,-1) = t—>0
lim x%-2x-y?-2y-1 — T (t+2)2-2(t+2)-(-1)%2-2(-1)-1 — lim t2+4t+4-2t—4—1+2-1
x)-(2-1) (x=2)?+@+1)?  t>0 (t+2-2)2+(—1+1)2 t50 2
along C4

. t?42t . t(t+2) . t+2
= lim = lim =lim— =
t2 t—>0 t2 t>0 t 0

x%2-2x-y%?-2y-1

’ (x,y)ll)r(r%,—l) (x—2)2+(y+1)2 DoeS not exist

So

34,2
Example 14.2.14: Find the following limit, if it exists ~ lim ==~
(x,y)—(0,0) X°+y

Solution:
» C:x=0+0,y=t+0=> C;: x=0, y=t.So, (x,y) » (0,0) = t - 0:

x3y? .03t .0 ..
1m —6y4 ==lim——=Ilim—=1m0 =0
(x,y)-(0,0) x°+y t—0 06+t t>0t t—0
along C,
12 12
Cz:x:t6+0; y:t4+0:> Cz.x:t2,y:tglsol(x’y)_)(o’o):>t_)O
x3y? . t2)°(¢3)? . £6¢6 o 12
1m 63’4: (2)6(3)4-: 2,1z M~ =
(x,¥)—(0,0) x°+y t—0 (t2)°+(t?) t—0 t12+t t—0 2t
along C,
; x3y? x3y
D@ > lim % fm 22 5o, lim 2
(x,y)—(0,0) x*+y (x,¥)—(0,0) x>+y (x,y)—(0,0) x6+y
along C, along C,

2
Does not exist
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X
lim i

Example 14.2.15: Find the following limit, if it exists: —
(x,y,2)—(0,0,0) x6—y342z4

Solution:
» Cix=t+0,y=t+0,z=0+0=> C;:x=t y=0,z=0.
So, (x,y,z) - (OOO) = t-0:
. x2y? . t202 _ 0
(xyzl)—>(000)x6 yirast A eizen A 6_133(}0_0
along C,

12 12 12
> Cp:x=te+0, y=tzs+0,x=t++0=> Cp: x=t2 y=ttz=t3
So, (x,v,z) - (0,0,0) = t - 0:
x2y?2 (£2)*(t%)? s t4t8 . th2 .11 @

lim ————— = =l]im = lim = lim =lim=-=-....
(x,3,2)~(0,0,0) x6—y3+2z* t—0 (t2)0—(t4)3+2(¢3)*  t5o0 t12-t12+42t12  t502t12 502 2

along Cy

x%y? x%y?
> V&2 = lim — lim —_—
(xyz)—>(000) x6—y3+4+2z4 (xyz)—>(()()()) x6—y3+2z4
along C, along C,
34,2

X
So, lim % Does not exist
(xy)=(0,0) x° +y

Definition 14.2.16:

(1) A function f(x, y) is said to be continuous at a point (a, b) in Dom(f) if l)1rr(1 b)f(x y) = f(a,b).

(2) A function f(x,y) is said to be continuous on a set S € Dom(f) if f(x, y) is continuous at every
point in S.

(3) A function f(x, y) is said to be continuous everywhere if it is continuous on R?

(4) A function f(x,y,v) is said to be continuous everywhere if it is continuous on R3.

Example 14.2.17:

Q) f(x,y) = Lys is continuouson Dom(f) = R? = f is continuous everywhere.

_ yer-5 . . _ 02 2
) flx,y) = oy , :x? + y? # 0}

= f iscontinuousonDom(f) = R?\{(0,0)}.
3) flx,y,2) = % is continuouson Dom(f) = {(x,y,z) E R3:x — 2y —z # 0, y > 0}

4) f(x,v,2z) = 2iscontinuouson Dom(f) = R®> = f is continuous everywhere.
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Example 14.2.18: Find the region on which the function f is continuous.

flx,y) = jcch_r—yz , (y) #(0,0)
0, (xy)=(00)

Solution: When (x, y) # (0,0) the function f is continuoussince f (x,y) =

2

x2+y?2
To check whether the function f is continuous at (0,0) or not we must study:
(1) Is( lim f(x, y) exists or not?

(2 If (xyl)m%oo f(x,y) exists, is . lm%0 O)f(x y) = £(0,0)?
> Cl:x—t+0y—0+0=>x—t,y—0.(x,y) - (0,00 = t—>0
Foy)= lim 522 —jimi=2 =1
(x, y)ﬁ(o 0) (x,y)~(0,0) x?+y?  t-0 t?+0?
along C, along Cq
> Cz:x=O+Oy=t+0=>x=t,y=t.(x,y)—>(0,0) = t->0
flx,y) = lim e A . A |
(xy) (0 0) (x,y)—~(0,0) x2+y%  t—0 0%+t2
along C, along C;

> So, = X, Does not exist
(xy)_)(oo)f( x,y) # )(Oo)f( X,y) & )(Oo)f( y)

along C; along G2
= f(x,y) is discontinuous at (0,0)
= f(x,y) is continuous only on R2\{(0,0)}

Remark 14.2.19:
(1) Recall that:

f(x,y) = L (exists) flo,y) =L for all paths C that pass

(x, J’)—>(a b) (x, y)—>(a b) '
along C through the point (a, b)

(2) If a function f(x,y) is continuousatapoint (a, b),then

(xy) ( b)f(x ,¥) = f(a,b) exists

= If C is a given path that passes through the point (a, b), then
ey F 0 Y) = f(a,b)
along C
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Example 14.2.20: Find the value of k such that the function f is continuous at the origin, where
1 — cos(/x? + y?
_ VX4 )= 00)
fl,y) = x2 +y2
k ) (xJY) =:(0'0)

Solution: f is continuous at the origin =>( lmg0 0)f(x y) = f(O 0) = k (the limit exists)

== X, =
(x, y)—>(0 O)f( y) =
along C

where C is any path in Dom(f) passing through (0,0).
So, take C:x =t + 0,y = 0+ 0 with ¢t > 0 we have (x,y) = (0,0) = t - 0:

1- JxZ+y? 2202
M=>k= lim f(x,y)= lim M= lip Azcos(Vez+0?) _ . 1-cos(D)
(x,¥)—(0,0) (x,y)—(0,0) x%+y? -0 t2402 t—>0 2
along € along C
lim sin(t)
_-taO 2t

1 1
= - = k = -,
2 2

Example 14.2.21: Find the value of k such that the function f is continuous everywhere, where
ka—ZyZ
flo,y) =] x2+y2 (x,y) # (0,0)
-2, (x»)=(00)

Solution: f iscontinuous everywhere = f is continuous at the origin
> f(x,y) = £(0,0) = —2 (the limit eXIsts)
(xy) (0 0)
floy) =—

(x ) (00)
along C

where C is any path in Dom(f) passing through (0,0).
So, take C:x=t+0y=0+0witht>0:>x—t,y=0. We have (x,y) = (0,0) = t—> 0

( : )= im kx?-2y? . kt?2-2(0%)
e - = l1im = —1 - —
2= ) (0 O)f( y) (x, yl)—>(0 0) x2%+y2 1tl_)0 t2402 k k

along c along C

Example 14.2.22: Find the value of a such that the function f is continuous at the point (0,2), where
sin(xy) 0
fae={"x ~ *7
a , x=0

Solution: f is continuous at the point (0,2) = 1)1rr(10 2)f(x ,y) =f(0,2) =a

(x, y)—>(0 0)
along C

where C is any path in Dom(f) passing through the point (0,2).
So, take C:x=t+0y=O+OWitht>0:>x=t,y=0. We have (x,y) - (0,0) = t—>0
DM=>a= flx,y) = lim leim@zZzﬂzzZ.

(x, y) (0 2) (xy)—(02) X t—=0
along C along C
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Example 14.2.23: Find the value of k such that the function £ is continuous at the point (1,1), where
xy+8-—3

flx,y) = xy—1
k , xy=1

, xy*+1

Solution: f is continuous at the point (1,1) = lm%1 1)f(x y) =f(1,1) =
= lim X,y) =
(xy)1—>(1 1)f( ¥) =
along C

where C is any path in Dom(f) passing through the point (1,1).

So,take C:x =t+1,y=0+1witht>0=>x=t+ 1,y =01.

We have (x,y) - (1,1) = t->0

O=2k= lim f(x,y)= lim A TR (DR S PO (R RV (A

(xy)->(1,1) (xy)=(11) xy-1  t50 (t+1)-1 t>0 ¢t VE+9+3
along C along C
. (t+9)-9 1 . 1 1 1
=11m( X =lim——=-=k =-.
t-0 t Vt+9+3 t—0 Vt+9+3 6 6

Section 14.3: Partial Derivative

Definition 14.3.1: The partial derivative of f:

(a) with respect to x at a point (a, b) written as f, (a, b) is defined by

fe(a, b) = lim LEDLOD) iy [R2T (D)

(b) with respect to y at a point (a, b) written as £, (a, b) is defined by

flay)—fab) . flab+h —f(ab)
= 1m
y—b>b h—0 h

fy(a,b) = lim

Remark 14.3.2: (@) fi(a,b) = g'(a), where g(x) = f(x,b).
(b) fy(a,b) = h'(b), where h(y) = f(a,y).

Example 14.3.3: Find £,(1,0) and £, (1,0), where f(x,y) = {/x* + y3 + 3

Solution:
> f,(1,0):Let g(x) = f(x,0) =Vx*+ 03 +3 =Vx*+3

g =25 g =1 10 =g1) =1
> £,(1,0): Let h(y) =f(L,y)={1*+y3+3=y3+4
h'(y) = J_ = h'(0)=0= £,(1,0) =h'(0) =0




63

Example 14.3.4: Find £,(0,0), where f(x,y) = 3x + 3/8x3 + 27y®
Solution: Letg(x) = f(x,0) =3x+3V8x3=5x=2g'(x) =5=g'(0) =5
= £,(0,0) = g'(0) =5

Example 14.3.5: Find £, (0,0) if it exists, where f(x,y) = \/x? + y?

Solution:

F(x,0) = /xZ+ (0)2 = /x% = |x]
Since |x| is not differentiable at x = 0, then £, (0,0) does not exists
That is: the partial derivative of f with respect to x does not exists at (0,0).

3x2+xy+y3
Example 14.3.6: Find £,,(0,0), where f(x,y) = { xZ+y? () # (0.0)
0 , (x,y) =(0,0)

Solution:
3(0°+(0)y+y°
» FEirst Method: £(0,y) = (0)2+y? r yFOL {y Y f 0} =y
0 , y=0) 0 ¥=0
= f0,y)=y = @) =f0,y)=>h®») =y= £0,0)=hr(0)=1
» Second Method: By definition:

302 + (Oy+y* _
[0 =FO0) _ @7+’

y—0 y—0 y—20
3
= lim @_2)

y-0 ¥

£00) = lim

i 2 — _
—ill_r)r(l) 7 =1 = £,000)=1

3x2+xy+y3
Example 14.3.7: Find £,(0,0), where f(x,y) = { x2+y? () #(0.0)
1 , (%) =1(0,0)

Solution:
3(0)%+(0)y+y®
: —_— , 0
» First Method: £(0,y) ={ (0)2+y? Y F 0}:{31’ yi }
1 =0 » y=0
-
Observe that £(0,y) is discontinuousaty = 0 = £,(0,0) does not exist
» Second Method: By definition:

3(0 + (Oy+y® _
— 2 2
£00) = lim LD ZTOD O Fy
y=0 y—0 y—20

—= = f,(0,0) does not exist
y-0

Example 14.3.8: Find f, (x,y) and £, (x, y), where f(x,y) = xy*e3* + cos(2y)
Solution:

> fi(x,y) = xy*(3e3*) + e3*(y*) + 0 = 3xy*e3* 4+ yted
> f,(x,y) = xe¥(4y3) + (—sin(2y) (2)) = 4xy3e® — 2sin(2y)




3x3
Example 14.3.9: Find £,(1,0) and £, (1, —1), where f(x,y) = {x*+y* ' () # (0,0)
0 , (xy)=1(00)

Solution: At (1,0) and (1, —1), the function f(x,y) = —xff;

. So,
(ey) = (x? +y?)9x% —3x3(2x) _ 3x* +9x?y?
fx Xy) = (x2 + y2)2 - (xz + y2)2
(2 +y»(0)-3x°(2y)  —6x7y
- (xz + y2)2 - (xz + y2)2

= f,(1,0) =3

6
= fy(l,—l) = Z

()

3x3+xy
Example 14.3.10: Find £, (x, y), where f(x,y) = {xzwz (1Y) #(00)

0 , (xy)=1(00)

Solution:

> If (x,y) % (0,0): =>f(x, _'V) _ 3x3+xy > f = (x2+y2)(9x%+y)-(3x3+xy) (2x)

x2+y2 (x2+y2)2

_ 3x*+ox?y?-2x2y
= /‘;C - (x2+y2)2

3x3+x(0)

> Finding £,(0,0): Let g(x) = f(x,0) = { xrz * * 70 ={3x ' xfo}zgx
o , x=0 0 » x=0

= £(0,0)=g'(0) =3

3x4+9x2y2_2x2y
> SO, f;C(x)y) = (x2+y2)2 )] (X, y) * (0,0)

3 , (%) =(0,0)
Example 14.3.11: Find }Lirré f(1+h’_12_f(1‘_1), where f(x,y) = x7 —y2 +1
Solution: By the definition of the partial derivatives, we have

—1)—f(1— 4
}lir% f(1+h, 1’3 fa,-1) _ f.(1,—1) Butf, = é(x7 _ yZ + 1)—5(7}(6)

Example 14.3.12: Let f(x,y) be a function such that f, = 2xy, f, = x* + 2y, and f(1,1) = 8.
Find f(x,y) and £(0,2).

Solution: fi=2xy = fl,y)=[2xydx+G()=f(x,y) =x2y+G»)....Q0)

Now, we find G (y):

Differentiating equation (1) with respect to y:

fy=x*+G')butf, =x2+2y = x*+G'(y) =x*+2y = G'(y) =2y
G(y) = [ 2ydy = y? + C, where C is a constant.

O=f=x*y+6) =x*y+y*+C=> fOy)=x>y+y>+C
Now, we find C:

f(1,1)=8 = 12(1) +124+(C =8 = C = 6.

@)= f(x,y) = x>y +y?+6andso £(0,2) = (0)2(2) + (2)2+ 6 = 10
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Example 14.3.13: Find f,(—1,1,e2), where f(x,y, z) = e**?In(2).

. 2xy 2(-1)(1)
Solution: f, = ez (—1,1,e2) =2 =

Notations 14.3.14: There are several forms of partial derivatives of z = f(x, y):

G =fimz = fy) =L = p by

and

Dyf =D,f

ax
of 0z
ay  ay

0
fy(x'Y) =fy =Zy =Ef(xu’)/) =

Example 14.3.15: Flnd and at the point (m,v3), where f(x,y) = sm( 2+1)
Solution:

af x 1 af _of _ ( n )( 1 ) _ 1
Pl (y +1) (y2+1) = ox 3 0xl o S\ 1)\ 1) T a2

y=V3

_ _x —2xy of _ of _ 4 -2m+/3 _ 1'[\/_
- €08 (y2+1) ((y2+1)2) = 0yl (. v3) ay| x=1 €08 (\/§2+1) <(\/§2+1)2> 82

y=v3

Higher Derivatives 14.3.16: Let z = f(x,y). Then the second partial derivatives of f are:
0%z  9%f 0%z  9*f
Zxxzf;cxz_z:_z Zyy =lyy =327 32
d0x dx dy dy
0%z 0% f B B 0%z B 0% f
= oy = 6y0x dyox Zyx = fyx = d0xdy  0xdy

20 (0 a2 0 (0
where fiy = £y, fy = (), e = 25 (5£), and 2L = 2 (%)

Example 14.3.17: Find the second order partial derivatives of f(x,y) = x3 + x2y3 — 2y?

Solution: f, = 3x% 4+ 2xy* and f, = 3x%y% — 4y. So,
frx = 6% +2y° fyy = 6x%y — 4
fey = (f)y = 3x* + 2xy?), = 6xy* frx = (fy)x = 3x%y? — 4y), = 6xy?

a%f 62f . _ 3/3 _ 3
Example 14.3.18: Find —- Syox d at the origin, where f(x,y) = 2x /x3 —27y
9?2
f fxy and = fyx
2
fo = 2x§(x — 27y3)‘§(3x2) +23/x3 —27y3
S f=—2 1227y s £(0,y) =—2D 1 23/(0)F — 27)°

(x3-27y3)3 ((0)3-27y3)3

Solution: Observe that
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> £0)=—6y= f,(0,)=—6 = £,(00)=-6 =;’y;;|( = £y (0,0) = =6

2 p—
Also, f,, = 2x§(x3 —27y3)73(=27(3)y?) = 54—"3’2 = £,(x,0) = L(Oz)

(x3-27y3)3 (c3-27(0%))3

> 600 =02 f,(x,0)=0 = fyx(00)—o=>a . —fyx(0,0)=0

| Observe that in this example: fxy(0,0) * £,,(0,0) |

Clairaut’s Theorem 14.3.19: Suppose f(x,y) is defined on a disk D that contains the point (a, b) . If
the functions f,, and f,, are both continuous on D, then
fry(a, b) = f,,(a,b)
Example 14.3.20: If f(x,7,2) = 2 find f,yzsx(1,2,0).
Solution: Since all partial derlvatlves of f of all orders are continuous near the point (1,2,0), then
Clairaut’s Theorem implies that f,xyzx = fryxxx- SO,
2(3 ) 3xyz 2(3 ) 3xy(0) 3xy3 3
=t s Ry ) = = = s 0y, 0) =
9(2)? 9 9 _
520 ="2=2 5 £ (x20)=2x" = fzyx(x, 2,0) = —2x

= fryee(%,2,0) = 9x3 = fzyxxx (%, 2,0) = —27x7*
=[xz (1,2,0) = fr00(1,2,0) = -27(1)™* = fyxxzx(1,2,0) = =27

KA
8x
-2

: 3,5 _ _XY? oo 0%F
Example 14.3.21: If f(x, y) =%y — ey find 555 o)

Solution: Observe that 4a 5 = frexyyyy(€,2)
(e2)

Since all partial derivatives of f of all orders are continuous near the point (e, 2), then Clairaut’s
Theorem implies that £,y (e, 2) = f,yy,xx (€, 2). SO,

— Gy3yt 2xy _ 3.3 2x
fy = 5x7y ~ x +1In(x) = fyy =207y ~ x+1In(x) = fryy = 60x°y?

