اعراد: عصر بغواجه المحادث معرد بغواجه المحادث المحادث المحادة معرد بغواجه المحادث الم

(علود من المعل هو مجهود ما قبلي من أ ععب المجهود المن و مجهود ما قبل من أ ععب المجهود المن من المعن المعهود المن من ما قعت به هو تجعيع الخ نسلة في ملف وا هد فقط ليسهل على الحالب البعث عن سنوات المارزة ... الله

$$\underline{Sol.} \quad \int \frac{dy}{y^2} = \int \sin t \, e^{-\cos(t)} dt - \cdots (e)$$

So
$$y(\frac{x}{2}) \Rightarrow \frac{-1}{y} = -e^{\circ} - 3e$$

Omer-Alkhauraja...
$$\frac{1}{y} = 1 + 3e \Rightarrow \left(y = \frac{1}{1 + 3e}\right)$$

Q2: the equation
$$y' + p(x)y = \sin^2(x)$$
, $M(x) = \sin x$ find $p(y)$??

Sol. $\sin x = e^{\int p(x) \cdot dx}$ (with $a_1 i i i = \int c_1(\sin x) = \int p(x) dx$

Unitaria $\Rightarrow \frac{\cos x}{\sin x} = p(x) \Rightarrow p(x) = \cot(x)$

$$Q_3:-XM(x,y)-y(V(x,y)=0$$
 on the following is a solv of $M(x,y).dx + N(x,y).dy = 0$

$$\underbrace{\sum_{i=1}^{N}}_{X} \mathcal{M}(x_i \lambda) = \mathcal{N}(x_i \lambda) = \underbrace{\sum_{i=1}^{N}}_{Y} \mathcal{M}(x_i \lambda) = \underbrace{\sum_{i=1}^{N}}_{Y$$

$$\frac{1}{x} \cdot dx = \int_{Y} dy \xrightarrow{\Rightarrow} C - \ln|x| = \ln|y| \quad \text{[e.e.]}$$

$$y = x^{-1} \cdot e^{x} \Rightarrow y = \frac{1}{x} \Rightarrow \frac{1}{x}$$

Qu: If
$$N(x,y) - H(x,y) = y^2 - \dots$$

And $M(x,y) = y^2 - \dots$

Find the D.E ?