= fyyy = 120x3y = fyyy6y(x, 2) = 240x3 = f,,,,,(x,2) = 720x?
0°f

> fra(62) = 1440 = 5555 " = 1440e

Example 14.3.22: Find - 63a = (x10sin(xy) + x°°) at the point (—1,0).

Solution: Let f(x,y) = x'%in(xy) + x°°. Then
103

W(xlosm(xy)+x5°) —fx X Yoy
40— ttmes 63—times

Since all partial derivatives of f of all orders are continuous near the point (—1,0), then Clairaut’s
Theorem implies that fx fy — (—1,0). So,

gL,
40—times 63—times 63— ttmes 40—times




107x6%sin (xy)]
(= fy = x*[xcos(xy)] + 0
| 10 |
4 = fyy = x1°[—x?sin(xy)] $ s )
|2 fyyy = x! [ x3cos(xy)] 1]

oy = X10[=x®%sin(xy)]
= fyyyy = 20 [x*sin(xy)] ) '

19[x% cos(xy)]

—x®3cos(xy)]
J

XX (x,0) = —(73)(72)(71) ... (73 — 39)x 73740

L,
63—times 40— tlmes

2 (5,0) = —(TRTDTL) .. BT = — L2

Yooy v - 33|
63—times 40—times

73 73!
= fy... Y KX oz (& 10)———( 1)38 = —

| |
63—times 40— tlmes 33 33

Remark 14.3.23: Recall that = [ F(t)dt = F(R(x))h' (x) = F(g(x))g'(x)

Example 14.3.24: If f(x,y) = fy"y cos(et)dt, find £, (0,0)

Solution: f, = cos(exy);—x (xy) — cos(ey);—x (y) = ycos(e*¥) — cos(e?)(0)

= f, =ycos(e®) = f£,(0,y) = ycos(e®¥) = ycos(1)
= fiy = cos(1) = f£,,(0,0) = cos(1)

Section 14.5: The Chain Rule

Rule 14.5.1: Letw = f(x,y,z),x = x(r,s),y = y(r),z = z(s),r = r(u,v),and s = s(u)

dw _0f 0x or N df 0x ds N dof dy or df dz ds
du  dx Or du dx ds du

g Ydzds w=f
dy dr ou 0z dsdu

/’\

X

of dx or /N |
20 ~oxorav e :
/NN
u vV u u v u

Tree Diagram

y z
|
r




ow of ox aAaz
Fe EmEs L mo

R/
A X4

0x _ dx Or
ou  drdu

7
A X4

0x B 0x Or
dv  ar dv

Example 14.5.2: Let z = e?*sin(y),x = st?,y = t3. Find

Solution:

0z B 0z 0x

ds  0x0s
= (2e%*sin(y))t? = 2t2e* sin(y)

0z 620x+ 0z dy

at  dxdt dydt
= (2e**sin(y))(2st) + (e**cos(y))(3t?)
= 4ste®*sin(y) + 3t%2e**cos(y) = 4stz + 3t%e**cos(y)

Example 14.5.3: Letu = x*y + y2z3,x = se?t,y = r2set, z = rcos(t).

- du u
Find — and — whenr =2,s=1,t = 0.
ds ot

Solution: First we have to find x, y, zwhenr = 2,s = 1,t = 0

x=1e?® =1

{ x=1y=42z=2 u

— 2 —-(0) =
y (2)2 (1)(%) 24 “lwhenr=2,5s=1,t=0 /’\
Z = 4LCOS =

Ju _ 0uodx | 0udy _ 3 2t 4 3V 2, —t
65_6x65+6y65_(4x y)(et) + (x* + 2yz3)(r?e™")

X y Z
S B peiimo = (16)(1) + 65(4) = 276 N0 I /N
S t Tr

ds x=1,y=4,2=2 st r t

Ju _ dudx , Oudy duidz _ 3 2t 4 3V( 2 epy—t 2 2N( e
ot ox ot | ay ot T o as (4x3y)(2se?t) + (x* + 2yz3)(—r2se™") + (3y?z%)(—rsin(t))
| smri=0 = 16(2) — 65(4) + 48(2) = —132

0sl yo1y=a7=2
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Example 14.5.4: Let w = In\/x2 + y? + z2, x = sin(t),y = cos(t), z = tan(t). Find ‘;—V:.
Solution: Observe that:

1
w=1In/x2+y2 +22 = ZInG? +y? +2%)

dw Odwdx odwdy Owdz

S @ axat Vayar Tz d

dw 1 2x 1 2y ) 1 2z 5

a T ryrr 2 Wt a g IO e sec (O
xcos(t) — ysin(t) + zsec?(t) sin(t)cos(t) — sin(t)cos(t) + tan(t) sec?(t)

- x%2+y?+ 22 - sin?(t) + cos?(t) + tan2(t)

_ tan(t) sec?(t) _ tan(t) sec?(t) 3

1+tan2(t)  sec?(t) ()

Example 14.5.5: Let z = f(x,y),x = g(t),y = h(t),g(3) = 2,h(3) = 7,9'(3) =5,
d
h'(3) = —4,£,(2,7) = 6 and f,(2,7) = —8 .Find d—i
Solution: First we have to find x, y when t = 3:

when t = 3.

X=g(3)=2 x=2y=7
yzh(3)=7}3{whent=3
dz 0zd o0z d
e Y f ) (O + £, R (D)

at " axdi T ayde

dz

- = £(2,7)9'3) + £,(2,7)h'(3) = 6(5) + (—8)(—4) = 62
t=3,x=2,y=7

Example 14.5.6: Let W (s, t) = F(u(s, t),v(s,t)), F,(2,3) = —1,F,(2,3) = 10,u(1,0) = 2,v(1,0) = 3,
u,(1,0) = =2,v,(1,0) = 5,u,(1,0) = 6,v,(1,0) = 4. Find W,(1,0) and W,(1,0).

Solution: Observe that W (s, t) = F(u,v) withu = u(s, t),v = v(s, t).
Also, observe that to find W,(1,0) we have to find W, whens = 1,t = 0:
Also, we need to find u,v whens = 1,t = 0:
u=u(1,0)=2} { u=2v=3
v=v(1,0) =3 whens =1,t=0
Now, W, = F,u, + F,v,

W, (1,0) = F,(2,3)u,(1,0) + F,(2,3)v,(1,0) = —1(6) + 10(4) = 34
Finding W, (1,0) is an exercise.

Example 14.5.7: Suppose that f(x,y) is
differentiable. Find g,,(0,0) and g,,(0,0), where
glu,v) = f(e* + cos(v),1 + sin(v))
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Solution: Let x = e* + cos(v), y = 1 + sin(v). So, the function is g(u, v) = f(x,y)

To find g,,(0,0) means: to find g, whenu = 0,v = 0.

So, first we have to find x,y whenu = 0,v = 0:
x=e°+cos(0)=2} - { x=2,y=1
y=1+sin(0) =1 whenu =0,v=0

Now,

Gu = fixu = (x,y)(e") = g4(0,0) = £(2,1)(e?) = 2

d
9o = oty + fy 7o = felr,Y)(=sin(@)) + £, (x, y) (cos(v)
= 9,(0,0) = £,(2,1)(=sin(0)) + £,(2,1) cos(0) = 2(0) + 7(1) = 7

Example 14.5.8: Let z = f(x — y). Show that 2% + j—y =0.

Solution: Observe that f(...) is a function in 1-variable, so, let z = f(t),t = x —y
2_i = f'(O)t, = f'(t) since t, =1
and S—i = f'(Ot, = —f'(t) since t, = —1

9z | 9z _ ) _ oz | 0z _
= a+5—f(t)+(—f(t))_0 > S t5,=0

Example 14.5.9: Let g(s,t) = f(s* — t,t% — s?). Show that t 22 + 22 = 0.

Solution: Observe that f (..., ...) is a function in 2-variable:

Let g(s,t) = f(x,y),x = s? —t?,y = t? — s g=f(xy

dg
g = fixs + fyys =2sf, + (_Zs)fy

ag

x y
/N /N
s t s t

ot

dag ag
= to— + 5o = t(2sf, — 2sf,) + s(=2tf, + 2tf,) = 2stf, — 2stf, — 2stf, + 2stf, =0

Example 14.5.10: Let z = f(x,y) be with continuous second order partial derivatives such that

x = rcos(0),y = rsinf. Show that 0z _ 052022 + 2sinfcosH 9%z + sin?6 oz
! ) or2 ox2 0yox dy?

Solution: z=f(xy)
0z

Ee = fox, + fyyr = cosOf, + siany

X y
0z - /N /N
30~ fxXxo + fyyo = —rsinff, + rcosdf, % 1o
= —r(sinff, — cosbf,)
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0z . 9%z @ .
= ——=cosff, +sinff, = 7 = ;(cos@fx + sinf, )

2

0z
=>——cos€ +s 9
or?2

0
So, we have to find: i and fy
or or’

af. .
a—r" = [exXy F fryVr = €COSOfyy + sinbfy,

2, : .
a—: = fyxXy + fyyYr = c0sOf,x + sinbf,, = cosbf,, + sinbf,,

of _ .
= a_ry = cosOfy, + smé?fyy (3 (since fox = fry)
0%z dfy
= 5.5 = cosf "+ smH —2 (by D)
= cosf(cosOfy, + siné?fxy) + siné?(cosé?fxy + sianyy) (by (2) and (3))

= c0s%0fy, + 2sinfcosbfyy, + sin®6f,,,

AN
r 06 r @0

Implicit Differentation:

Implicit Function Theorem 14.5.11:
(1) Let y = f(x) is a function defined implicitly by the relation F(x,y) = 0, where
F is a differentiable function with F, is nonzero. Then
dy E,

dxF
(2) Let z = f(x,y) is a function defined implicitly by the relation F(x,y,z) = 0, where F is a
differentiable function with F, is nonzero. Then

0z E, 0z E,
—=——=and —=——+
0x E, dy E,

Example 14.5.12: Find y’ at x = 0 if =——2"= +63; 2%

Solution: First, we have to find the value of y when x = 0:
x3+y3+1 03 +y3+1
:0:—: :}—:0:} 3:—1:} :—1
X 6y X 6y y y
S0, x=0=> y=-1.

Second, we simplify () the equation M

= x (if possible)
x3+y3+1
6y

> Let F(x,y) = x3+y3—6xy+1.2y =—

Equation: =x = x3+y3+1=6xy = x3+y3—6xy+1=0

Fy _ _ 3x*-6y

Fy  3y?-6x

) __30P-6-D_ _6___
Vheoy=t TR —6(0) T 3
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Example 14.5.13: If x3 + y3 + z3 + 6xyz = 9 , find

0z 0z )
(2) EP and 3y at the point (0,1)
Solution:x3 +y3+z3+6xy=9=> x3+y3+2z3+6xyz2—9=0
Let: F(x,y,z) =x3+y3+ 23+ 6xyz—9
3x2 + 6yz 0z E, 3y2 + 6xz
T T 3z22+6xy 0 9y E 322+ 6xy
(2) At the point (0,1) = x = 0,y = 1. So, we have to find the value of z:
Whenx =0,y = 1:
x3+y3+2z3+6xyz—9=0= 03+ (1)3+234+6(0)(1)z—9=0
= z3=8>z=2
> x=0y=1,2z=2.
From part (1):
0z 3x% + 6yz 0z 3(0)2+6(1)(2)
0x 3z246xy  0xloy,s  3(22+6(0)1)

0z 3y? + 6xz 0z 3(1)%2 + 6(0)(2) 1
_— = = — — —
dy 3z2 + 6xy dy

T 3(2)2+6(0)0(1) 4

x=0,y=1,z=2

Example 14.5.14: Suppose that the equation F(x,y,z) = 0 implicitly defines each of the three
variables x, y, z as a function of the other two. If £, F,, F, are nonzero, show that
0z 0x 0y

oxdydz
Solution: By the Implicit Function Theorem we have
0z F ox K

ax  F ay F

azaxay_( Fx>( Fy> F\ .
0xdy 0z E, E, % -

Example 14.5.15: Suppose that the equation F(x,y) = 0 implicitly defines y as a function of x and
defines x as a function of y. If F, Fjare nonzero, show that

dydx 1
dxdy
Solution: By the Implicit Function Theorem we have

dy F dx F, - dydx_( Fx>( Fy)

& K ™M@GTE T ey KR
Example 14.5.16: Suppose that the equation F(x,y,z) = 0 implicitly defines each of the three

. . .. 0z 0x . . ..
variables x, y, z as a function of the other two. If E, and F, are nonzero, write é% in simplicit form.

Fy Ox Fy 9y F,
F, 9y F' 0z R

£ (-DD--(D--%
6x6y_ F, Fy - F, - dy

Solution: By the Implicit Function Theorem we have: z—i =
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Section 14.6 The Directional Derivative and the Gradiant VVector

Definition 14.6.1: The gradient vector of the function f(x, y) at the point (x,, y,) is defined by

Vf(x0,¥0) = (fx(xOJ.VO)J}g/(xOJyO)>

% Observe that if f(x,y, z) is a function in 3-variables, then
’Vf(XO'YONZO) = <fx(x0;3’0;Zo);fy(xo»YO»Zo)»fz(xol)’mZo))‘

Definition 14.6.2: The Directional derivative (or the rate of change) of the function f(x, y) at the point
(x0, Vo) in the direction of the unit vector © = (a, b) is:

f(xo + ah,yo + bh) — f(x0,¥0)

Dyf (x0,y0) = lim o

Interpolation of the Directional Derivative 14.6.3:

Suppose that we now wish to find the directional derivative (the
rate of change) of the function f(x, y) at a point P’(x,, y,) in the
direction of a unit vector u To do this we consider the surface S
with the equation z = f(x,y) (the graph of f) and we let
Zo = f (%, o). Thenthe point P(x,, yo, Zo) lieson S. The vertical
plane that passes through P in the direction of u intersects S in a
curve C. The slope of the tangent line T to C at the point P is the
directional derivative (rate of change) of f in the direction of wu.

Theorem 14.6.4: The Directional derivative (or the rate of change) of the function f (x, y) at the point
(x0, Vo) in the direction of the unit vector © = (a, b) is:

Dy f (x0,¥0) = Vf (x0,¥0) - ¥ (dot product)

Example 5: Find the directional derivative of the function f(x, y) = x2y?3 at the point (—2,3) in the
direction of the vector v = 2i — 5j.

Solution:
> Gradient: Vf = (f;, f,) = (2xy3,3x%y?) = Vf(-2,3) =(2(-2)(3)3,3(-2)2(3)?)
= Vf(-2,3) =(—108,108)

: s o: mi o o B _ 205 _2i=5j _,2 5
» Unit vector: v =2i—5j = ¥ =G T Ve v (\/_;, \/_;)
P . 2 _ 5 _(_ 2 _ 5 _
> Dof(=2,3) = Vf(-23) D = (~108,108) - (=, — =) = ( 108)\/_Z+108( =
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Example 14.6.6: Find the rate of change of the function f(x,y) = x;y

indicated by the angle 6 = g (that is in the direction that makes the angle 6 = gwith the positive direction
of the x-axis.
Solution:

> Gradient: Vf = (£, f,) = (3, GO = TNCY o y(2,1) = (4,-7)

> Unit vector: ¥ = (cos(60),sin(0)) = (}7
» Dpf(21)=Vf(2,1)-0 =(4,-7)- (i?) — (4)%_'_ =7) (?) _4-7V3

2

Example 14.6.7: Find the rate of change of the function f(x,y,z) = x? — 3yz3 at the point P(2,—1,1) in
the direction from P to the point Q (31%)

Solution:

> Gradient: Vf = (f, f,, f;) = (2x,—323%,—9yz?) = Vf(2,-1,1) = (4,-3,9)
> Unit vector: v = ﬁf =(Q —P)=(1,2, —3) = 7] = g = ¥ not a unit vector
5 (12-7

b 7 2(12,— 2) (2 4 1
El x/_/z - \/_ x/_\/_ \/_

D=

Remark 14.6.8: Recall that: The definition of the directional derivative (or the rate of change) of the
function f(x, y) at the point (x,,y,) in the direction of the unit vector ¥ = (a, b) is:

. R,yo+bh)—f (x0, ~
Dﬁf(xo')’o) - }Jl% —— y0+h L) and Dﬁf(xo»YO) = Vf(xo’YO) v

4-23) -1 (4,0)

h

f
Example 14.6.9: Let f(x,y) = In(x? + 2y) — 2+/x. Find }lin% (

Solution: By the definition of the directional derivative we have }lirr% ' = D;f(4,0), where

4-23)-1(4,0)
h

f

D=(—= )50 lim ( 2

We have to find Vf(4 0)'
> Vf =(

=Vf(40)-(-32

2+2y \/_ x2+2

=50 = Vf(4,0) =0, )
h 8k
_ B

> D= 11mf(4_5_) e )—Vf(4,0)-(— ) (0,2)- (—— =) =2

h—0 h T 24




75

(22,0, Daf(2,1) = 2and Do f(2,1) =

Example 14.6.10: Let @1 = (%,—%), D=

(a) Find the gradient vector of f at the point (2,1).

(b) Find the directional derivative of f at the point (2,1) in the direction of i — 2j.
Solution:

(@) LetVf(2,1) ={a,b). Then

> Daf(21) =2 = VfQ21D-a=2 ﬁ(a,b)-(%,—%)=2 :%:2.80,

f(21)—§ = VF(2,1)- v—é = (a,b) - (il _1 =>2ﬁ;1+b=§_80,
2v2a+b=1
O+@:=>(1+2V2)a=2v2+1 = a=1

O=21-b=2v2 2 b=1-2V2
VF(2,1) = (a,b) = (1,1 — 2v/2)

Vf(2,1) = (1,1 —-2v2) (by part (a))

> Unitvector: w=i-2j = |[W|=+5 = W=(%,

> Dpf(2,1) =VF(2,1) - w=(1,1—2v2)- (is’__> 4( 1

— i) unit vector.

Remark 14.6.11: Since i, j, and k are unit vectors, then:

* Dif =V i={fo.fy,fz) (LOO)=f, = Dif =f;
* Dif =Vfj={fufy, ) (010)=f, = Dif =f,
* Dif =Vf k=Afu, ) 001)=f, = Dif =1,

Example 14.6.12: Use the figure to estimate D, f(2,2).

Solution: If we take |u| = 1 unit, then |Vf(2,2)| = 3.7, 6 = 150. So,
D,f(2,—1,1) = Vf(xo,y0) "u = |VF(2,2)| lu|l cosd = |Vf(2,2)| cosb

3.7V3
= 3.7 cos(150) = -5 =~ —-3.2

Remark 14.6.13: Let ¥ = (a, b) be a unit vector. Then
Dy f(x0,¥0) = Vf (x0,¥0) * D
= [Vf(x0,¥0)| - D] cosé
= |Vf(xq,V0)|cosO (since ¥ is a unit vector)
—1=<cosfd <1 = —|Vf(xo,¥0)l < |Vf(xp,¥0)c0os0 < |Vf (xg,¥,)!
= —|Vf(xo,¥0)| < Dsf(x0,¥0) < |Vf(x0,¥0)l
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Theorem 14.6.14: Suppose that f is a differentiable function of two (or three variables).

» The maximum value of the directional derivative Dsf (xo, o) iS |Vf (xo, ¥o)| wWhich occurs in
the direction of V£ (x,, y)-

? and V£ are in the . Vf
. . (=1 V=——
same direction |Vf]

» The minimum value of the directional derivative Dy f (x,, Vo) is —|Vf (x,, vo)| Which occurs
in the direction of —Vf(xy, o).

Dyf = IVfI e

? and —Vf are in the 5= Vf

Dyf = —|Vfl < same direction Sl

Remark 14.6.15: Observe that:

The maximum value of the The maximum rate of The function f
directional derivative of f change of f increases fastest.

The minimum value of the The minimum rate of The function f
directional derivative of f change of f decreases fastest.

Example 14.6.16: Find the maximum directional derivative (or maximum rate of change) of the function
f(x,y) = 2y?+/x at the point (9, —3) and find the direction in which it occurs.

Solution:

Vf = G2 apVE) = Vf(9,-3) = (3,-36)

The maximum directional derivative = |[V£(9,—3)| = /32 + (36)2 = V1305
The direction in which the maximum directional derivative occurs is in the direction of the
vector V£(9,—3) = (3,—36).

Example 14.6.17: Find the direction in which the function f(x, y,z) = xe*™*

(1) decreases fastest at the point (2,1,2).
(2) increases fastest at the point (2,1,2).

Solution: Vf = {xe* Y% 4+ e* Y%, —xze* Y4, —xye* V4) => Vf(2,1,2) = (3,—4,—-2)
(1) The direction in which the function f decreases fastest is —Vf(2,1,2) = (—3,4,2)
(2) The direction in which the function f increases fastest is Vf(2,1,2) = (3, —4, —2)

Example 14.6.18: Find the unit vector 7, if Vf(1,2) = (3,—4) and D,/ (1,2) = 5.
Solution: Since |V£(1,2)| =9 + 16 =25 = 5 and Dy f(1,2) = 5 we have Dy f(1,2) = |Vf(1,2)|
= D;f(1,2) has its maximum value = ¥ and Vf(1,2) are in the same direction:

Vf(1,2)
V£ (1,2)]

= 0= (since ¥ is a unit vector) = ¥ = @ =¢,-h.
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Theorem 14.6.19: Let S: F(x,y,z) = k be a surface and P(x, y,, zo) be a
point on S. Let C:7(t) = (x(t),y(t),z(t)) be a curve on S that passes
through P. Prove that VF is perpendicular to the tangent vector 7’ (t) of C at
the point P.

VF (x4, Yo 20)
tangent plane

/(£ Y
LN

Proof: The curve C ison S = C satisfies the equation of S
= F(x(®),y®),z() =k
Differentiating both sides of the equation (1) with respect to t:

dF dx ay dz _ .
> =0 > E—+F -+ F_—-=0> (F,E,F)(

ax dy dz,
dt

dt’ dt’ dt

The point P(x,, Vo, Zo) is on the curve C = 7(ty) = (xo, Yo, Zo)
The equation (2) at the point P(xq, Vo, 20) = VF(xg, Y0, 20) -7 (t;) =0
Which means that VF is perpendicular to the tangent vector #'(t) of C at the point P

Remark 14.6.20: Theorem 19 says the following:

VF is normal to the surface S: F(x,y,z) = k at any point on S.
So, we have the following Theorem:

Theorem 14.6.21: Let S: F(x,y,z) = k be a surface, P(xg,V,,2,) be a point on S and let
VF('XOI YO;ZO) = <a, b, C)- Then

(1) The equation of the tangent plane to the surface S at the point P is: " VE (X or 20)

tangent plane

ax + by + cz = axy + by, + czq £ 520

(2) Parametric equations of the normal line to the surface S at the point
Parex =xq+at,y =y, +bt,z=2z,+ct

v

Example 14.6.22: Find the equations of the tangent plane and the normal line at the point (—2,1,3)

2 2
to the ellipsoid xT +y%+ % = 3.

Solution:
> First we simplify the equation of the surface:
2 2
x:+y2 +% =3 = 9x% 4+ 36y2+ 422 —108 =0. So, let F(x,y,z) = 9x% 4+ 36y% + 42> — 108
= VF = (18x,72y,82z) = VF(-2,1,3) = (—36,72,24) (+ 12) = vector is {(—3,6,2)
The equation of the tangent plane at (—2,1,3) is:
—3x+6y+2z=-3(-2)+6(1)+23)=18 = —-3x+6y+2z=18
Param. equations of the normal line at (—2,1,3)arex = -2 —3t, y=1+6t, z=3 + 2t

¥ olas s UL <_1,2,§) axiall muas 3 o dleud; Wia (—3,6,2) 4aiall ) 50 4o pladiul pay sAkade

x=-2—ty=1+2tz=3 +§t sk LS (normal line) ¢s2 selall Lasl
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Example 14.6.23: Find the equations of the tangent plane and the normal line at the point
(—2,1,5) to the surface z = x? + y2.

Solution:

> Surface:z=x2+y2=> x2+y2—2z=0
> LetF(x,y,z) =x?+4+y?—z = VF =(2x,2y,—1) > VF(-2,1,3) =(—4,2,-1)
% The equation of the tangent plane at (—2,1,5) is:
—4x+2y—z=-4(-2)+2(1)—-()=5 > —4x+2y—z=5
% The equations of the normal line at (—2,1,5)are:x = -2 —4t, y=1+2t, z=5—t¢

Example 14.6.24: At what point the surface y = x2 + z? is tangent to the plane parallel to the plane
x+y+3z=1.

Solution: Let (x,y, z) be the pt. of tangency.
> Surface:y=x2+z2= x> —y+2z2=0 = F(x,y,z) =x*>—y+z?>= VF =(2x,—1,22)
> Plane:x+y+3z=1 = v=(1,1,3)
> VF//(1,13) = (2x,-122) //(1,13) 2 Z === 2?2 (Ratio Method)
S>2x=-12z2=-3=x=—andz=—>.

> Tofindy:Wesubstitutex=—i,z=—%iny=x2+z2:
1\2 3\2 10 L 1 3
y=(-3) +(=3) =1 = Thepointis (=3,32,~3)

Example 14.6.25: At what point the surface x? — y? + z? — 2x = 1 has a normal line parallel to the
linex =4t, y=1-2t, z= -2t
Solution: Let (x, y, z) be the pt. at which the normal line parallel to the given line

Surface: x? —y? +z?—2x=1 = x?2—-y2+22-2x—-1=0

F(x,y,z) =x?>—y?+2z2—-2x—1 = VF =(2x — 2,—2y,2z)

Line x = 4t, y =1 —2t, z = —2t: A vector parallel to it is (4, —2, —2)

The normal line parallel to the line x = 4t, y =1 —2t, z= -2t = VF /[ (4,-2,—2)
= (2x — 2,-2y,2z) // (4,—2,—-2):

> Ratio Method: 2x4_2 =__—22y: % :%: y=-—z ﬁ%: y,—z=7Yy
= x = 2y + 1,z = —y substitute in these equation in x? —y2 +z2 —2x =1

We have 2y +1)%2 —y? 4+ (—y)? =2y +1) =1

> 4y +4y+1-y2+y’—4y—2=1=4y? =2y’ =15y =+

1 2 1
y——5:>x—2y+1—1—5,2——v—7

2 _ 1
V2

[ ] :i:>x:2y+1:11 =5
1 1 1
~mww (5 E 5

V2

1 1 1

= We have two pts.: (1
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Example 14.6.26: At what points does the normal line through the point (1,1,2) on the ellipsoid
4x2 + y? + 4z? = 21 intersects the sphere x% + y% + z2? =
Solution:

> Surface: 4x2 + y2 + 422 =21 = 4x2+y? +4z2-21=0

= F(x,y,z) = 4x%? + y? + 4z?> — 21 > VF = (8x,2y,8z)

= VF(1,1,2) = (8,2,16) = (8,2,16) // normal line (= 2) = (4,1,8) // normal line
» Equations of the normal lineare: x =14+ 4t,y=1+t,z=2+8t
> The normal line intersects the sphere x? + y2 + z2 = 6. So,

> Substitute (x = 1 + 4t,y = 1 +t,z = 2 + 8t) in the equation x2 + y2 + z2 = 6:
(1+4)*+AQ+t)2+(2+8t)2=6

= 14+8t+16t2+1+2t+t>4+4+32t+64t>=6=> 81t?+42t=0
= t(80t+42)=0 = t=00rt = —=

81
x=14+4t =2 x=14+0>=>x=1
" t=0>{jy=1+t= y=1+0=>y=1
z=24+8t 2 z=240>=>2z=2

(x=1+4t > x=1-14 E)=>x 87
42

81 =
42 39
t——8—1.=>4| y=1+t = y—l—()=>

81
kZ=2+8t=> z=2_8(:_i):>z_
» The points are: (1,1,2) and ( 87 39 174)

81

81’81’ 81

Example 14.6.27: Where does the normal line to the paraboloid z = x2 + y? at the point (1,1,2)
intersects the paraboloid a second time.
Solution:

> Surface:z=x2+y?2=> x2+y2—2z=0= F(x,y,2) =x>+y?—z
= VF = (2x,2y,-1) = VF(1,1,2) = (2,2,—1)

» The equations of the normal lineare: x =1+ 2t,y=1+2t,z=2—1t

> The normal line intersects the paraboloid z = x2 + y?2. So:

> Substitute (x = 1 + 2t,y = 1+ 2t,z = 2 — t) in the equation z = x? + y?:

2-t=(1+2t)>+(1+2t)2 > 2—-t=2(1+4t+4t?) = 8t?+9t=0
>t(8t+9)=0 >t=0o0rt=—-

x=142t :>x=81+0 >x=1
= t=0: :>{y:1+2t:> y=1+0=y=1
z=2—-t>=> z=2-0>=>2z=2

x=1+2t > x=1+2(-

(
. tz—g: = {y=1+2t = y=1+2(—
\

z=2—-t > Z=2—(—
» The points are: (1,1,2) and (—1— _ E)

8’ 8’8

= the normal line to the paraboloid z = x2 + y? at the point (1,1,2) intersects the paraboloid a second
. 10 10 25
time at (-2, - 31, %),

8 8
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Example 14.6.28: Show that every plane that is tangent to the cone z? = x2 + y? passes
through the origin.
Solution: Let (a, b, ¢) be a point on the cone z? = x? + y? = ¢? = a? + b?
Now, we find the equation of the tangent plane to the cone:
> z2=x2+y? = x2+y?2—22=0.LetF(x,y,z) = x2+y%2— 22 > VF = (2x,2y,—2z) >
VF(a,b,c) =(2a,2b,—2c)
VF(a, b, c) L tangent plane = (2a, 2b, —2c) L tangent plane + 2
= (a, b, —c) L tangent plane and (a, b, ¢) is a point on the tangent plane
> The equation of the tangent plane is: ax + by — cz = a? + b? — c? = 0 (by equation (1))

> substituting the origin in the equation (2) we have:
> a(0) + b(0) — c(0) = 0 = The origin satisfies the equation (2)
So, the origin lies on the tangent plane which means that:
the tangent plane passes through the origin.

Example 14.6.29: Show that every normal line to the sphere x2 + y? + z2 = r? passes through the
center of the sphere.

Solution: Let (a, b, ¢) be a point on the sphere x? + y? + z? = r2.

> First, we find the equations of the normal line to the sphere x2 + y? + z2 = r? at (a, b, ¢):

x2+y?2+z22=r?>x2+y2+22—1r2=0.LetF(x,y,2) = x> +y%2 + 2% —r?

= VF = (2x,2y,2z) = VF(a,b,c) = (2a,2b, 2c)

» VF(a,b,c) // normal line: = (2a,2b,2c) // normal line + 2
= (a,b,c) // normal line and (a, b, ¢) is a point on the normal line
» Equations of the normal line: x =a+at,y=b+bt,z=c+ct
< To show that the normal line passes through the center of x2 + y? + z2 = rZ:
Observe that the center of the sphere is (0,0,0):
x=a+at > x=a—a=0
So,takingt =—-1 = Jy=b+bt = y=b—-b=0

z=c+ct > z=c—c=0

% the normal line passes through the origin which is the center of the sphere.
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Section 14.7: Maximum and Minimum Values

Definition 14.7.1: A function f (x, y) is said to have:

(1) a local maximum value at a point (a, b) € Dom(f) if f(a,b) = f(x,y) for all (x,y) € D, where D is
a disk in Domain f centered at (a, b). The number f(a, b) is called a local maximum value of f.

(2) a local minimum value at a point (a, b) € Dom(f) if f(a,b) < f(x,y) forall (x,y) € D, where D is
a disk in Domain f centered at (a, b). The number f(a, b) is called a local minimum value of f.

(3) an absolute maximum value at a point (a, b) € Dom(f) if f(a,b) = f(x,y) forall (x,y) € Dom(f).
The number f(a, b) is called the absolute maximum value of f.

(4) an absolute minimum value at a point (a, b) € Dom(f) if f(a, b) < f(x,y) for all (x,y) € Dom(f).
The number f(a, b) is called the absolute minimum value of f.

(5) a local extremum at a point (a, b) if f has a local maximum or minimum value at (a, b).

(6) an absolute extremum at a point (a, b) if f has an absolute maximum or minimum value at (a, b).

Example 14.7.2: Find the absolute and local extrema of the function f(x,y) = 2x2 + y?

Solution: First, we give a graph of the function £
From the graph we see that:

» f hasalocal minimum value at (0,0). This local minimum value is £ (0,0) = 0
> f has an absolute minimum value at (0,0).
» The absolute minimum value is £(0,0) = 0 / ——

Part 1: Local Maximum and Minimum Values

Definition 14.7.3: A function f (x, y) is said to have a critical point at (a, b) € Dom(f) if:
> fy(a,b) =0 and f,(a,b) =0

or
> f,(a,b) does not exist
or
> f,(a,b) does not exist
Example 14.7.4: Find the values of a and b that makes the function f has a critical point at (1, —1),
where f(x,y) = x%y + 3axy? — bxy.

Solution:

> fy =2xy+3ay?—by and f, = x* + 6axy — bx
> (1,-1) isacritical point £,(1,—1) =0 and £,(1,-1) =0
* (1,-1)=0=>-2+3a+b=0=>3a+b=2
fy(l,—1)=02> 1-6a—b=0>=>6a+b=1

53
o
o2

@-O=3a=-12a=--O>3a+b=21+b=2=>b=1

Theorem 14.7.5: If a function f(x,y) has a local maximum or minimum value at (a,b) and
fx(a, b), f;,(a, b) both exist, then £, (a,b) = 0 and f,(a,b) =0
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The Second Derivative Test 14.7.6: Suppose that the second partial derivatives of the function f (x, y)
are continuous on a disk centered at a point (a, b) and suppose that £, (a,b) = 0 and f,(a,b) = 0.

Let D(a,b) = fux(a,b)fyy(a,b) = [fuy (a,D)]’
(1) If D(a,b) > 0and f,,(a,b) > 0, then f has a local minimum value at (a, b). This local minimum
value equals to f(a, b).
(2 If D(a,b) >0 and f,,(a,b) <0, then f has a local maximum value at (a,b). This local
maximum value equals to f(a, b).
(3) If D(a,b) < 0, then f has neither a local maximum value nor a local minimum value at (a, b). In
this case we say that f has a saddle point at (a, b).

Example 14.7.7: Find and classify the critical points of the function f as local maximum, local
minimum, or saddle point, where f(x,y) = 2x3 + 6xy? — 3y3 — 150x. Moreover find
the local maximum and minimum values of f.

Solution:

% Step 1: We must find the critical points of f: f, = 6x* 4+ 6y? — 150 and f,, = 12xy — 9y?
> f,=0>6x?+6y?—150=0> (6x%2+6y2=150)+6>x2+y%2 =25
> f, =0= (12xy —9y? = 0) + 3= 4xy — 3y? = 0 = y(4x — 3y) = 0. So,

Casel: Eqs. M)&2): x2 +y2 =25andy = 0

(1) = x% = 25 = x = +5 = two critical points (+5,0)
4

Case2: Egs. (D)&2): x2 +y2 =25and y = S

@:x2+%6x2=25:>29—5x2=25=>x2=9=>x=i3

» Ifx=-3:y= gx =y = —4 = one point (—3,—4)
> Ifx= 3:y=§x = y = 4 = one point (3,4)
| f has four critical points: (=5,0), (5,0), (=3, —4), (3,4) |
%+ Step 2: We classify the critical points:
2
o fux=12x, f,, =12x—18y, and f,, = 12y D = fir fyy — [fir]
D = 12x(12x — 18y) — (12y)?
> At (=5,0): D(-5,0) = 12(=5)(12(=5)) > 0 and f,(—5,0) = 12(=5) < 0:
* = f has a local maximum value at the point (—5,0)
= Alocal maximum value of f is f(—5,0) = 2(-=5)3 — 150(-5) = 500
> At(5,0): D(-5,0) = 12(5)(12(5)) > 0 and f,,(5,0) = 12(5) > 0:
» = f has a local minimum value at the point (5,0)
= Alocal minimum value of f is £(5,0) = 2(5)3 — 150(5) = =500
> At(=3,-4): D(—3,—4) = 12(-3)(12(=3) — 18(—4)) — (12(-4))" < 0
*» = f has asaddle point at (—3, —4)
> At(3.4): D(34) = 12(3)(12(3) — 18(4)) — (12(4)" < 0
» = f has asaddle point at (3,4)
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Example 14.7.8: Find the local maximum and local minimum values of the function
flx,y) =x*+y*—4xy + 1.

Solution:

% Step 1: We must find the critical points of f: f, = 4x> — 4y and f, = 4y*® — 4x
> f,=024x3—4y =0=> y=x3.........(D
> f,=0=24—4x=0=>x=y% ...