Sol. (x,y) = $N(x,y) = N(x,y) - M(x,y) \Rightarrow M(x,y) = N(x,y)$

From (y = $M(x,y) \cdot dx = M(x,y) \cdot (y^2 + 1) = N(x,y)$
 $\frac{1}{x} \cdot dx - \frac{y^2 + 1}{y} \cdot dy = 0$
 $\frac{1}{x} \cdot dx - \frac{y^2 + 1}{y} \cdot dy = 0$
 $\frac{1}{x} \cdot dx - \frac{y^2 + 1}{y} \cdot dy = 0$
 $\frac{1}{x} \cdot dx - \frac{y^2 + 1}{y} \cdot dy = 0$
 $\frac{1}{x} \cdot dx - \frac{y^2 + 1}{y} \cdot dy = 0$
 $\frac{1}{x} \cdot dx - \frac{y^2 + 1}{y} \cdot dy = 0$
 $\frac{1}{x} \cdot dx - \frac{y^2 + 1}{y} \cdot dy = 0$
 $\frac{1}{x} \cdot dx - \frac{y^2 + 1}{y} \cdot dy = 0$
 $\frac{1}{x} \cdot dx - \frac{y^2 + 1}{y} \cdot dy = 0$
 $\frac{1}{x} \cdot dx - \frac{y^2 + 1}{y} \cdot dy = 0$
 $\frac{1}{x} \cdot dx - \frac{y^2 + 1}{y} \cdot dx + \frac{x}{x} \cdot \frac{y^2}{y} \cdot \frac{y^2 - y^2}{y^2} \cdot dx = 0$
 $\frac{y^2 + 1}{y} \cdot dx + \frac{y^2 + 2xy}{y} \cdot dy = 0$
 $\frac{y^2 + 2x}{y} \cdot dx + \frac{y^2 + 2xy}{y} \cdot dy = 0$
 $\frac{y^2 - x^2 + y^2}{y} \cdot dx + \frac{y^2 - x^2 + y^2}{y} \cdot dx = 0$
 $\frac{y^2 - x^2 + y^2}{y} \cdot dx + \frac{y^2 - x^2 + y^2}{y} \cdot dx = 0$
 $\frac{y^2 - x^2 + y^2}{y} \cdot dx + \frac{y^2 - x^2 + y^2}{y} \cdot dx = 0$
 $\frac{y^2 - x^2 + y^2}{y} \cdot dx + \frac{y^2 - x^2 + y^2}{y} \cdot dx = 0$
 $\frac{y^2 - x^2 + y^2}{y} \cdot dx = 0$
 $\frac{y^2 - x^2 + y^2}{y} \cdot dx = 0$
 $\frac{y^2 - x^2 + y^2}{y} \cdot dx = 0$
 $\frac{y^2 - x^2 + y^2}{y} \cdot dx = 0$
 $\frac{y^2 - x^2 + y^2}{y} \cdot dx = 0$
 $\frac{y^2 - x^2 + y^2}{y} \cdot dx = 0$
 $\frac{y^2 - x^2 + y^2}{y} \cdot dx = 0$
 $\frac{y^2 - x^2 + y^2}{y} \cdot dx = 0$
 $\frac{y^2 - x^2 + y^2}{y} \cdot dx = 0$
 $\frac{y^2 - x^2 + y^2}{y} \cdot dx = 0$
 $\frac{y^2 - x^2 + y^2}{y} \cdot dx = 0$
 $\frac{y^2 - x^2 + y^2}{y} \cdot dx = 0$
 $\frac{y^2 - x^2 + y^2}{y} \cdot dx = 0$
 $\frac{y^2 - x^2 + y^2}{y} \cdot dx = 0$
 $\frac{y^2 - x^2 + y^2}{y} \cdot dx = 0$
 $\frac{y^2 - x^2 + y^2}{y} \cdot dx = 0$
 $\frac{y^2 - x^2 + y^2}{y} \cdot dx = 0$
 $\frac{y^2 - x^2 + y^2}{y} \cdot dx = 0$
 $\frac{y^2 - x^2 + y^2}{y} \cdot dx = 0$
 $\frac{y^2 - x^2 + y^2}{y} \cdot dx = 0$
 $\frac{y^2 - x^2 + y^2}{y} \cdot dx = 0$
 $\frac{y^2 - x^2 + y^2}{y} \cdot dx = 0$
 $\frac{y^2 - x^2 + y^2}{y} \cdot dx = 0$
 $\frac{y^2 - x^2 + y^2}{y} \cdot dx = 0$
 $\frac{y^2 - x^2 + y^2}{y} \cdot dx = 0$
 $\frac{y^2 - x^2 + y^2}{y} \cdot dx = 0$
 $\frac{y^2 - x^2 + y^2}{y} \cdot dx = 0$
 $\frac{y^2 - x^2 + y^2}{y} \cdot dx = 0$
 $\frac{y^2 - x^2 + y^2}{y} \cdot dx = 0$
 $\frac{y^2 - x^2 + y^2}{$