Substitute equation (D in(2):x = (x3)} =2x=x’=>x=0,-1,1

= Ifx=0:(1) =y =03= 0= one critical points (0,0)
» Ifx=-1:(1)=y=(-1)3 = —1 = one critical points (=1, —1)
= Ifx=1:1) =y =(1)3= 1= one critical points (1,1)
| % £ has three critical points: (0,0), (=1,-1),(1,1) |
% Step 2: We classify the critical points: f,,, = 12x%, f,, = 12y? and f,,, = —4

D = fufyy — [fiy]” = D = 12x2(12y%) — (=4)
> At (0,0): D(0,0) = —16 < 0: = f has a saddle point at (0,0)
= £ has neither a local maximum nor a local minimum at (0,0)

> At(=1,-1):D(-1,-1) =12(12) —16 >0and f,.,(-1,-1) = 12 > 0:

* £ has a local minimum value at the point (—1,—1)

» f(—1,—-1) = —1isa local minimum value of f
> At(1,1):D(1,1) =12(12) - 16 >0and £, (1,1) = 12 > 0:

=  f has a local minimum value at the point (1,1)

* f(1,1) = —1 is a local minimum value of f

Example 14.7.9: Find and classify the critical points of the function f as local maximum, local minimum,
or saddle point, where f(x,y) = x? + y2 — 2x — 6y + 12.

Solution: f, =2x—-2=0=>x=1andf, =2y —-6=0>y=3
| % £ has only one critical point: (1,3) |

2
> fox =2 fry=2, andf,, =0=>D = fo.f,, — fy] = D=4
> At(1,3):D(1,3)=4>0and f,(1,3) =2 > 0:

= f has a local minimum value at the point (1,3)

Part2: Absolute Maximum and Minimum Values of Functions with Only One Critical point

Part 2.1: Absolute Extrema for functions with Domain R? and with only one critical pt

Theorem 14.7.10: Let f(x, y) be with domain R? and has only one critical point at (a, b).
(1) If f(a, b) is a local maximum value of the function f, then f(a, b) is an absolute maximum value
of f.

(2) If f(a,b) is a local minimum value of the function f, then f (a, b) is an absolute minimum value

of f.
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Example 14.7.11: Find the absolute maximum and minimum values of the function
flx,y) =x%+y%—2x—6y+ 12.

Solution: From Example 9 we see that this function has only one critical point at (1,3) and at this point f has a

local minimum value. So by Theorem 10, f has an absolute minimum value at (1, 3)

= The absolute minimum value of f is f(1,3) = 2.

Observe that the function £ has no absolute maximum value because it has only one critical point]

Example 14.7.12:

(1) Find the point on the plane x + 2y + z = 4 which is the closest to the point (1,0, —2).

(2) Find the shortest distance from the point (1,0, —2) to the plane x + 2y + z = 4.

Solution:

(1) Let (x,y,2) be a pt on the plane x + 2y + z = 4 which is the closest to the pt (1,0,—2). The
distance from the point (1,0, —2) to the point (x,y, z) is

d=y(x—-1%+y—-0?2+ (2~ (-2))?
> d?=x-1)2%+y%2+(z+2)?
Since z = 4 — x — 2y substituting this in the equation (1) we have:
>d? =(x—-1%?+y?+ (4 —x—2y+2)?
=(x—-1D%+y2+(6—x—2y)2
Let f(x,y) =d?= f(x,y) = (x —1)?+ y2 + (6 — x — 2y)?
Want to find the point at which the absolute minimum value of f occurs:
> fi=2x-1D)+2(6—x-2y)(-1) = f,=4x+4y—14=0=>2x+2y =7
> f,=2y+2(6-x—2y)(-2) = f,=4x+10y —24=0= 2x + 5y = 12

@-O=3y=5 = y=§'® = 2x+2(§)=7 =>x=%

The function f has only one critical point at (16—12)

fex = 4»fyy = 10,and f;cy =4=>D= (f;cx)(f;/y) - [f;CY]Z

D=40—-16 =24 >0and f,, =4 > 0= f has a local minimum value at (16—12)
11 5 11 5)\ . ..

?'5) and f (Z'E) is a local minimum value of f, then f
has an absolute minimum value at the pt (16—12)

= The closest pt is when x = 1?1 andy = g To find the value of z:

Since f has only one critical point at (

Substitute x = %1 andy = g in the eq of the plane: x + 2y +z =4

~emt-22(0) -

=~ The closest pt is (%g — %)
(2)  The absolute minimum value of f is f (16—12)

= The shortest distance is d = |f (16—13) = \/(2)2 + (2)2 + (E)z _ 56

6 6
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Another Solution for Part (2): Since x + 2y + z = 4 is an equation of a plane, we can use the law of
distance from a point and a plane:
xX+2y+z=4> x+2y+z—4=0,point (1,0,—2)

1+20)+(-2)—4 -5 5 5vV6
Theshortestdistanceisd=| W) |=| I=—=£

V1Z ¥ 22 + 12 V6 6 6

Part 2.2: Absolute Extrema for functions with known Ranges

Remark 14.7.13: Let f(x,y) be a function with range(f) =S, where S is a set in R, then
» The absolute maximum value of f = maximum value in S
» The absolute minimum value of f = minimum value in S

Example 14.7.14: Find the absolute maximum and minimum values of the function

f(x,y) =5—49—x%—y?
Solution: First we find the range of f: Letz =5 — /9 — x2 — y?
> < <
> 2=5-9—(x2+y?): (x*+y) 2029 - (x*+y*) <9=,9-(x2+y?) <9
> JI-(2+y9)<3=>5-,/9-(x2+y?)=25-3>2>2
(D&2) = range(f) = [2,5]
» The absolute maximum value of f = maximum value in [2,5] = 5
» The absolute minimum value of f = minimum value in [2,5] = 2

The following is Example 11 with another solution:
Example 14.7.15: Find the absolute maximum and minimum values of the function
flx,y) =x?+y2—-2x—6y+ 12.
Solution: First we find range(f): Letz = x? + y2 — 2x — 6y + 12
5z=(x-1)2+(@p—-3)2+2

x—1)2+(@W—-3)2=20=> (x—1)?+(y—3)2+2=22 = z=>2>range(f) = [2,0)

» The absolute minimum value of f is 2
» f has no absolute maximum value.

Part 2.3: Absolute Extrema for functions over closed bounded sets

Definition 14.7.16:
(1) A closed set in R? is a set that contains all its boundary points, where (a) Closed sets
a boundary point of a set D is a point (a, b) such that every disk with
center (a, b) contains points in D and also points not in D.
(2) A bounded set in R? is a set that is contained within some disk.

(b) Sets that are not closed

Extreme Value Theorem for Functions of two variables 14.7.17:

If f(x,y) is continuous on a closed, bounded set D in R?, then attains an absolute maximum value
f(x1,y,) and an absolute minimum value f(x,,y,) at some points (x;,y;) and (x,,y,) in D.
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Remark 14.7.18: To find the absolute maximum and minimum values of a continuous function f(x,y)
on a closed, bounded set D:
Step 1. Find the values of at the critical points of f(x,y) in D.

Step 2. Find the extreme values of f(x, y) on the boundary of D.

Step 3. The largest of the values from steps 1 and 2 is the absolute maximum value and the smallest of

these values is the absolute minimum value.

Example 14.7.19: Find the absolute maximum and minimum values of 7 L. (2.2
the function f(x,y) = x? — 2xy + 2y on the rectangle 0.2) '
D={(xy):0<x<30<y<2}

Solution: L,

Step 1: We find the critical points of f in D:

fr =2x—2yand f, = —2x + 2 0.0

L=0=2>2x—-2y =0=> y=x
fy,=0=>-2x+2=0 =2 x=1

} =y =1 = (1,1) is a critical point of f

Check: Is (1,1) € D? Yes|

Step 2: We find the extreme values of f on the boundary of D:
Observe that the boundary of D consists of 4 line segments: Ly, L,, L3, Ly:
OnL, (y=0):g,(x) = f(x,0) =x2—2x(0) + 2(0) =x%,0< x < 3.
v g1(0)=2x0<x<3=2>g;(x)=0=22x=0>=>x=0¢ (0,3)

.‘,_/
interval

= We only have the end points when x = 0 and x = 3 = the points are (0,0), (3,0)
OnL, (x=3)h()=fGBy)=03B)7-2B)y+2y=9-4y,0<y<2.
» () =-40<y<2>=hi(y)#0,vy € (0,2)

. N e’
interval

= We only have the end points when y = 0 and y = 2 = the points are (3,0), (3,2).
OnL; (y=2):g,(x)=f(x,2) =x2—2x(2) +2(2) =x?> —4x + 4,0 < x < 3.
" gi(x)=2x—4,0<x<3>2g9;(x)=0>2x—4=0>=>x=2¢€ (03)
interval
= We three points: when x = 2 and at the end points when x = 0 and x = 3

= the points are (2,2), (0,2), (3,2)
On Ly (x = 0): hy(y) = f(0,y) = (0)* = 2(0)y + 2y =2y,0<y < 2.
= hy(y)#0,vy € (0,2)

interval

= We only have the end points when y = 0 and y = 2 = the points are (0,0), (0,2).
Step 3: f(x,y) = x? — 2xy + 2y

_Points | an | 0o | g0 | 62 | @2 | ©02 |
jep 1 d o J o [ 1 J o J 4 |

» The absolute maximum value of f is 9
» The absolute minimum value of f is 0
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Example 14.7.20: Find the absolute maximum and minimum values of the function
f(x,y) =x?—2xy—y?+8y—1ontherectangle D = {(x,y):0 <x <1,0<y < 3}.

Solution:
Step 1: We find the critical points of f in D: Ls
fi=2x-2yandf, = -2x+2y+38 (1,3)

f=0=>2x—-2y =0 =>x—y=0}

fy=0=>-2x—-2y+8=0=>x+y=4 L,

=>x =2,y =2 = (2,2)isacritical point of f

Check: Is (2,2) € D? No. = We do not have any critical point for f in step 1

Step 2: We find the extreme values of f on the boundary of D:

Observe that the boundary of D consists of 4 line segments: Ly, L,, L3, Ly:
e OnL, (y=0)g,x)=f(x,0)=x%0<x<1

n 9g1(x)=2x,0<x<1>29{x)=0=22x=0>x=0¢ @

interval

= We only have the end points when x = 0 and x = 1 = the points are (0,0), (1,0)
S OnL,x=1):h») =f1AQ,y)=-y2+6y+1,0<y<3.
* W) =-2y+60<y<3:hi(y)=0>-2y+6=0>=>y=3¢ (0,3)

interval

= We only have the end points when y = 0 and y = 3: = the points are (1,0), (1,3).

¢ Onl; (y=3):9g,(x)=f(x,3)=x?—6x+150<x < 1:
v gi(x)=2x-60<x<1g;(x)=0=>2x—-6=0=>x=3¢ (0,1):
interval

= We only have the end points when x = 0 and x = 1 = the points are (0,3), (1,3)

% OnL,(x=0)h,(y)=f(0,y)=—y?2+8y,0<y<3.
» h(y)=-2y+80<y<2: hy(y)=0> -2y+8=0>y=4¢ (0,3)
interval

= We only have the end points when y = 0 and y = 3 = the points are (0,0), (0,3)

Step 3: f(x,y) =x2—2xy—y?+8y—1

(1,0

» The absolute maximum value of f is 14
» The absolute minimum value of f is —1
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Example 14.7.21: Find the absolute maximum and minimum values of the function
f(x,y) =xy?onthedisk D = {(x,y): x% + y? < 4}.

Solution:
Step 1: We find the critical points of f in D:

fr =y*and f, = 2xy
> f,=0>y2=0> y=0.......(D

> f,=0=2xy=0 :{x=0""@
y=0...03

Case 1: (1)&(2) = y = 0 & x = 0 = we have one critical point (0,0) in D
Case2: D& 3B) =y =0&y=0=y=0,Vx € [-2,2]

interval
= we have infinitely many critical points (x,0),x € [-2,2] in D
~————
interval

Step 2: We find the extreme values of f on the boundary of D:
Observe that the boundary of D is the circle: x2 + y? = 4
“* Onx?+y?=4: y*=4—-x250,let g(x) = f(x,¥)| 2042 = x(4 — x%) = 4x — x3
>g(x)=4x—x3,-2<x<2
» g(x)=4-3x%,-2<x<2>9'(x)=0 > 4—-3x2=0
> x2=2 > x=i%e (-2,2)
intezrval

N and at the end points when x = +2:

. ifx=Z 2=4_(§§)2

= We have two points: (i

= We have 4 points when x = +

— 2.2 _4_
If x = =Y =4 (\/§

L 2 V8 2 /8
= We have two points: (_\/_g'_\/_g)'(_\/_g'ﬁ)
x=-2>y%=4—(-2)% =0 = point (—=2,0)
x= 2>y%?=4-(2)?=0= point (2,0)

(x,0),x € [—2,2] (% —

16

» The absolute maximum value of f is —
3V3

» The absolute minimum value of f is —1—\/65
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Example 14.7.22: Find the absolute maximum and minimum values of the function
flx,y) = x* + 2x%y? + y* + 8y — 1 onthe half disk D = {(x,y):x% + y? < 4,y > 0}.
Solution:

Step 1: We find the critical points of f in D:
> fy =4x3+4xy?and f, = 4x%y + 4y> + 8
fi=0= 4x3+4xy? =0 2> 4x(x*+y3) =0
=>{ Xx=0......() —2
x2+y2=0 =2x=0andy=0........22)
fy=0=>4x’y+4y°+8=0 ..cc.......®
Case 1:(D&B):x =0&4x%y+4y3 +8=0= 4(0)%2y+4y3+8=0
54y3+8=0>y3=-2 :y=—3\’/§
= (0,—¥2) but (0,—¥/2) & D. So in this case we do not have critical point of f.
Case2:2) & B):x =0,y =0&4x%y +4y3+8 =0
= 4(0)2(0) + 4(0)3 + 8 = 0 = 8 = 0 which is impossible.
So, again in this case we do not have any critical point of f
Step 2: We find the extreme values of f on the boundary of D:
The boundary of D consists of two parts: C: x2 + y? =4and L:y = 0
> OnC:x?+y? =4:0bservethat f(x,y) = (x2+y?)?2+8y—1
Let h(y) = f(x,¥)|x224-y2 = (4)2+8y—1=8y+15
>h(y)=8y+150<y<2=h'(y)=80<y<2
> h'(y) #0,Vy € @

interval

We have only the end points which are when y = 0 and y = 2:
» y=0:x2=4—-y2 > x2=4—-(0)2=4 >x2=4 >5x =42
= (—=2,0),(2,0).
" y=2:x2=4—-y2 25 x2=4-(2)>=0>x%2=0
=>x=0=(02).
> OnL:y=0:g(x) =f(x,0) =x*+ 2x%(0)* + (0)*+8(0)— 1
gx)=x4-2<x<2=g'(x)=4x3,-2<x<2
* g(x)=0>4x3=0=>x=0
= We have a point (when x = 0) and the end points (when x = —1,x = 2) = The
points (—2,0), (2,0), (0,0)

Step 3: f(x,y) =x*+2x%y?2 +y*+8y—1

_point | 20 | 2o | o0» | 0o |

» The absolute maximum of f is 31

» The absolute minimum of f is —1
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Example 14.7.23: Find the absolute maximum and minimum

values of the

f(x,y) = 2x + y — xy in the closed triangular region with vertices (0,0), (0,2), (4,0).

Solution:
Step 1: We find the critical points of f in D: 2
fr=2—-yandf, =2—x

fi=0=2-y=0=y=2 L2

f,=021-x=0 =2x=1

The point (1,2) € D = f has no critical points inside D.

We do not have any critical point of f in Step 1

Step 2: We find the extreme values of f on the boundary of D:
The boundary of D consists of two parts: L, L,, and L.
> OnLi:y=0.Letg(x) = f(x,y)ly=0 = 2x,0 < x < 4.
" g(x)=20<x<4=>9g'(x)#0,Vx € @

interval

= We only have the end points when x = 0 and x = 4
= The points are (0,0), (4,0).

» OnLy,:x=0:h(y) =, Y)ye0 =y,0<y < 2.
* W(y)=10<y<2 =h'(y)#0,vye (0,2)

——

We need to find the

equations of the lines

Ly, Ly, and Ly:

» Li:y=0

» L:x =0

» Ls: passes through
(4,0) and (0,2)

2

e slope = = >
e Equation is:
y—0=—7(x—4)

= Ly:x=4-2y

interval

= We only have the end points wheny = 0 and y = 2
= The points are (0,0),(0,2).

» Onls:x=4-2y:

h() = fO6Y)xa-2y =204 —=2y) +y — (4 - 2y)y,0<y <2

> h(y) =2y?—-7y+80<y<2
* W(y)=4y-7=0 = y:%

= We have three points (when y = %) and at the end points (wheny = 0,y = 2):

. =Z:> x=4—2(£):%:>ThepointG,%)

e y=0 > x=4-2(0)=4 = The point (4,0)

e y=2 = x=4—-2(2)=0 = The point (0,2)
Step 3: f(x,y) =2x+y—xy

"o [ oo Low o [ 0
1 El Rl R R

» The absolute maximum of f is 8
» The absolute minimum of f is 0

function




Chapter 15: Multiple Integrals

Section 15.1: Double Integrals over Rectangles

Section 15.2: Iterated Integrals

Fubini’s Theorem 15.2.1:

LetR ={(x,y):a < x < b,c <y < d}bearectangle and let f(x,y)
be a continuous function on R. Then the double integral

JI, f(x,y)dA can be expressed as an iterated integral as:
[, fyda =[] [ fy)dydx = [ [ fx,y)dxdy
ldA = dydx or dA = dxdy|

Remark 15.2.2:

b ~d b d
D J, J, fxy)dydx = [, (fc fx, ;v)d;v) dx:
> Means: Compute g(x) = fcd f(x,y)dy by taking x as a constant, then compute ff g(x)dx.
d b d b
@ [1 1] feoy)dxdy = [ ([, fCoy)dx) dy:
> Means: Compute h(y) = f: f(x,y)dx by taking y as a constant, then compute fcd h(y)dy.

(3) The rectangle R = {(x,y):a < x < b,c <y < d} can be expressed as:
R={(x,y):a<x<bc<y<d}=][ab]x]cd].

Properties of Double Integrals 15.2.3:

Let f(x,y) and g(x,y) be continuous functions on a rectangle R 0. Then

D Jlp F+g)dA=[f, fdA+ [[, gdA
(3) J[, c¢fdA =c [f, fdA, where c is a constant.

(4) If f(x,y) = g(x,y) forall (x,y) €R, then [[, fdA = [[, gdA
(5) If the variables x and y in f(x,y) are separated, that is f(x,y) = g(x)h(y) and f is
continuous on the rectangle R = [a, b] X [c, d], then

[I, fda =, [* geOn@) dy dx = ([, g0 dx) (J7 h(y) dy)

Example 15.2.4: Evaluate the double integral [f, (x —3y?)dA,where
R={(x,y):0<x<2-1<y<3}
Solution: dA = dxdy ordA = dydx, wetake dA = dxdy:

fly Ge=3yDda =2, ([Fa=3yD dx)dy = [, (£ = 302] )dy = [* 2~ 6y dy
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Example 15.2.5: Compute the following double integral: [f, xsin(xy)dA, where
R = [1,2] x [0,7].
Solution: dA = dydx ordA = dxdy:

> dA =dydx >weintegrate [ ysin(xy)dy by substitution

> dA =dxdy >ifweuseweintegrate [ ysin(xy)dx byparts
So, we take dA = dydx:

ff, xsinGey)da = [ [z xsinGey) dy) dx = [} (x (_M)]ﬁ) i

x 0
T 2
_ <sin£§x) _ x)ﬂ _ 142
2 1 T
Remark 15.2.6:

Recall that in 2D: y = \/r2 — (x — a)? is the equation of the semicircle:
So,

> f;f:,/rz —(x—a)?dx = %m’z
> f;”,/rz —(x—a)?dx = im’z

Example 15.2.7: Evaluate the double integral [f, V4 — x2dA, where R = [-2,2] x [0,3].

Solution: dA = dydx ordA = dxdy = we choose dA = dydx (why?)
y = V4 — x? is an equation of a semicircle:

Il V& —x%dA = f_zz (f031/—4 - xzdy) dx = 3f_22mdx
=3(3)n(2? =6n

Example 15.2.8: Evaluate the double integral [f, v4x — x2dA, where R = [2,4] x [0,3].

Solution: dA = dydx ordA = dxdy = we choose dA = dydx (why?)
> y=Vidx —x2> y?=4x—x?>x?—4x+y? =
Sx?—4x+44+y’=4> (x—-2)2+y* =4
= y = V4x — x? is upper part of the circle
But 2 <x <4 =y =+4x — x? is the quarter of the circle

> [f, VAx —x2dA = f: (f03\/4x —xzdy) dx
=3 [} Vax—x%dx =3 [} J4— (x = 2)2dx =3 (3) m(2)* = 3n

4
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Example 15.2.9: Evaluate the iterated integral - fon/lz sin (g) cos(2y) dydx.

X

Solution: Observe that the variables in sin (3) cos(2y) are separated, so
n /12 x T, x /12
Jo J; 7 " sin (E) cos(2y) dydx = (fo sin (5) dx) (fo cos(2y) dy)

-t ()] 222

= —Z (cos (g) — cos(O)) (sin (%) — sin(O))

3

T8
Example 15.2.10: Evaluate the iterated integral foz folf(x, y) dydx, where
_(2y ,x=eY
fley) = {4x Jx <eY
Solution: Since the function f is defined by 2 formulaswhen x > e¥ and x < e” so we first integrate with
respect to x and then y:

> fy o fooy)dydx = [ (J] fxy) dx)dy
= [ Fdx+ % f dx) dy
= fol (foey 4x dx + fezy 2y dx) dy = fol(sz]]Sy +(2—e¥)2y)dy

1
B .f (2e? +4y —2ye¥Y)dy = e® + 2y%2 — (2yeY —2e¥)[; = e+ 1
0

I Differentiate | Integrate I

2y
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Section 15.3: Double Integrals over General Regions

15.3.1: Type 1 Regions: LetD = {(x,y):a < x < b, g;(x) <y < g,(x)}

y ¥ )
= ¥ =ga(x) y=ga(x)

D

|
|
y=aqix) |
|
|

|
|
|
|
|
a

0 d 0 b

and let f(x,y) be a continuous function on D.
Then the double integral: dA = dydx

|| reyaa= f b | " e y)dy dx

g1(x)

0

15.3.2: Type 2 Regions: Let D = {(x,y):hy(y) < x < h,(y),c <y < d}
and i) Clgaial o BaaY y

X Ja iS5 dahaial) d v

1053l g sansa o N d

x = h(y) ' ”

and let f(x,y) be a continuous function on D.
Then the double integral: dA = dxdy

[ reeyaa= | d fh hiz)f(x, y)dzx dy
5 ¢ Jhy
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Remark 15.3.3: If the region D consists of two (or more) regions of type 1 (or Type 2) as in the figures:

D

D, D,

Then [f f(x,y)dA = [f, f(x,y)dA+ [f, f(x,y)dA

Example 15.3.4: Sketch the region and change the order of integration:

o[ [ ey @ | i J e y)dxdy

Solution:

(1) dA = dydx Type 1 Region dA = dxdy Type 2 Region
Curves:y =0 - vy =In(x) |:> Curves:x = e¥ - x=2
x=1->x=2 y=0-y=In(2)

/1 y=0 2

1 1
S2 1M fyydy dx = [P [2 £, y)dx dy

(1) dA =dxdy Type 2 Region :: dA = dydx Type 1 Region

Curves:y = —Vx — y=+/x
x=0->x=2

y=vx w

-

Cunves:x =y2 - x=2

2

—

= [V 1% FGoyydxdy = [7 [V F G y)dy dx




96

Example 15.3.5: Sketch the region and change the order of integration:

4 ry+1
j » f(x,y)dxdy

-2

Solution:

dA = dxdy Type 2 Region :: dA = dydx Type 1 Region

Curves:x=y72—3 - x=y+1 x=y72—3 =>y2=2x+6
y=—2-y=4 =>y=4+V2x+6

To find the pints of intersection of x=y+l= y=x-1
Intersection:y = =2 = x = -1

2
x=y7—3 andx =y + 1: y=4 > x=5
We have 2 Regions:
Region D;:
——3=y+1=y2-2y—8=0 L
2 y=—2x+6 »>y=+2x+6
=-HDh+2)=0 x=-3 sx=-1
Region D,:
y=x—1 -oy=+2x+6

y2

V2x+6 V2x+

= [ f;]_;_13f(xf Widxdy = [ [\ 7 fGe,y)dydx + [ 27 fx,y)dy dx

Example 15.3.6: Evaluate [f, xydA, where D is the shaded region in
the figure.

Solution:
> Curves are written as in Type 1 regions:

y=—V2x+6,y=+2x+6ady=x—-1

So we have two regions as in the figure:




» Look to the region as Type 2 regions:
We have one region and the equations of the curves are:

y2
x=7—3andx=y+1

(—1,-2) N

» Using Type 2 region is easier than using Type 1 regions: So, take dA = dxdy
y+

4 y+1 4 x2? 1 1 ;4 2 2
= JI, xydA=[_, fé_g xy dxdy = [, > ]]ﬁ_3 dy =~ [,y + D% - (y;— 3) ydy =36

Example 15.3.7: Evaluate [f, xydA, where D is the region bounded by y = x — 1 and y? = 2x + 6

2_
Solution: Curves:y =x —land y2 =2x+6=>x=y+landx =2

= dA = dxdy (Type 2 Regions)

2
Intersection of curves: y + 1 =y?—3 5y2-2y-8=0=> (y—4)(y+2)=0

>y=—-20ry=4= —-2<y<4

4 A leNaall e
f f xydxdy s ddaada
-2

S asll Jiaie

O e tamsy 055 Y1 JalSill oo 8 e aad) sl g oY) aal) 6 iaiad) sl
A Cpiniall B lgpmpai iy = 0 Sl oS, [—2,4] 55l 8 sl A b -2 <y < 4
Sle W aall 8 il o€y 5T ated Gl oY1 aall 8 sl Sy jraal died

» x=y+1=>x=0+1=1

y? _@_3

> x=7—-3 >x= = -3
2 2

2
" X = y? — 3 (lower curve in integral)
x =y + 1 (upper curve in integral)

4 52 y+1
—yﬂ dy = 36

V4
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Example 15.3.8: Compute [f, (x + 2y)dA, where D is the region enclosed by

y=2x?andy =1+ x2.
Solution:

> Curves.y =2x%2andy =1+ x? = dA = dydx (Type 1 Regions)
> Intersectionofcurves: 2x2 =1+x?=>x?=1=>x=41 = -1<x<1

1 pleVasll Jase
j j (x + 2y)dydx  : 3D
—1 J ¥ aall s
—1 < O ety 055 JsY) JalSill 2 gan 8 e aadl 8 sl 5 V) aall b i) apaadd
Dhoal diadh (b Cprinial) (8 lgngai i x = 0 e oSl [—1,1] Bl 8 sl aas aaliy < 1
Sle W aall 8 il (€ 5 ated Gl oY) aall a sl (S
> y=2x2 2y=2(0)>=0
> y=1+x22y=1+(0)2=1
* y = 2x? (lower curve in integral)
» y =1+ x2 (upper curve in integral)

= Jf, G+ 2y)dA= [ [ (x +2y)dy dx

32

1 1 2
= f_l(xy +y)5E dx = o

Example 15.3.9: Compute the following iterated integrals: I

(1) fol 22y e*” dx dy
f: ijex3 dx dy

Solution:

(1) Observe that we cannot compute fzzy e*” dx

» dA = dxdy = We have Type 2 Region:
= Curvesix =2y—->x=2

u y:O—)y:l

» Goto type 1 Regions: = dA = dydx
= Curvesiy=0-y=>

= x=0->x=2
Zx

. fol fzzy e’ dxdy = foz fgexz dydx = [3 e*” dx

22

_exﬂ _e4—1
0

4 4
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=
Il
—

(2) Observe that we cannot compute lex sin(y?) dy
» dA = dydx = We have Type 1 Region
= Curvesiy=2x-y=1
= x=0->x= %
» Go to type 2 Regions: = dA = dxdy

. Curves:x=0—>x=§

=

1 12
J2 [, sin(y® dydx = [ [2sin(y®)dx dy

_ (ly.. 2 _ _cos(y?) 1 _ _cos(1)-1 _ 1-cos(1)
= [y Zsin(y?) dy = 22| = X0 =

NIE beceae || —mem

(3) Exercise

Rule 15.3.10: Let D be a region in the xy-plane. Then the area of D is [f, 1dA

Example 15.3.11: Find the area of the shaded region in the figure:

Solution:

> First we find the points of intersections of curves

¥ _a_ 2 _ 9y _g_ _ _
——3=y+1=2y2-2y-8=0=>(@y-HH+2)=0 /
>y=-2o0ry=4

> We take Type 2 regions: dA = dxdy

y+1 4 yz
Area—ﬂ 1dA = ff 1dxdy=f <y+1—7+3>dy— ...............

Jall JaSi
Example 15.3.12: Find the area ofthe region bounded by the curves y = e?*,y = 2,and x = 4
Solution:
» Observe that the curves are: y = e?*, y = 2

" e2x=2:>2x—ln2:> x—T(smceT:0.34)Wehave.x—1n72—> x =4

» To identify the upper and lower curves in integral (take a value of x between lnTZ and 4):
= Takex =3:
y

2x

> y=e= (2.7)6} L Y= 2 (lower curve in integral)
= y y = e?* (upper curve in integral)

e2X 4
Area —ff 1dA = f f 1dydx—f (ezx—Z)dx———zxﬂ S
2 In2 —

2

Jall JaSi
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Example 15.3.12: Find each of the following iterated integrals:

 f2 fo“‘"‘z —3dydx (2) I, 2dA,whereD = {(x,y):x2 +y* < 3,x > 0,y > 0}
Solution:

(1) Curves:y =0 -y =4 — x?
= x==-2 > x=2

2 Va—x2 2 Va—x2 722
j j —3dydx = —3] j 1dydx = —3Area = -3 <—> = —6m
=270 -27J0 2

(Z)HD 2dA = zﬂD 1dA = 2(Area of D) = 2(”7?) =2n

Example 15.3.13: Combine the sum of the two double integrals as a single double integral:

-1 2x+6 5 (V2x+e
I I ere F@y) dydx + [2) 75777 £ (x,y) dydx
Solution:

-1 /2x+6
f_g f_\/;cxﬁ f(-x; y) dydx

" y=—V2x+6 -y =+2x+6,

= —3<x<-1
5 2x+6
5T fy) dydx:
» y=x—-1-5y=/2x+6

= —1<x<5

| =2 s

(—1,—2)
= Curves:
" y=+V2x+ 6=y =2x+6>x = y?z— 3 (lower curve in integral)
» y=x—1=x=y+ 1 (upper curve in integral)

= —2<y<4
-1 /2x+6 5 2x+6 4 +1
I25 L rre Fay) dyda + [7 [0 fOoy) dydx = [7, 2 f(x,y) dxdy
2

Exercise 15.3.14: Combine the sum of the two double integrals as a single double integral

107 fy) dydx + [T [ Fx, y) dydx
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15.4. Double Integrals in Polar Coordinates

Let (x,y) be a point in Cartesian (or rectangular coordinates). Then this point can be written in polar
coordinates as (7, 8), where x = rcos(8) ,y = rsin(0)

2 = x2 4 y2 @r=\/mandtan(9)=§=’ 9=tan_1(%)

é]|+—xw|é] N = OV

15.4.1 Polar Reqgions (Type 3 Regions):
LetD = {(r,0):h(6) <r < h,(0),a <6 < B}, where 0 < B —a < 2m. Then

B h2(6)
f f(x,y)dA =f f f(rcos(8),rsin(8))rdrdd
D a “hqi(6)




Remark 15.4.2: Leta > 0:
x*+y*=a> ®r=a| x2+y?=a?= y2=a?-x%> = y=+vVaz—x2 or y = —Va? — x2

y=va?—-x?or=a y=—Va?—-x?or=a
a -

- i
NP :

n<f<2ne-n<6<0

0<6<2m

r = 2acos(6)
N
N/

—-<6=<

2a

r = —2acos(6)

r = —2asin(6)

—2a

S9S3 n<60<2nm

Example 15.4.3: Evaluate ffD (3x + 4y?)dA where D is the region in the upper half-plane bounded by
x?+y?=1landx?+y? =
Solution: Region:

» x2+y?l=1=31?=1=> r=1
» X2+ y?=4>1i=4> r=2
= 0<0<m

ff(3x +4y?)dA = fﬂ fz (3rcos(9) + 4(rsin(9))2) rdrd6
D 0 1

2 T
= f <f (3r2cos(@) + 413 sin?(9)) dr> dg = f r3cos(0) + r*sin2(0)]? d6
1 0

= fn(7cos(0) + 15sin?(0)) do = fﬂ <7cos(9) + 15 <% - %cos(29)>> do

T

= 7si 5 o 1 20
= 7sin(6) + 1 <E—ZSIH( )>ﬂ

0
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Example 15.4.4: Evaluate [f, arctan G) dA where

D={(xy):1<x*+y?<4,0<y<V3x}
Solution: Region:

" xZ4yZ= 2=1= r=1

» x2+yl=412=4> r=2

= yS\/§x=>§=\/§=>tan(0)=\/§=>0=tan‘1\/§=§
" 0<6<7

- = 2
JI,, arctan (f) dA = [[, tan™? G) dA = [3 [ 0rdrdf

2 T 7272 92 g 372
- (1) (o) = (1) (5T,) =
Example 15.4.5: Evaluate the following iterated integrals:
0 (0 2 0
W [, Lz dy da @ [, L ampe™ dy da
2 ~V4—x2 2 Va—x2
@) [y Loz e dy dx @ [, [ amme™ 7 dy da
Solution:
(1) Region:y = —vV4—x?>y=0and -2 <x <0

Polar Region:r =0 —>r =2and -n<6 < —g

0 0 T,
Lo e dy dx = [ 2 [ e rdrde
2

- () (irertar) = (7], ==

(2) Region: y = —V4 —x?2>y=0and -2 <x <2

Polar Region:r = 0—->r=2and -1 <0 <0
f_zz f_o\/m e ¥ dy dx = f_on foz e rdrd6
= (f_on 1 d9) (foz re” dr) =
(3) Region:y = V4 —x2 5 y=vV4—x2and 0 < x <2

Polar Region: r =0 »r = 2and -><6 <%

—2

S e dy dx = [% [7 e rdrdf = ....
2

(4) Region: y = —vV4—x2>y=+v4—x?and -2 <x <2

Polar Region:r =0 —->r =2and 0< 6 < 2n

2 V4—x2 2T 2
f f ex2+3’2dy dx = f f e rdrdf =
-2 J—V4—x2 0 0
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Example 15.4.6: Evaluate the following iterated integrals:

[, fJ—sm(x +yHdx dy 2) fo%f;/msin(xz+y2)dxdy
3 J 2 IJ—

sin(x? + y?)dx dy

Solution:

(1) Region:x =0->x=,9—y%2and -3 <y
Polar Region: 7 =0 —»r =3and -~ <0

f_33 J o sin(x? + y*)dx dy = f_EE f03 sin(r?) rdrd6

= (f_%zl d@) (f rsin(r?) dr) = (n )( cos(rz)ﬂo) — ’T(1+°S(9))

S — 9 _v2 3
(2Q) Region:x =y->x=,9—y2and0<y < >

. Intersection of Curves: y=49—y2=>y2=9—y2
2 _2

PoIarRegion:r:0—>r= 3and0 <@ S%
foéfy‘/g__yzsin(x2 + y¥)dxdy = fog f03 sin(r?) rdrdé
= (f;: 1 d9> (f03 rsin(r?) dr) =
(3)Regi0n:x=—y—>x=\/9——yzand0§y§%

" Intersection of Curves: —y = /9 —y2=>y2 =9 —1y2
2 — 3
yi=ioy=t2

PoIarRegion:r—0—>r-3and4§0SO

[° 2 f_‘;_yz sin(x? + y?) dxdy = f_og f03 rsin(r?)dr d6 =
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Example 15.4.7: Evaluate the following iterated integrals:

20 1 1 VaxexZ 4
(1)L‘[_mﬁdydx (Z)LL Wdydx
Solution:

(1) Region:y = —V2x —x2 >y =0and 0 < x < 2
ny=—V2x—x22y2=2x—x?=2x2-2x+y%2=0
x2—2x+14+y?2=1=>(x-1)*+y?>=1