Q=:- solve the I.U.P y=y+cosx.y=cosx = y(=)=2 $\underline{sol} \cdot (\div y^{t}) \rightarrow y^{t} + \cos x \cdot y = \frac{\cos x}{y^{2}}$ y'+ cosx · y = cosx y2 berndli v= y= = y3 => v= 3y2 dy 3 y' (y'+65x · y = 605x y²) => v'+365x · v =365x $M(x) = e^{\int 3 \cos x \cdot dx}$ V= = 1 C+ Sesinx 30sx dx $V = \frac{1}{e^{3\sin x}} \cdot \left[c + e^{3\sin x} \right]$ but y(≥)=2 → y= = -3sinx [c+e3sinx] $y = e \cdot [c+e]$ $8 = \frac{1}{e^3} \cdot [c+e^3]$ $= e = e^4 = e^3 \cdot [e^4 \cdot de]$ 1C= 8-1 => (= 7e3 | # HOMON. Alkhawaju Q8: solve , ydx + xdy + y2 (xdy - ydx) = 0 ? $\left(\int \frac{1+y^2}{y^2y^2} \cdot dy \right) = \frac{u = 1+y^2}{2u} = dy$ Sol :- ydx + xdy + y2xdy - y3dx $(x+y^{2}x)dy+(y-y^{2})dx=0$ $\int \frac{u}{2y^2(u-2)} du = \frac{1}{2} \int_{(u-1)(u-2)} u du$ $y' = \frac{y^3 - y}{(x + xy^2)} \Rightarrow y' = \frac{y' - y}{x(1 + y')}$ U = A(u-2) + B(u-1) Partial fraction $\begin{pmatrix} u=2 \Rightarrow B=2 \\ u=1 \Rightarrow A=-1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} -1 \\ u-1 \end{pmatrix} + \frac{2}{u+2} \cdot du$ $\left(\frac{1+y}{y^2y}\right) = \left(\frac{dx}{x}\right)$ === -1 01/92 + 00/92-11 النكرم بكل الله حل أكل ال equation: == en/y1+en/y2-1/ = cn/x1+c Scanned by CamScanner

$$Q_{q}: y' = x^{3} (y' + x^{2} - 2xy) + \frac{2}{x} \quad \text{is substitution is}$$

$$u = y - x \quad \text{is solve if } ?$$

$$y' = x^{3} (y - x)^{2} + \frac{y}{x} \quad | v = y'^{-2} = u^{-1} \implies 0' = -u^{2} \cdot u^{-1}$$

$$u=y-x \implies y'=u+1$$
 $u'+1 = x^{3}(u)^{2} + \frac{y}{x} \qquad y=u+x$
 $u'+1'=x^{3}(u)^{2} + \frac{u}{x} + 1 \qquad \frac{y}{x} = \frac{u}{x} + 1$
 $u'-\frac{1}{x}u = x^{3}u^{2}$

Bernoll's inu

$$V = y^{-2} = u^{-1} \Rightarrow v^{-1} = u^{-2} \cdot u^{-1}$$

$$-u^{-2} \left(u^{-1} - \frac{1}{x} u \right) = -u^{-2} x^{3} u^{2}$$

$$V' + \frac{1}{x} V = -x^{3} \quad \text{Lineur}$$

$$\text{in } V$$

$$\text{in } V$$

$$\text{Just ... } \bigcirc$$

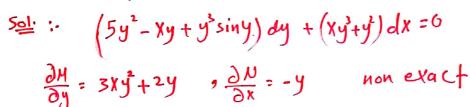
$$\frac{1}{y-x} = \frac{1}{x} \left[C - x^{5} \right] \Rightarrow \text{ final answer}$$

Sol.
$$xy' = y \operatorname{en}(xy)$$

$$V = xy$$

$$V' = \frac{y}{x} \operatorname{en}(xy)$$

$$V' = \frac{y}{x} \operatorname{en}(xy+1)$$


$$V' = \frac{V}{x} \left(\frac{dv}{x} \right) + 1$$

$$\left(\frac{dv}{v} \left(\frac{dv}{v} \right) + 1 \right) = \int \frac{dx}{x}$$

$$\left[\frac{dv}{v} \left(\frac{en(v)}{v} + 1 \right) - \frac{en(x)}{v} + C \right] \#$$

$$Q_{11}$$
: find the general sol. of the D.E:
 $(5y^2-Xy+y^3\sin y)y^3+Xy^3=-y^2$

#Omar-Alkhausja.