Polar Region: 7 = 0 —»7 = 2cosfand —> <6 <0

N dydx- 2c0591 rdrd6 = OE Zcoseldrde=
\/2x -x W 0

Q) Region:y=x->y=+vV2x—x?2and0<x <1
= Sketch the region:
=V2x—x2=2y2=2x—x*=>x?-2x+y? =0
x2=2x+1+y?=1=>x-1)?+y2=1

Intersection of curves:
o x=V2x—x2=2x%2=2x—x2=22x2-2x=0
>x(x—1)=0=>x=0,1

Polar Region: r =0 - r = 2cos 6 andzse Sg

2cosf 1

1 ~V2x—x2
fofx”w_wdydx—fnf “rdrd =

Example 15.4.8: Evaluate the following iterated improper integrals:
(D) [, fy e” "+ dydx @ [ e dydx
@) S, S o e ™) dydx @) [ [ e~ dydx

Solution:

(1) Region: y =0 - y = oo and —oo < x < oo = The region is the upper half plane:
Polar Region: r =0->r=cand 0 <0 <7

jfe(x“’)dydx—ff % rdrd6

2

_UO 1d9)<f0 re” dr)— —ez—r
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(2) Region: y = 0—- y =oc0and 0 < x < oo = The region is the first quadrant:
Polar Region:r =0—->r=cand0<60 <7

[
[ee] (o] 7 [ee]
J f e‘(x2+y2)dydx=f f e rdrd6
0 0 0 0
Vi

(= R _E—e‘rz OO__E o oy T
—(le@)(fo re dr)—2 5 H = z(e e?) =
0

(3) Exercise
(4) Exercise

Example 15.4.9: Evaluate the following iterated improper integrals:
(1) fooo e dx @) [7 e*"dx

Solution:

(1) LetI = f

0

> 12=I><I=<f e‘xzdx><f e‘yzd)/):f J-e‘xze‘yzdydxzf
0 0 o Jo 0

. oooo_(z+z) _m 2_ T _ T_
By Example 15.4.8 we find that [~ [ e~ dy dx = 7. So, I _4:>I_\£_

[ee)

e ’dx = I =f e‘yzdy
0

o)

So, fOOO e_xzdx = g

(2) Exercise




Section 15.7: Triple Integrals

15.7.1 Fubini’s Theorem for Triple integrals: If f(x,y,z) is continuous on the rectangular box

B={(x,y,2):a<x<bc<y<dr<z<s}=]lab]x][cd]x][rs] then

[, fav = [ [0 [° fdzdydx = [* [ [ fdxdydz = [} [* [ f dy dzdx =

called triple called iterated called iterated called iterated
integral integrals integrals integrals

Observe that dV = dzdydx = dzdxdy = dxdydz = dxdzdy = dydxdz = dydzdx]|

Example 15.7.2: Evaluate [ff, xyz2dV, where B = {(x,y,2):V2<x<20<y<4,-1<z<1}
Solution: Take dV = dxdydz

1 (4 (2 1 4x?
W xyz?dv = [, [j [ zxyz? dxdydz = [_ || %ﬂ

2

WYZZ dydz = f_11 f:yzz dydz =+ =16
2

Observe that this example can be solved faster as: [ff, xyz*dV = (f;ix dx) (f:y dy) (f_ll z? dz) =

15.7.3 Triple Integrals for Non-Rectangular Box Regions:
(1) Let E be the solid in 3D such that u,(x,y) < z < u,(x,y) and

the region D is the projection of S on the xy-plane.

Then: [[f, fav = [f, (fi*2)f dz)da

= Take dA as: dA = dydx or dA = dxdy or dA = rdrdf

(2) Let E be the solid in 3D such that u;(y,z) < x < u,(y,z) and

the region D is the projection of S on the yz-plane.

. ».2)
Then: [ff, fav = [f, ([227f dx)da
= Take dA as: dA = dydz or dA = dzdy or dA = rdrd6

(3) Let E be the solid in 3D such that u,(x,z) <y < u,(x,z) and

the region D is the projection of S on the xy-plane.

(x,2)
Then f[f, fav = [f, (£1°7 fdy)da
= Take dA as: dA = dxdz or dA = dzdx or dA = rdrd®
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Example 15.7.4: Evaluate [ff, zdV, where E is the solid tetrahedron bounded by the four planes x =

0,y=0,z=0,andx+y+z=1.
Solution:
> First we must sketch the graph of the solid.
Its graph is given in the next figure:
The surfaces are:
z = 0 (lower surface) and z = 1 — x — y (upper surface)
dV = dzdA

> [lf, zav = [f, (J, " zdz) da
Now we must sketch the graph of the projection of the solid on the xy-plane:
= The projection region D is bounded by:
x=0y=0,y=1-—x

" dA=dydx:y=0-y=1—-xand0<x<1

dV = dzdydx

21—

-x- 1 (1- 1-x— 1 1- -y
= [If, zdv = [f, (fol * yzdz)dA=f0 Jo ¥ Jo § yzdzdydx=f0 N ¥ 27]]0 dy dx

1

=~y Jy T —x—y)?dydx =

T2

11 -3t
) —]]0 dx

270 -3

_ 1 )3 _1<1—x>4]]1 _1
_6f0(1 x) dx = —~— N
S Ganl) Jeludy 8 (Kly aneall LlEuY) ddlate 2aaT g - shanad) daail aviall sy (e 2 Y 4SSN 3Kl A ol Adaa e
W Al el ol dae (b aadius Al ) Glae jlsa dla ol sall SIS Cluas (software) (o swls el g o sé
rok Lo a3l sall a3 (e s alua DU LalauY) 3halin 5 2 shaudl dpaail sloa) ans 5o oLl Aalad) & g COLISEN (il
R ana e 52 e ()6 o U i (Surfaces) ¢ skl ci¥alae 23 (1)
[WEWEN pTLc Yo Y aall 038 ans i A (Projection Region) Llany) dghaie Y alxa (jara a s A iall Y el @
Al dakaiall (&5 A1 130 Wl ((3) 3 shaall Jaid dalia da g pal) diaiall ClS 1) (VA bl pial
B)blany!) ddhia AYaaa ) adalél) Yalas Caniaig (1 35kl & ) 7 ghasll adalss Jany o838
(Rl Aakaiall aa Jia3 Y LY & slanal) adald (e A3l Aobaall (s S YA ey

Now we resolve Example 15.7.4 using another algorithm: Recall that Example 15.7.4 says that:




Evaluate [ff, zdV, where E is the solid tetrahedron bounded by the four planes x = 0,
y=0,z=0,andx+y+z=1.

> Surfaces:z=0andz=1—-x—y=>dV =dzdA
> Projection Region D: bounded by x = 0, y = 0 (not closed)

= We must add the curve of intersection of the surfaces to region D

l-x—-y=0ey=1—x

* Projection Region D isboundedby: x =0,y =0,y =1—x dA = dydx
dV = dzdydx

" dA=dydx:y=0->y=1—xand0<x<1

dalaiall b jloa) adads 330 e ) ¢y es JsY) JelSll 2 gon 8 eV aall 8 mdandl g Y1 aal) b mhad) ayaa]
ny’ Mgﬂ\j@ﬁ“A;.\\‘:QC.L“J\O}S;\)&..A‘ZM@AMM\&JJM&L@;&Q(OIO) S\SAQSﬂjQ
eV aall b mhaull o< Sl
z=0at(x,y)=(00) = 2z=0 % z = 0 (lower surface)
z=1—-x—-yat(x,y)=(00)=>z=1 RS z =1 — x — y (upper surface)

= fﬂE fav = ffD (fol_x_yZdZ) dA = fol fol_x fol_x_yz dzdydx = -

Example 15.7.5: Find [ff, Vx%+2z2dV, where E is the region bounded by the paraboloid

y = x2 + z? and the plane y = 4.
Solution:

> Surfaces:y = x? +z2andy =4 = dV = dydA
» Projection Region D:
bounded by (there are no curves). So, we must add the
curve of intersection of surfaces:
» x2+z2=4
* The Projection Region D is enclosed by: x% + z? = 4
= The graph of the projection region D is given:
= The Projection Region D is:
r=0->r=2and0<6 <2n=dA=rdrdf

S oSy P Adkaiall & Hlia) ddads 330 0 Y) JalSll a8 e aall b mlasdl g oY) aad) 8 sl aaail
058 STl y Gl 535 S ol b mhandl )6 jral 4l y G (36 el ililes 8 Lgaa 523 43 (0,0)
Sle) aall b xladll

y=x%+z%at(x,z) =(0,0) = y=0 % vy =x%+ z?% (lower surface)

y=4at(x,z) =(00)>y=4 = % vy = 4 (upper surface)

Wy fav =[f, (o, Va2 +22dy)da=[;" [7 [Lrdyrdrdo = [J" [} r*(4—r?)drdo

15

_ 128w
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Volumes 15.7.6: Let E be the solid in 3D such that u;(x,y) < z < u,(x,y) and the region D is the

projection of S on the xy-plane.

(1) The volume of the solid E can expressed as a triple integral as:
uz(x,y)
v~ [[rar=[[( | 1as)aa
E D uqi(x,y)

(2) The volume of the solid E can expressed as a duble integral as:

v = [ @ale) -y as

Example 15.7.7:

(1) Use triple integral to find the volume of the solid enclosed by the parabolic cylinder y = z? and

the planes y = x,z = 2 — x.

(2) Use double integral to find the volume of the solid enclosed by the parabolic cylinder
y =z?andthe planesy = x,z =0,z =2 — x.
Solution:
1)
> Surfaces: y = z%,y = x > dV = dydA

> Projection Region D: z = 2 — x (not a closed region)

= The curve of intersection of surfaces: z? = x

* The Projection Region D isboundedby: z = 2 — x,z%2 = x
e Curves:ix =2—zx=z%?and??< z <??. Sowe must find the intersections
of curves:
72=2—-722722472-2=0=22+2)z-1)=0=2>z=-21
o dA=dxdzwithx=2—-2zx=zand-2<z<1
» Lower and upper surfaces:

{y =z%at(x,2) =(2,0)=> y= 0} _ {y = z? (lower surface)}
y=xat(x,z)=2,0)=> y=2 y = x (upper surface)
x 1 2-z x 1 2-z
V=fff1dV=ff fldy dA = f f fldydxdz= f f (x —z®)dxdz = -+
E D \z? -2 z2 z2 -2 z2
1 2-z

(2)V=ff(x—zz)dA=ff (x — z%)dx dz = -

-2 z2




Example 15.7.8:
(1) Use triple integral to find the volume of the tetrahedron T enclosed by the planes

x+2y+z=2,x=2y,x=0,z=0.
(2) Use triple integral to find the volume of the tetrahedron T enclosed by the planes
x+2y+z=2,x=2y,x=0,z=0.
Solution:
@)
» Surfaces: z=2—-x—2y,z=0=dV =dzdA
» Projection Region D: x = 2y, x = 0 (not a close region). So, we must add the intersection of
surfaces:
= |Intersection of surfaces: 2 —x -2y =0=>x =2 — 2y
= The Projection Region is enclosed by: x = 2y,x = 0,x =2 — 2y
= The graph of the region D is given in the next figure:

dA=dydx=y=>-y="Zand0<x<77?

So, we must find the intersection of curves:

Z_Tx:x=2—x=>2x=2=>x=1

e Intersection of curves: g =
e di=dydx=>y=-y="Tand0<x<1

» Lower and upper surfaces:

{Z =2—x—2yat(x,y) =(00)=> z= 2} N {Z = 0 (lower surface) }
z=0at(x,y) =(0,00=> z=0 z = 2 — x — 2y (upper surface)

1 Z—Tx 2—x-2y
Volumezf f f ldzdydx = -
0 3 0

2—Xx

(2) By Part (1) we have Volume = fol Je? 2 —x—2y)dydx =
2

Example 15.7.9:
(1) Use triple integral to find the volume of the solid enclosed by the parabolic cylinder x = y? and

the planes x = z,z =0,x = 1.
(2) Use double integral to find the volume of the solid enclosed by the parabolic cylinder x = y2 and

theplanes x = z,z = 0,x = 1.




Solution:
> Surfaces: z=x,z=0=>dV = dzdA

> Projection Region D: x = y?, x = 1 (closed region see the figure)

» Intersection of curves: y?=1=>y=—-1lory =1

» dA=dxdy=>x=y?—>x=1land-1<y<1

% Lower and upper surfaces:

{Z =xat(x,z) =(1,0)=> z= 1} - {z = 0 (lower surface)}
z=0at(x,z)=(1,0> z=0 z = x (upper surface)

271
(1) Volume = [[f, 14V = [, [}, [ 1dzdxdy = [2, [.(x = 0)dxdy = [2, 5]  dy
1l _ 4 _ 4
=, -yHdy =
(2) VOlume = ffD (x — O)dA = f_ll f;z(x — 0) dx dy — ... = g

Example 15.7.10: Compute fffE —12dV,where E = {(x,y,2z):x*> + y> + z> < 9,z > 0}
Solution: [ff,, —12dV = —12 [ff. 1dV = —12 x Volume of E (observe that E is a hemisphere)

4
57’[(3)3

Volume of the sphere
2

=-12X =—-12 X = —216m

2
Example 15.7.11: Let I = [ [ [ f(x,y,2) dzdy dx /

(¢D)] Express the iterated integral I as a triple integral and sketch the solid.

2 Rewrite the iterated integral I in a different order, integrating first with respect to x, then z,
and then y.

3 Rewrite the iterated integral I in a different order, integrating first with respect to y, then x,
and then z.

Solution:
(1) First we give the equations of the boundary surfaces of the solid E. We can do this by one of two ways:
(a) by sketching the solid E
or
(b) by deleting the equations that results from surface or curve =09
intersections. s
We will use the second way to determine the surface E T
% Equations:z=0,z=y,y=0,y =x?&&x =0, x =1 x¥ A
Surfaces Curves el 5l mpians ol (Saa i 2 1
peia sl (ALY pany o) (Ran
= |ntersection of surfaces: z = 0,z = y = y = 0 (no need for this equation)
* Intersection of curves: y = 0,y = x2 = x2 = 1 = x = +1 (no need for these equations)

*» The triple integral is: I = [ff. fdV, where E is the solid bounded by:

z=0,z=y,y=x%andx =1




surfaces curves for the Projection Region

(2) Integrating first with respect to x, then z, and theny = x =???,z =727, ??7?7<y <???

< From Part (1) we find that the solid E is boundedby: z = 0,z = y,y = x%,and x = 1
> Surfaces: x = \[yandx = 1 =dV = dxdzdy y
> Projection Region D: ty=1 /
= Curves: z = 0,z = y (not a closed region)
= Intersection of surfaces: [y = 1=y =1
= The Projectionregion D ishoundedby: z = 0,z =y,y = 1
= Thegraphof D given in the next figure:

z=0-z=yand0<y<1

» Lower and Upper Surfaces:

{x =,/yat(00)= x= 0} - {x = ,/y (lower surface)}

x=1at(0,0)=> x=1 x = 1 (upper surface)

1y
Izj j f(x,y,2z)dxdzdy
0 0

surfaces curves for the Projection Region

(3) Integrating first with respect to y, then x, andthenz =y =277, x =???, ??7?<z<?7?
< From Part (1) we find that the solid E is boundedby: z = 0,z =y,y = x%,and x = 1
> Surfaces:y = zandy = x? = dV = dydxdz
» Projection Region D:
= Curves:z = 0,x = 1 (not a closed region)
= Intersection of surfaces: z = x2 (add this eq. to the region D)
= The Projection region D is bounded by: z = 0,x = 1,z = x?
= Thegraph of D given in the next figure:
= The Projection region is with dA = dxdz which means that:
e Cunessx=+z-x=1land0<z<1
» Lower and Upper Surfaces:
y=zat(x,z)=(1,00> y=0 y = z (lower surface)
{y =x?at(xz)=(1,00> y=1 } {y = x2 (upper surface) }

2

1 x
sz ff(x,y,z)dydxdz
0 z
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Example 15.7.12: Rewrite the iterated integral f: ff foz_yf(x, y,z) dz dy dx ina different order,
2
integrating first with respect to x, then y, and then z.

Solution: [* fg} [F7 fdzdydx=f7 77 (2 fdxdydz.

Example 15.7.13: Express the iterated integral fol fol

integrating first with respect to z, then y, and then x.

- [, f dydzdx inadifferent order,

— 2 _ 22 .2
Solution: [} [ [ fdydzdx =[] [;7° [} fdzdydx.
Exercise 15.7.14:

@) Let [ ¥ [ fdydzdx.
@ Express the iterated integral I as a triple integral
(b) Rewrite the iterated integral I in a different order, integrating first with respect to z, then x,
and then y.

(2) Express the iterated integral fol f\}i fol_y f dz dy dx in different order:

(a) First integrate with respect to x, then y, then z
(b) First integrate with respect to y, then x, then z

(3) Find the volume of the solid E below the surface z=2x+y and above the region
R =1[0,1] x [0,2].

(4) Set up in cylindrical coordinates, the volume of the solid E
(whose graph is given on the right)

(5) Set up the integral in polar coordinates of the volume V of the solid that lies inside the cylinder x? +
y? = 2y, under the paraboloid z = x% + y?, and above xy-plane.
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15.8. Triple Integrals in Cylindrical Coordinates

Definition 15.8.1: Let P(x, y, z) be a point in rectangular (Cartesian) coordinates.

The cylindrical coordinates of P are: P(r, 6, z), where

rectangular = Cylindrical: (x,y,z) = (7,0, z)

> r=Jx2+y? & r2=x?+y?
tan‘l(z) & tand=2,0<6<2m
X X

VA

Cylindrical = rectangular: (r,6,z) = (x,y, z)

x=rcos@,y=rsinf, z=1z

How to Plot a point P(r, 8, z) in Cylindrical Coordinates?
y

*——1_:711_\\

N (1, 6,0)

Example 15.8.2: Plot the points with cylindrical coordinates (5,%,4),(2,2?”,—2) and find their

rectangular coordinates.
Solution:

(5:4)
6
The Rectangular coordinates are:
> (554)>r=50="z=4
6 6

b3 53
= x=rcos@=5005g=7

y=rsing =5sin- =~ y—rsm9—251n3—2(51n3)—2(2)—\/§

u zZ = 4 L] 7 = —2
The rectangular coordinates of the point

7 The rectangular coordinates of the point (2?" —2)
(5,5,4) are (5—3,5,4) _ _
6 2’2 are ( 1,3, 2)
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Example 15.8.3: Find the cylindrical coordinates of the points whose Cartesian (or rectangular)
coordinates are:4(3,—3,—2),B(-3,3,7),C(-2,-3,1),D(2,0,—1),
E(=2,0,1),F(0,2,—1),6(0,-2,3).