$$\frac{\partial y}{\partial x} - \frac{\partial H}{\partial y} = \frac{-y - 3xy^2 - 2y}{xy^3 + y^2} = \frac{-3(y + x^2y)}{y(xy^4 + y)} = \begin{bmatrix} \frac{-3}{4} & \frac{1}{4}y \\ \frac{-3}{4} & \frac{-3}{4}y \end{bmatrix} \Rightarrow \begin{bmatrix} \frac{-3}{4} & \frac{1}{4}y \\ \frac{-3}{4} & \frac{-3}{4}y \end{bmatrix}$$

$$\frac{\partial M}{\partial y} = \frac{1}{y^2}, \quad \frac{\partial U}{\partial x} = \frac{1}{y^2} \quad \dots \quad \text{is exact } \frac{\partial U}{\partial x} = \frac{1}{y^2} = \frac{1}{y$$

Q₁₃: Solve:
$$Xdy = (X^{u}y^{2} - 2X^{5}y + X^{5}) \cdot dx + y dx$$

use a substitution $u = y - x$

$$y = (X^{u}y^{2} - 2X^{5}y + X^{5} + y)$$

$$y' = (X^{u}y^{2} - 2X^{u}y + X^{5} + y)$$

$$y' = (X^{u}y^{2} - 2X^{u}y + X^{5} + y)$$

$$y' = (x^{u}y^{2} - 2X^{u}y + X^{5} + y)$$

$$y' = (x^{u}y^{2} - 2X^{u}y + X^{5} + y)$$

$$y' = (x^{u}y^{2} - 2X^{u}y + X^{5} + y)$$

$$y' = (x^{u}y^{2} - y^{2}y^{2} + y)$$

$$y' = (y^{u}y^{2} - y^{u}y^{2} + y)$$

$$y' =$$

$$V = u^{-2} = u^{-1}$$

$$V = u^{-2} = u^{-1}$$

$$V' = -u^{-2} \cdot u'$$

$$-u^{2}(u' - \frac{u}{x}) = -y^{2} \times^{3} y^{2}$$

$$V' + \frac{v}{x} = -x^{3}$$

$$V' + \frac{v}{x} = -$$

$$G_{H4}: salue: \left(\sin(xy) + xy \cos(xy)\right) = dx + \left(1 + x^2 \cos(xy)\right) \cdot dy = 0$$