Solution:
» A(3,-3,-2):>x=3,y=-3,z=-2
(observe that the point (x,y) = (3, —3) in the 4" quadrant = 37” <6<2nm
=>r=/x2+y2=/9+9=118=3V2
tan 6 =%=>tan0 =_?3 =-1 andrecallthat%”s 0<2m=0= ZR—%:’B = %n
The cylindrical coordinates of the point A(3, —3,—2) are: (3\/2 %’T, —2)
B(-3,3,7):=>x=-3,y=3,z=7
observe that the point (x,y) = (=3,3) inthe 2" quadrant > =<8 <7
( P y q >
>r=,x2+y2=4/9+9 =18 =32
tan 6 =f=>tan9 =_% =-1 andrecallthatgs 0<m=>0-= n—%:@ =%n
The cylindrical coordinates of the point B(—3,—3,7) are: (3\/2%”, 7)
C(=2,-31):=>x=-2y=-3,z=1
(observe that the point (x,y) = (=2, —3) inthe 3 quadrant => 7 < 8 < 37”

$T=\/X2+y2=\/4+9=‘/ﬁ
3

3

tan 0 =%=>tan9 =_—2=§andrecallthatnS9 S?’?’T:H =m+tan~ ! (E)

The cylindrical coordinates of the point C(—2,—3,1) are: (\/ﬁ, m + tan~! G) , 1)

D(2,0,-1):=>x=2,y=0,z=-1
(observe that the point (x,y) = (2,0) on the positive x-axis = 6 = 0
S>r=\x2+y2=V4+0=2

The cylindrical coordinates of the point D(2,0,—1) are: (2,0,—1)
E(-2,01):=2x=-2,y=0,z=1
(observe that the point (x,y) = (—2,0) on the negative x-axis= 6 =«
>r=x2+y2=V4+0=2

The cylindrical coordinates of the point E(—2,0,1) are: (2,7, 1)
F(0,2,-1):=>x=0,y=2,z=-1
(observe that the point (x,y) = (0,2) on the positive y-axis = 6 = g
>r=x2+y2=/0+4=2

The cylindrical coordinates of the point F(0,2,—1) are: (2, g, —1)
G0,-23):=>x=0y=-2,z=3
(observe that the point (x,y) = (0, —2) on the negative y-axis = 6 = 37"
>r=x2+y2=/0+4=2

The cylindrical coordinates of the point ¢ (0, —2,3) are: (2, 37”, 3)
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Example 15.8.4: Describe and sketch the curve whose equation in cylindrical coordinates is give by:
1) z=r (2) z=—r
(3) z=vV9 —1r?
Solution:

Z=1r=2z=.x%2+y? z=—-r>z=—x?4+y?2 |z=V9—-1r?2=2z2=,/9—-(x?+y?)
- (this means z > 0)

=2z2=9—(x%+y?

>x24+y2+22=9,2=20

The surface is the hemisphere

centered at (0,0,0) of radius 3

The surface is a cone
The surface is a cone

Example 15.8.5: Write the equation z = x2? — y2 in cylindrical coordinates

Solution: z = x%? —y2 = z = (rcos 0)? — (rsin 8)? = z = r?(cos? 6 — sin? 9)
= z =12 cos(26)
Example 15.8.6: Identify (give the name) of the surface whose equation is given in cylindrical
coordinates and find its equation in Cartesian coordinates:
()r=>5 (2 z=4—-1? (3)9:% (4)9:2?"
5)6=0 6) 6=m 7 6=7 (8)9:37”
Solution:

(1) r =5=712 = 25> x?+y? = 25 (the surface is a cylider)

Qz=4-122z2=4—(x*>+y?) =>4 —z=x?+y? (the surface is a paraboloid)

4

(3) 6 = % (in the 1% quadrant = x > 0,y > 0) = tan() = tan (") = % =1

=y =xWwithx >0) =y = x,x = 0 iaa half plane.
4) 6 = 2?”(in the 2" quadrant = x < 0,y > 0) = tan(#) = tan (2?") :>%= —/3
=y = —/3x with x < 0 = y = —/3x,x < 0 ia a half plane.
5)8=0=>y=0andx=>0=y=0,x >0 is the half xz-plane
6y =m=>y=0andx < 0=y =0.x <0 is the half xz-plane
@) 6=g:>x=0andy20:>x=0.y20isthehalfyz-plane

(8) 6=37”=>x=0andySO:>x=0.ySOisthehalfyz-plane
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I Evaluating Triple Integrals with Cylindrical Coordinates
Suppose that £ 1s a type 1 region whose projection D onto the xy-plane 1s conveniently
described in polar coordinates (see Figure 6). In particular, suppose that f is continuous
and

E={xy.2 | (2 €D, wlx.y) =z < uxx. )}

where D is given in polar coordinates by

D={0r0|a=0=pg h) <r=hi(0)}

It is known that

r=h,(6) o

~

J;!"[ f(x,y,z)dV = ‘[; " [JE:::'J Gy, 2) dz:| »

= The triple integral can written in cylindrical coordinates as:

X, v,z)dV = i

JH f( » ¥ ) Ja Jn(8) Ju,(r cos 8, r sin 6)
E

Example 15.8.7: Set up (do not evaluate) in cylindrical coordinates the volume of the solid bounded

by the plane z = 1 and the paraboloid z = 5 — x% — y2.

"B "J’?;[{}} "'alr:[r cos f, r sin #)

f(rcosO,rsinb, z) rdzdrdb

Solution:
> Surfaces:z=1,z=5—x2—-y?2=dV =dzdA
» Projection Region D:

* Intersection of surfaces: 5 — x? — y? =

= The Projection Region is the region inside x> + y2 = 4
" dA=rdrdd>r=0-r=2and0<6<2m
» Lower and Upper Surfaces:
z = 1 (lower surface) and z = 5 — x2 — y? (upper surface) (why?)

Volume = [ fls_xz_yz ldzdA = [[ (4— (x*+y?))dA= fozn f02 fls_rz 1dzrdrdf

= fozn foz fls_rz rdzdrd6
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Example 15.8.8: Set up (do not evaluate) as a triple integral the volume of the solid lies under the cone

z = /x% + y2 and above the xy-plane and inside the cylinder x? + y? = —6y.
Solution: The solid is bounded by z = \/x2 + y2,z = 0,x2 + y? = —6x.

> Surfaces:z = \/x2+y2,z=0

Al pai (5
> Projection Region D: inside x? + y? = —6y (closed region)

= Sketchtheregion D: x? + y2 = -6y > x2+y?> + 6y =0
e dls)
>x2+y2+6y+9= 9 = x24+(y+3)2=9
e ) el JUeS) s

» Lower and Upper Surfaces:
z = 0 (lower surface) and z = \/x? + y? (upper surface) (why?)

0 —6sinf ,r
Volume=ﬂj1dV=ﬂ f 1dsz=J J J rdzdrdf
B D 0 - Y0 0

Example 15.8.9: Express the triple integral I = [ff. (x +y + z)dV in cylindrical coordinates, where E
is the solid in the first octant that lies under the paraboloid z = 48 — 3x2 — 3y?
Solution: Observe that the solid is in the first octant which means that: x >0,y >0,z >0

= the solid is bounded by: z = 48 — 3x2 — 3y%,x = 0,y = 0,z = 0 in the first octant
dV =dzdA
> Surfaces: z =48 — 3x2 —3y?%,z=0>dV = dzdA
> Projection Region D: x = 0,y = 0 in the 1% quadrant (not closed)
= Intersection of surfaces: 48 — 3x? —3y%2 =0
= x? + y? = 16 (add this equation to the region)
= The Projection Region is bounded by:
x =0,y =0,x2+ y? = 16 in the 1% quadrant
" dA=rdrdd=>0<r<2and0<6<-
» Lower and Upper Surfaces:

z = 0 (lower surface) and z = 48 — 3x? — 3y? (upper surface) (why?)
48-3x2-3y?2
szf (x+y+z)dV=fff (x+y+2z)dzdA
0
E D

T _a,.2
= foz f04 f048 °r (rcosO + rsinb + z)rdzdrd6

T _9.2
= foz f04 f048 " (r2cosh + r2sind + rz)dzdrdd
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Example 15.8.10: Set up as triple integral the volume of the solid inside the sphere x2 + y2 + z2 = 4 and

outside the cylinder x2 + y? = 1.
Solution:

> Surfaces: z = —\/4— (x2 + y2),z=4— (x?+y?) = dV = dzdA

sl ad (3a
Projection Region D: outside x2 + y? = 1 (not closed region)

= Intersection of surfaces: —/4 — (x2 + y2) = /4 — (x2 + y2)
= 24— (x2+y2)=0 = x?+y*=4

» The Projection Region D is between x? + y2 = 1 and x2 + y?

" dA=rdrdd=>r=1->r=2and0<6<2n

Lower and Upper Surfaces: //’\\
z = —J4— (x% + y?) (lower surface) k\ /J
and z = \/4 — (x2 + y2) (upper surface) (why?)

Volume = [ff, 1dv = [f, [\ O vdzda= [ {21 v dzdr a6

4— (x2+y

Example 15.8.11: Use triple integrals to find the volume of the solid that lies within the cylinder
x? + y? = 1, below the plane z = 1 and above the paraboloid z = 1 — x? — y2.

Solution:

dV =dzdA
> Surfaces:z=1,z=1—-x2—-y? /\
> Projection Region D: within x? + y2 =1 :
" dA=rdrdd=>r=0->r=1and0<6 <2rm \J

» Lower and Upper Surfaces:
z =1 —x?— y? (lower surface) and z = 1 (upper surface) (why?)

1 2 1 1
V= [ff, 1av = [, ' . .1dzda= [ 7 [ 1dardras
= [ {1 - A —rD)rdrdo

2 1 s
=Jy Jyrdrdo ==
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Example 15.8.12: Express each of the following integrals in cylidrical coordinates and then evaluate it:
2

(D sz f f (x%2 + y?)dzdy dx
=2 4—x2 [x2+y?

(2) II= j) j) f (x? +y?dzdydx

Solution:
1)
» Projection Region: y = —V4 —x? - y = V4 — x?

and—-2<x<2

" dA=1rdrd0=>r=0->r=2and0<0<2n

2 2 2 2
s 1=, fmfm(x +y*)dzdydx = |, nf J.r*dzrdrdd —f”f J r3dzdrdg
» To evaluate the iterated triple integrals:
1= [ [0 [Fr3dzdrde = [" [Fr32 - r)drdo = [ [(2r® — r*)drd0 = -

)
» Projection Region: y = —vV4 —x%2,y=0and-2<x <0
" dA=rdrdd=>r=20 —>r=2and7r£9£37n

0 0 2
W= J i fw(xz + y2)dz dydx
3T
= [ [ [P ridzrdrde = [ [} [ ridzdrdo

> To evaluate the iterated triple integrals:

3w 31 31
W= [z [2[*r3dzdrdd = [? [*r3(2 —r)drd6 = [ 7 [2(2r® —r*)drdf = -




15.9. Triple Integrals in Spherical Coordinates

Definition 15.9.1: Let P(x,y,z) be a point in rectangular (Cartesian) coordinates. The spherical
coordinates of P are: P(p, 8, ¢):
% rectangular = spherical: (x,y,z) = (p, 6, ¢), where

p=x?+y?+z2 © r2=x%+y?

6=tan‘1(¥) S tan0=¥,0s0<27r

z
cosgo=;,0§(p§n

®,

% spherical = rectangular: (p, 8, ¢) = (x,y,2)
X = psing cosf
y = psin¢sinf
Z=pCcosq

% spherical = Cylindrical: (p, 0, ¢) = (1,0, 2)
r=psing
6=20
Z=pCcos@

% Cylindrical = spherical : (r,6,z) = (p, 0, )

p=+1r2+22 © r?=x?+y?
6=20

z
cosQ = —

p

How to Plot a point P(r, 8, z) in Spherical Coordinates?

Open the following website: https://dynref.engr.illinois.edu/rvs.html
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Example 15.9.2: The point A (2%%) is given in spherical coordinates.
(1) Plot the point showing its spherical coordinates.
(2) Find the rectangular and cylindrical coordinates of the point A.
- . m _ _ E _ E
Solution: A(Z'Z'E) =>p=20= 2P =3
1)

(2, w/4, 7/3)

(2)

» Rectangular coordinates:
X =psinpcosd = x = 25in§cos%= 2 X
y=psingsing >y = 25i1’1§$i1’1%= 2 X
1
=1
2
. V3 V3
= The_Re_ctangular_coordmates are (ﬁ, 7 1)
» The cylidrical coordiates:

T
Z = pCcosQ =>z=2cos§=2><

r=psin<p=>r=Zsin§=2><— V3

f=0=0==
4

— — 7T—
Z—pCOS(p=>Z—2cos§—2><

= The cylidrical coordiates are: \/5,%,

Example 15.9.3: The point A(x/?,z?”,—l) is given in cylindrical coordinates. Find its spherical
coordinates.
Solution:

A(\/§,2?”,—1):>r=\/§,9=2?",z=—1
=V T Z sp=y3Ti=2

0=0=0==
5

cos<p=§:>cos<p=_71. But0<gp <m=¢inthe2¥quadrant > o = — =

The spherical coordinates are (22?”2?”)
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Example 15.9.4: The point A(0,2,—2v3) is given in rectangular coordinates. Find its spherical
coordinates.

Solution:

A(0,2,-2V3) > x=0,y=2,z=-2V3
p=x2+y2+22=p=/0+4+12=/16 =4
tan 6 = % =tanf = % undefined, so to find @ plot the point (x,y) = (0,2) in the xy-plane:
=60 = g

_2\/§
4

=cosQ = — ? = ¢ in the 2" quadrant so:

cosga=%with0§go§n:cos<p=

B 7'[_57'[
eI T

The spherical coordinates are: (4%5?”)

Example 15.9.5: Identify and sketch the surface whose eq is given in spherical coordinates by:
1) p=3 (2) p=4cosgp (3) p=cscpcote
(4) p=6csco (5) p=6sin@sind (6) p=~6secep

Solution:

We want to convert the equations from spherical coordinates to rectangular coordinates:

(1) p=3=>p?=9>x%+vy2+2z?=9= Thesurface p = 3 is the sphere centered at the origin
of radius 3.

(2) p = 4 cos ¢ (multiplying by p) = p? = 4pcos@ = x%2 +y2 + z2 =4z
Sx24+y?2+22—-4z=0>x>+y?+2z°—4z+4=4>x*+y?>+(z-2)> =4
= The surface p = 4 cos ¢ is the sphere centered at (0,0,2) of radius 2

1 cos
X 4

(B) p=cscpcotgp =>p = = psin? ¢ = cos @ (multiply by p)

sin ¢ sin ¢
= p?sin?@p =pcosgp = (psing)> =pcosp=>r’=z=>z=x%+y?

= The surface p = csc ¢ cot @ is a paraboloid

1

: — — 2 2 2 _
Sm(p:>psm<p—6:>r—6:>r =36=>x“+y“ =36

4 p=6cscp=>p=6Xx

The surface p = 6 csc ¢ is the cylinder x? + y? = 36
(5) p = 65sin @ sin @ (multiply by p) = p? = 6psingsind = x? + y2 + z2 = 6y
S>x2+y2—6y+2z2=0>x+y2—-6y+9+2z2=9=2x2+(y—3)2+22=9

= The surface p = 6 sin ¢ sin 8 is the sphere centered at (0,3,0) of radius 3

6) p=6secp =>p =6X ! >pcos=6=2>z=6

cos ¢

The surface p = 6 csc g isthe plane z = 6
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Example 15.9.6: Identify and sketch the curve or the surface whose equation is given in spherical
coordinates and find its equation in rectangular coordinates:

1) =0 Qe=n @) ¢=7 @ =7 6 ¢ ="

® == Me==  @o=% @ e==

Solution:
(1) Geometrically, ¢ = 0 is the positive z-axis=> ¢ =0isz=>0,x =0,y =0
(2) Geometrically, ¢ = m is the negative z-axis=> @ =0isz2<0,x =0,y =0
(3) Geometrically, ¢ = ~is the xy-plane = ¢ = ~isz = 0
4) o =%. Sincez=pcosp =>z= pcos%:z =/x?+y%+2z2 X%(Which means z > 0)
= V2z=\x2+y?+ 22222 = x>+ y* + 22 = 2% = x* + y?
>z=1/x>+y2Butz=>0=>2z=x%2+y2

L= %is the cone z = \/x? + y?

5) q0=%n.8incez=pcosgo :zzpcos%ﬂ
=>z=x2+y2+22x _le (which means z < 0)
> —V2z=x2+y2+22=2722=x2+y? + 22 = 2% = x? + y?
>z=1x?+y2Butz<0=>2z=—/x2+ y?
L= %nis the cone z = —\/x?% + y?
Vi - s
(6) <p=g.Slncez=pcosq) =z =pcos—
>z=./x2+y%2+ 22X ? (which means z > 0)
= 2z=V3/x2 +y2 + 22 = 422 = 3(x% + y* + z%) = 2% = 3(x + y?)
=z =+4./3(x2+y2).Butz > 0=z =+/3/x2 + y2
L= %is the cone z = /3,/x2 + y?2
5T A 51
@) ¢=?.Slnce2=pc05(p =z =pcos—
>z=./x2+y%+2? X_T@ (which means z < 0)
= 2z2=—V3/x2+y2+ 222422 =3(x% +y? + z%) 2 22 = 3(x? + y?)
=z =+4/3(x2+y2).Butz < 0=z =—/3,/x2 + y2
L= gis the cone z = —/3,/x2 + y?2
8) ¢ ==.Sincez=pcosp =z=pcos—
3 3
=>z=x>+y%?+22 x%(which means z > 0)
> Zz=\/m:>422:x2+yz+22:>22:"_Z?’2
:>z:+/#.ButzZO::m:—vxzﬂl2

- V3
V3
9 (pzz?n. Since z = pcos @ :>Z=pcos%”

.
) =§15the cone z =
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=>z2=Jx2+y? + 22 x%l(which means z < 0)
2 2
= —22=\[x?+y2+ 222422 =x? +y  + 22 = 72 = T2

2_+_2 2+2
:z:i’u.ButZSO:z=—x Y
3 V3

V3

21 .
R0 =?1stheconez= -

Remark 15.9.7:
(1) Forc>0:p=c © x?+y?+ z2 = ¢? (The sphere centered at the origin of radius c)

(2) p=0 & x =0,y =0,z = 0 (The positive z-axis including the origin)
(B) p=m © x =0,y =0,z < 0 (The negative z-axis including the origin)
(4) ¢ = % & z = 0 (The xy-plane)

B)0<c< % = ¢ = c is a half-cone above the xy-plane

(6) 5 < ¢ <m= ¢ = cisahalf-cone below the xy-plane

0<c<a/2

FIGURE 2 p=c, asphere FIGURE 3 f= ¢, a half-plane FIGURE 4 ¢ = ¢, a half-cone

Example 15.9.8: Express each of the following equations in spherical coordinates:

(1) z=-3 (2) x2 +y%+2z%2=—6x () z=-— /_xzzyz
(4) 22 =x*+y? (5) z=/x?+2y?