$$\frac{\Delta M}{\partial y} = x \cos(xy) + -x^2 y \sin(xy) + x \cos(xy)$$

$$= 2 x \cos(xy) - x^2 y \sin(xy)$$

$$= 2 x \cos(xy) - x^2 y \sin(xy)$$

$$= x \cos(xy) + x^2 \sin(xy) + y \sin(xy)$$

$$= x \cos(xy) + x^2 \sin(xy) + y \sin(xy)$$

$$= x \cos(xy) + x^2 \sin(xy) + y \sin(xy)$$

$$= x \cos(xy) + x^2 \sin(xy) + y \sin(xy)$$

$$= y \sin(xy) + x^2 \sin(xy) + y \sin(xy)$$

$$= y \sin(xy) + x^2 \sin(xy) + y \sin(xy)$$

$$= y \sin(xy) + x^2 \sin(xy) + y \sin(xy)$$

$$= y \sin(xy) + x^2 \sin(xy) + y \sin(xy)$$

$$= y \sin(xy) + x^2 \sin(xy) + y \sin(xy)$$

$$= y \sin(xy) + x^2 \sin(xy) + y \sin(xy)$$

$$= y \sin(xy) + x^2 \sin(xy) + y \sin(xy)$$

$$= y \sin(xy) + x^2 \sin(xy) + y \sin(xy)$$

$$= y \sin(xy) + x^2 \sin(xy) + y \sin(xy)$$

$$= y \sin(xy) + x^2 \sin(xy) + y \sin(xy)$$

$$= y \sin(xy) + x^2 \sin(xy) + y \sin(xy)$$

$$= y \sin(xy) + x^2 \sin(xy) + y \sin(xy)$$

$$= y \sin(xy) + x^2 \sin(xy) + y \sin(xy)$$

$$= y \sin(xy) + x^2 \sin(xy) + y \sin(xy)$$

$$= y \sin(xy) + x^2 \sin(xy) + y \sin(xy)$$

$$= y \sin(xy) + x^2 \sin(xy) + y \sin(xy)$$

$$= y \sin(xy) + x^2 \sin(xy) + y \sin(xy)$$

$$= y \sin(xy) + x^2 \sin(xy) + y \sin(xy)$$

$$= y \sin(xy) + x^2 \sin(xy) + y \sin(xy)$$

$$= y \sin(xy) + x^2 \sin(xy) + y \sin(xy)$$

$$= y \sin(xy) + x^2 \sin(xy) + y \sin(xy)$$

$$= y \sin(xy) + x^2 \sin(xy) + y \sin(xy)$$

$$= y \sin(xy) + x^2 \sin(xy) + y \sin(xy)$$

$$= y \sin(xy) + x^2 \sin(xy) + y \sin(xy)$$

$$= y \sin(xy) + x^2 \sin(xy) + y \sin(xy)$$

$$= y \sin(xy) + x^2 \sin(xy) + y \sin(xy)$$

$$= y \sin(xy) + x^2 \sin(xy) + y \sin(xy)$$

$$= y \sin(xy) + x^2 \sin(xy) + y \sin(xy)$$

$$= y \sin(xy) + x^2 \sin(xy) + y \sin(xy)$$

$$= y \sin(xy) + x^2 \sin(xy) + y \sin(xy)$$

$$= y \sin(xy) + x^2 \sin(xy) + y \sin(xy)$$

$$= y \sin(xy) + x^2 \sin(xy) + y \sin(xy)$$

$$= y \sin(xy) + x^2 \sin(xy) + y \sin(xy)$$

$$= y \sin(xy) + x^2 \sin(xy) + y \sin(xy)$$

$$= y \sin(xy) + x^2 \sin(xy) + y \sin(xy)$$

$$= y \sin(xy) + x^2 \sin(xy) + y \sin(xy)$$

$$= y \sin(xy) + x^2 \sin(xy) + y \sin(xy)$$

$$= y \sin(xy) + x^2 \sin(xy) + y \sin(xy)$$

$$= y \sin(xy) + x^2 \sin(xy) + y \sin(xy)$$

$$= y \sin(xy) + x^2 \sin(xy) + y \sin(xy)$$

$$= y \sin(xy) + x^2 \sin(xy) + y \sin(xy)$$

$$= y \sin(xy) + x^2 \sin(xy) + y \sin(xy)$$

$$= y \sin(xy) + x^2 \sin(xy) + y \sin(xy)$$

$$= y \sin(xy) + x^2 \sin(xy) + y \sin(xy)$$

$$= y \sin(xy) + x^2 \sin(xy) + y \sin(xy)$$

$$= y \sin(xy) + x^2 \sin(xy) + y \sin(xy)$$

$$= y \sin(xy) + x^2 \sin(xy) + y \sin(xy)$$

$$= y \sin(xy) + x^2 \sin(xy) + y \sin(xy)$$

$$= y \sin(xy) + x^2 \sin(xy) + y \sin(xy)$$

$$= y \sin(xy) + x^2 \sin(xy) + y \sin(xy)$$

$$= y \sin(xy) + x^2 \sin(xy) + y \sin(xy)$$

01

g(y)=-1 => g(y) = ~ y

 $C = \tan\left(\frac{x}{y}\right) + y$

Q16: solve:
$$(xy) dy - (x^2 + x \sqrt{x^2 + y^2}) dx = 0$$

Sol. homogenous $(xy) dy - (x^2 + x \sqrt{x^2 + y^2}) dx \Rightarrow \frac{y}{x} dy = 1 + \sqrt{1 + y^2} dx$

Let $u = \frac{y}{x} \rightarrow y' = u \cdot \lambda + u \Rightarrow u(u \cdot x + u) = 1 + \sqrt{1 + u^2} dx$

Let $u = \frac{y}{x} \rightarrow y' = u \cdot \lambda + u \Rightarrow u(u \cdot x + u) = 1 + \sqrt{1 + u^2} dx$
 $= \int \frac{u}{1 - u^2 + \sqrt{1 + u^2}} dx = \int \frac{1}{x} \cdot dx \rightarrow \text{seperable}$

Q1. An integrating factor: $(3x^2 + y) dx + (x^2 - x) dy = 0$ is ?