Solution:
3
1D z=-3=pcosp=—-3=>p= —Cos(p:>p = —3secq

Q) x2+y*+z2=—-6x=>x2+y*+ 22+ 6x=0=p?+6psingcosfh = 0 dividing by p
=>p+6sinpcosfd =0=p=—6sinpcosb

(3)z=—/—x2;y2:>¢=2?n

2 _ .2 2 _ [22 2 — _ [x2 2 _r _ 3
@) ze=x*+y*=>z=Jx?>+y?orz=—/x*+y =S@=_0rg ==
B)z=x2+2y?=>z=\x>+y?+y2=>z=,r2+y?

= pCcosQ =\/pzsin2<p+pzsin2<psin20:>pcos<p = psinp V1 +sin? 6
= cos@ =sin@V1+sin?20 = cotp =+V1+sin? 0
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Rule 15.9.9: Let E be the solid given in spherical coordinates :
E={(p,0,9):9:(0,0) <p < g,(6,0),hi(9) <0 < hy(9), 01 < ¢ < @3}

|

Then the triple integral [ff, faV
can be expressed in spherical coordinates as:
y

@2 rha(@) 9200,9) x z av
jﬂf(x,y,z)dv=f f f flpsingpcosO,psingpsinf,pcosg |p?singdpddde
E P1

hi(@) “g91(0,9)

Observe that dV = p? sin ¢ dpd@de

Example 15.9.10:
(1) Using spherical coordinates, find the volume of the solid that lies above the cone
z = \/x% + y? and inside the sphere x? + y? + z2 = z.
(2) Using spherical coordinates, find the volume of the solid bounded below by the cone
z = \/x% + y? and above by the sphere x? +y%2 +z2 =z

Solution:
(1) dV = p?sin @ dpdBde
Step 1: We have to sketch the solid:

» z =./x?4+ y?isacone above the xy-plane .
> x2+y2+22:Z:>x2+y2+Zz_Z:0 It().().l}
:>x2+y2+zz—z+i=i

N———_—
e JuS|

2
:>x2+y2+<z—%) =i

It is a sphere centered at (0,0, %) of radius%

Step 2: We have to write the surfaces in spherical coordinates:

> Z=w/x2+y2<:><p:%
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> x4+ y2+2z2=2z>p>=pcosgp =>p=cosg
Step 3: Based on the graph in Steps 1 and 2: we must determine the range of p, 6, and ¢:

p varies from 0 to cos ¢ ¢ varies from O to /4 6 varies from 0 to 277.
while ¢ and @ arec onstant. while @ is constant.

0<p<cosy OSqoS% 0<6<2rm

% 2T COSQ 1 % 2m
:Vzﬂjhivsz j 1pzsin<pdpd9d<p=—j j cos3 @ sin @ dOdg
0o Jo Yo 3Jo Jo

B

2r % )
=—| cos®@sinpde
3 Jo

T

1
27T (% du 2T (/2 T
— 3 _.I-ﬁuSduz
1

=— | u’sing = —

3 Jy —singp 3 8

T

(2) Part (2) is the same as part (1). So, Volume = P

Exercise 15.9.11:
(1) Using spherical coordinates, find the volume of the solid that lies above the cone
z = ,/x% + y? and inside the sphere x? + y? + z? = 2z,
(2) Using spherical coordinates, find the volume of the solid bounded below by the cone
z = /x? + y? and above by the sphere x? + y? + z2 = 2z.
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Example 15.9.12: Evaluate [ = [ff, e*+v2+2)™” gy where
(1) Bistheunitball B = {(x,y,2): x?> + y2 + z? < 1}
(2) B isthe solid between x2 + y2 + z% = 1and x? + y% +z% =
(3) B is the wedge between the two spheres x2 + y2 + z% = 1, x? + y? + z% = 4, and above the
VxZ+y?
V3

cone z =

Solution:
(1) Thesolidisaball= dV = p? sin ¢ dpd@d¢
Step 1: We have to sketch the solid:
x? + y? + z? < 1 Itis a sphere centered
at (0,0,0) of radius 1

Step 2: We have to write the surfaces in spherical coordinates:
x2+y2+z2=1=3p?’=4=3p=1
Step 3: Based on the graph in Steps 1 and 2: we must determine the range of p, 6, and ¢:

0<p<1i 0<¢p<m 0<6<?2rm

T p2m 1 3/2 T p21w 1 s
= 1=~f f f e(p?) p2gn¢dpd9d¢==j J. f e p*sin g dpdfdgp
0 0 0 0 0 0

(s [0)([ 70

([ ) )

—)=5 -1

e—1)_47r
3

= (—cos@]F)(2m — 0) (%e’ﬂ]z) =2(2m) (
(2) The solid is a part of a sphere = dV = p? sin ¢ dpdfdg
Step 1: We have to sketch the solid:
> x2+y?+z2=1
= It is a sphere centered at (0,0,0) of radius 1
> x2+y?+z2=4
= It is a sphere centered at (0,0,0) of radius 2

Step 2: We have to write the surfaces in spherical coordinates:

> x2+y?+z2=1=p?2=1=p=1
> x2+y?4+z2=4=p2=4=5p=2

Step 3: Based on the graph in Steps 1 and 2: we must determine the range of p, 6, and ¢:

1<p<2 0<¢p<m 0<6<2n

™o r2m o2 27\3/2 T 2 2 .
= I:f f f e(P) pZSin(pdded(p:f f f eP pZSinq)dpde(p:.-.
o Jo Y1 o Jo N
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(3) The solid is a part of a sphere = dV = p? sin ¢ dpdfde
Step 1: We have to sketch the solid:
> x*+y*+zi=1
= It is a sphere centered at (0,0,0) of radius 1
> x*+y*+2z2=4
= It is a sphere centered at (0,0,0) of radius 2

> z= ij/;yz is a cone (below the xy-plane)

Step 2: We have to write the surfaces in spherical coordinates:

> x’+y?+z2=1=2p?2=1=2p=1
> x’+y?4+z2=4>p?2=4=p=2
>Z=1/x2+yz 03

A o9 =3

Step 3: Based on the graph in Steps 1 and 2: we must determine the range of p, 6, and ¢:

1<p<2 0<p<? 0<6<2m

n / L
=1=[3 fozn flz e(p?)’ sz sin ¢ dpdfde = [? fozn flz e”’p? sin @ dpdfdg = ---

Example 15.9.13: Using spherical coordinates, find the volume of the solid bounded below by
z = —/x% + y2%and above by x? + y2 + z2 = 4
Solution: dV = p? sin ¢ dpdfd¢e
Step 1: We have to sketch the solid:
» z=—/x?+ y?isacone (below the xy-plane)
> x2+y?+z2=4
= It is a sphere centered at (0,0,0) of radius 2
Step 2: We have to write the surfaces in spherical coordinates:

> Z=—\/x2+y2<:><p:%”

> x24+y?2+z2=4>p?=4>p=2

Step 3: Based on the graph in Steps 1 and 2: we must determine the range of p, 6, and ¢:

0<p<?2 0<gp<= 0<6<2m

3T
T 2T 2
= szffldef f fpzsin<pdpd0d<p
B 0 0 0
(14 .y )<j¢ﬂd9> ‘f%?_ . 16n<11 1)
=| [ p*dp singdy | =—(—=-
0 0 0 3 \/E
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Example 15.9.14: Using spherical coordinates, express the volume of the solid that lies inside the sphere
x? +y? + z? = 4, above the xy-plane and below the cone z = ,/3x2 + 3y?2.
Solution: dV = p? sin ¢ dpdfd¢
Step 1: We have to sketch the solid:
> x? 4 y? + z% = 4 is a sphere centered at the sorigin of radius 2

> z =./3x2%+ 3y?is acone (above the xy-plane)

Step 2: We have to write the surfaces in spherical coordinates:

> x2+y?+z2=4>p2=4=p=2
— 2 2 —_
» z=,3x24+3y S Q=
Step 3: Based on the graph in Steps 1 and 2: we must determine the range of p, ¢, and 6:

0<p=<2 << 0<6<2m

2m T 2
= V=jﬂldV=J J jpzsingodpdgode
B o Jg o

Example 15.9.15: Set up (do not evaluate) in spherical coordinates the volume of the solid in the first
octant enclosed by z = 2 and z = \/x2 + y2

Solution: dV = p? sin ¢ dpdfd¢e
Step 1: We have to sketch the solid:
» z = 2 s aplane parallel to the xy-plane that passes
through the point (0,0,2)

» z =,/x?+ y?isacone (above the xy-plane)

Step 2: We have to write the surfaces in spherical coordinates:
2
» z=2>pcosp=2= p_cos(p::»p—Zsecgo
— 2 2 =T
> zZ=,/x*+Yy S =-

Step 3: Based on the graph in Steps 1 and 2: we must determine the range of p, ¢, and 6:

0<p<2secq 0<¢p< 0<6<~

g % 2seco
= szffldef f f p?sin @ dpdedb
B 0 0 0




425>
Jumd) Ll o Lad canall alayy (spherical coordinates) ¢s s SU Fhay) alaill aladiu) Gl JUall asg o1 )
.(cylindrical coordinates) = shu¥l Jlaay) aUaill 8 Jewd) 5 cans) pUaill ;8 LAY Sanall Ay e
s () skl AUl Cava aaal) (i 4le

W % 2 rr
v~ [[[rar=[[ [ asaa=[*[ [ rasarao
B D Yo 0“0 Y0

— . _ > > _ x2+y2 ..
Example 15.9.16: Find the volume of the solid between z = —/3x2 + 3y2,z = /—3 and inside the
sphere x2 + y? + z% = 4.

Solution: dV = p? sin ¢ dpdOd¢
Step 1: We have to sketch the solid:

> z=—/3x2+ 3y?is acone (below the xy-plane)

> z= \/ﬁTyz is a cone (above the xy-plane)

> x2+y?+ z? = 4 is asphere centered at the
(0,0,0) of radius 2

Step 2: We have to write the surfaces in spherical coordinates:

> z=—,/3x2+3y2=>g0=5?”

x2+y?2 T
> 2= e e =g

> x2+y?+z2=4p=2

Step 3: Based on the graph in Steps 1 and 2: we must determine the range of p, ¢, and 6:

5
6

51
2T T 2
= szﬂ-ldV:f f fp%in<pdpd<pd9=--~
J o JZ o

0<p<=s?2 << 0<60<2m
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Example 15.9.17: Set up the volume in spherical coordinates of each of the following solids:
Q) E ={(xy2):x*+y?+22<4,z<0}
2 E,={(xy,2):x*+y*+2z2<4,x >0}
(B) E;={(x,y,2):x*+y*+2z2<4,x <0}
(4) E,={(x,y,2):x2 +y?+ 2?2 <4,y >0}
(B) Es={(x,y,2):x> +y?+2? <4,y <0}
Solution:
(1) dV = p?sin @ dpdBde
Step 1: We have to sketch the solid:
> x2+4+vy?%+ 22 =4,z <0 isthe upper hemisphere
centered at the (0,0,0) of radius 2

Step 2: We have to write the surfaces in spherical coordinates:
> x’+y?+z2=4p=2
Step 3: Based on the graph in Steps 1 and 2: we must determine the range of p, ¢, and 6:

0<p<s2 <¢p<m 0<60<2m

2w T 2
= V=jﬂldV=J J Jpzsingodpdgod9=---
o o JZ Jo

(2) dV = p? sin @ dpdBde
Step 1: We have to sketch the solid:
» x%+4y%+ 2?2 =4,x > 0is the front hemisphere
centered at the (0,0,0) of radius 2

Step 2: We have to write the surfaces in spherical coordinates:
> x2+y?+z2=4p=2

Step 3: Based on the graph in Steps 1 and 2: we must determine the range of p, ¢, and 6:

0<p<2 0<gp<m ~2<0<

% T 2
= szffldefnf fpzsingodpd(pdezm
A -2Jo o

(3) dV = p? sin ¢ dpdOd¢
Step 1: We have to sketch the solid:
> x%+4y?+42z% =4,x < 0is the behind hemisphere
centered at the (0,0,0) of radius 2

Step 2: We have to write the surfaces in spherical coordinates:

> x24+y?+z2=4p=2
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Step 3: Based on the graph in Steps 1 and 2: we must determine the range of p, ¢, and 6:

T 3T
0<p=s2 0<ep<m 539S7

3n
T A 2
> V=ﬂ[1dV=f f fpzsin(pdpdgod0=---
o Z Jo Jo

(4) dV = p?sin @ dpdfBde
Step 1: We have to sketch the solid:
> x2+4y?+ 2% =4,y > 0is the right hemisphere
centered at the (0,0,0) of radius 2

Step 2: We have to write the equation in spherical coordinates:
> x’+y?+z2=4p=2
Step 3: Based on the graph in Steps 1 and 2: we must determine the range of p, ¢, and 6:

0<p<s2 0<¢p<m 0<6<m

s s 2
= V=jﬂldV=J J Jpzsingodpdgod9=---
e 0o Jo Jo

(5) dV = p? sin @ dpdBde
Step 1: We have to sketch the solid:
> x%4y%+ 2?2 =4,y < 0is the left hemisphere
centered at the (0,0,0) of radius 2

Step 2: We have to write the equation in spherical coordinates:

> x2+y?+z2=4p=2

Step 3: Based on the graph in Steps 1 and 2: we must determine the range of p, ¢, and 6:

0<p<=s2 0<¢p<m -1<0<0

0 T 2
= szffldef f fpzsin¢dpd¢d9=--~
B, -0 YO
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Example 15.9.18: Converte the iterated triple integral to spherical coordinates:
3 ;92 [ 18—x2-y2
f f f (x2 + y? + z*)dzdxdy
0 Y0 Jx2+y2

Solution:
> First we have to determine the silod to plot its graph:

z=,x2+y%,z=/18—-x2—-y%2,x=0,x=4/9—-y%2,y=0,y=3
» Surfaces: z = \/x? +y?and z = /18 — x2 — y?
» Projection Region: 0 <x <,/9—y?2and0<y <3
» Thesolid is bounded by: z = \/x? + y2,z = /18 — x? — y?
= Since x = 0,y = 0,z = 0 we have that the solid is in the first octant

= The solid is in the first octant bounded by z = /x2 + y2, z = /18 — x2 — y?
Step 1: We have to sketch the solid:

» z=,/x%2+ y2 cone above the xy-plane

» z=,/18 — x2 — y2 is the upper hemisphere

= centered at the (0,0,0) of radius V18
Step 2: We have to write the equation in spherical coordinates:

- — [+2 2 T
Z xXc+ys=>¢ ”
7= /18_x2_y2=>22=18_x2_y2

=>x2+y2422=18p2=18=p =+/18
Step 3: Based on the graph in Steps 1 and 2: we must determine the range of p, ¢, and 6:

0<p<+18 0<¢< 0<6<’

Jo-y2 \J18-x2-y2
:>f f f (x? + y2 + z%)dzdxdy = f f f p? p?sin @ dpdedd)
2+y

dV=dzdxdy

T
=f ff p* sin @ dpdedo
0 0 0
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Example 15.9.19: Use rectangular, cylidrical, and spherical coordinates to set up triple integrals for the
volume of the region inside the sphere x2 + y2 + z? = 4 and outside the cylinder x? + y? = 1.
Solution:

% The Volume in rectangular coordinates:

> Surfaces: z = —\/4 —x2 —y2and z = /4 — x2 — y?

> Projection Region: outside x2 + y2 = 1 (not closed region)

= Intersection of surfaces: \/4 — x2 — y2 = —/4 — x2 — y2 /\
=22\/4—x?—-y2=0 , _

= x2 + y? = 4 (add this eq. to the region) kj
» The Projection Region: Between x? + y? = 4and x? + y2 = 1 ;
" dA=rdrdd=>r=1->r=2and0<6 <27
» The volume in rectangular coordinates is:

2 Va—x2 fa-x2-y2 1 V1-x2 f4—x2-y2
V=j f dzdydx—f f dzdy dx
—27J-Va—x2J)- [4—x2—y2 -1J-V1-x2 /- [4-x2-y2
% The volume using cylindrical coordinates:

» Surfaces: z = —\/4—x?2—y?andz = /4 — x%2 — y?
» Projection Region:

* Betweenx?+y?2=4andx?+y?=1

" dA=rdrdd=>r=1->r=2and0<6 <27m

> The volume in cylidrical coordinates is: V = fozn flz f_:;;_L:zrdz dr do

¢+ The volume using spherical coordinates:
Step 1: We have to sketch the solid:

> x?+y?+z? =4 sphere centered at (0,0,0) of radius 2
> x2%2 4 y? =1 cylinder

Step 2: We have to write the equation in spherical coordinates:

> x2+y?+z2=4>p=2
> x’+y?=1=>r’=1=>r=1psing=1
1
sin ¢
The values of ¢ depends on the points of intersection of the surfaces:
x2+y2+z2=4andx?+y2=1:214+22=4=222=3=32=+3
=>pcosp = +V3 (butx? +y?+z2=4=p=2)
V3

:>pcos<p=i\/§withp=2:>cos<p=i73 :><p=%or<p=5?”

>p= =>p=csce

Step 3: Based on the graph in Steps 1 and 2: we must determine the range of p, ¢, and 6:

5w

cscp <p <2 Ses=s— 0<60<2m

5T
om o 2 .
V= fonfgﬁ fcsc(ppz sin g dp dg dé
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Exercise 15.9.20:

(1) Let [[f; dv=J) [ J p* sin(®) dpdg do,
where E is the solid in the first octant whose graph is on
the right. Find 4, B, C.

| -—

(2) Set up in spherical coordinates the wvolume of the solid inside the sphere
x? +vy2 + z? = 4x and bounded above by the cone z = ,/3x2 + 3y2.