Sol. non-exact $\frac{\partial M}{\partial y} = \frac{\partial M}{\partial x} = \frac{\partial M}{\partial x} = 2xy - 1$
 $\frac{\partial M}{\partial y} - \frac{\partial M}{\partial x} = \frac{1 - 2xy + 1}{x(xy - 1)} = \frac{2(1 - xy)}{x(xy - 1)} = \frac{-2}{x}$
 $\frac{\partial M}{\partial x} = \frac{\partial M}{\partial x} = \frac{1 - 2xy + 1}{x(xy - 1)} = \frac{2(1 - xy)}{x(xy - 1)} = \frac{-2}{x}$

Q16: The most general function $N(x, y)$ that makes the following $\frac{\partial M}{\partial y} = \frac{\partial M}{\partial x} \Rightarrow \frac{\partial M}{\partial y} = -\sin x \sin y - x - x e^{xy} dx = 0$

Sol. east so $\frac{\partial M}{\partial y} = \frac{\partial M}{\partial x} \Rightarrow \frac{\partial M}{\partial y} = -\sin x \sin y - x - x e^{xy} dx = 0$

Sol. $\frac{\partial M}{\partial y} = \frac{\partial M}{\partial x} \Rightarrow \frac{\partial M}{\partial y} = -\sin x \sin y - x - x e^{xy} dx = 0$

Sol. $\frac{\partial M}{\partial y} = \frac{\partial M}{\partial x} \Rightarrow \frac{\partial M}{\partial y} = -\sin x \sin y - x - x e^{xy} dx = 0$

Sol. $\frac{\partial M}{\partial y} = \frac{\partial M}{\partial x} \Rightarrow \frac{\partial M}{\partial y} = -\sin x \sin y - x - x e^{xy} dx = 0$

Sol. $\frac{\partial M}{\partial y} = \frac{\partial M}{\partial x} \Rightarrow \frac{\partial M}{\partial y} = -\sin x \sin y - x - x e^{xy} dx = 0$

Sol. $\frac{\partial M}{\partial y} = \frac{\partial M}{\partial x} \Rightarrow \frac{\partial M}{\partial y} = -\sin x \sin y - x - x e^{xy} dx = 0$

Sol. $\frac{\partial M}{\partial y} = \frac{\partial M}{\partial x} \Rightarrow \frac{\partial M}{\partial y} = -\sin x \sin y - x - x e^{xy} dx = 0$

Sol. $\frac{\partial M}{\partial y} = \frac{\partial M}{\partial x} \Rightarrow \frac{\partial M}{\partial y} = -\sin x \sin y - x - x e^{xy} dx = 0$

Sol. $\frac{\partial M}{\partial y} = \frac{\partial M}{\partial x} \Rightarrow \frac{\partial M}{\partial y} = -\sin x \sin y - x - x e^{xy} dx = 0$

Sol. $\frac{\partial M}{\partial y} = \frac{\partial M}{\partial x} \Rightarrow \frac{\partial M}{\partial y} = -\sin x \sin y - x - x e^{xy} dx = 0$

Sol. $\frac{\partial M}{\partial y} = \frac{\partial M}{\partial x} \Rightarrow \frac{\partial M}{\partial y} = -\sin x \sin y - x - x e^{xy} dx = 0$

Sol. $\frac{\partial M}{\partial x} = \frac{\partial M}{\partial x} \Rightarrow \frac{\partial M}{\partial x}$

The general solution for the following exact D.E: $(\sinh (x+y) + ye^x) \cdot dx + (\sinh (x+y) + 2ye^x + 1) \cdot dy = 0$, is ?

Sol exact so:
$$\frac{\partial M}{\partial y} = \frac{\partial h}{\partial s} \cosh(x+y) + 2ye^{x}$$

$$\frac{\partial N}{\partial x} = \cosh(x+y) + 2ye^{x}$$

$$\frac{\partial N}{\partial y} = \frac{\partial N}{\partial x}$$

$$f(x,y) = \left(\sinh(x+y) + y^{2}x \cdot dx\right)$$

$$f(x,y) = \left(\cosh(x+y) + y^{2}e^{x} + g(y)\right)$$

$$\frac{\partial f}{\partial y} = \lambda(x,y) = \left(\cosh(x+y) + y^{2}e^{x} + g(y)\right)$$

$$\sinh(x+y) + 2ye^{x} + 1 = \sinh(x+y) + 2e^{x}y + g(y)$$

$$g(y) = 1 \rightarrow g(y) = y$$

$$C = \left(\cosh(x+y) + y^{2}e^{x} + y\right) + y^{2}e^{x} + y$$

Q20: The relation χ^2 -cos(x+y) = 3 defines an implicit sol. of one of the following D.E., this D.E. 15:

a)
$$y' = 2 \sec(x+y)-1$$

$$2X + \sin(X+y) \cdot (1+y') = 0 \implies (x+y) \cdot (x+y) = -2X$$

$$1 + y' = \frac{-2X}{\sin(x+y)} \implies y' = -2X \iff (x+y) - 1$$

By: Find the general solution to the D.E (x+2y+1)dx + (3x+6y+2)dy =0 $\frac{50!}{dx} = \frac{-(x+2y+1)}{3(x+2y)+2} = G(x+2y)$ u=1+2y => u = 1+2y => [y = u-1] $\frac{u-1}{2} = -\frac{(u+1)}{3u+2}$ $\Rightarrow u-1 = -2u-2$ $\frac{du}{dx} = \frac{-2u-2}{3u+2} + 1 = \frac{du}{dx} = \frac{-2u-2+3u+2}{3u+2}$ $\frac{du}{dx} = \frac{u}{3u+2} \Rightarrow \left(\frac{3u}{x} + \frac{u}{2} \cdot du = \right) \cdot dx$ $3u + \frac{u^2}{4} = X + C \Rightarrow \left(3X + 6y + \frac{(X + 2y)^2}{4} = X + C\right)$ له هنا يحيى ، ولعم مال كان مؤال فع دازة تلعب ؛ لوال لايعاله ال شكل اعد لجلول ... كل Q_{22} : Solve the I.U.P $\frac{dy}{dx} = \int x^2 y + \frac{1}{x} y$, y(0) = 1, x > 0? Sel. dy - \ y y = Xy = Bernolli $U = y^{-\frac{1}{2}} = y^{+\frac{1}{2}} \rightarrow 2\sqrt{z}y$ $u = \frac{1}{2}y^{\frac{1}{2}}\frac{dy}{dx} \rightarrow \frac{1}{2}y^{\frac{1}{2}}\left(\frac{dy}{dx} - \frac{1}{2}y - \frac{1}{2}y^{\frac{1}{2}}\right)$ $u' - \frac{1}{2X}u = \frac{X}{3}$ = lihear $M(X) = e^{\int \frac{1}{2X} \cdot dX} = e^{-\frac{1}{2}\ln(2X)}$ $=2x^{\frac{1}{2}}=\boxed{\frac{1}{\sqrt{2x}}} \Rightarrow u=\sqrt{2x} \Rightarrow \left[c+\int_{\sqrt{2x}}\frac{1}{2}dx\right]....\int_{x}^{x}$ 9

Q23: find the largest interval on which you are sure that the following initial value problem has aunique solution, Julify: Jx-1 y+(0sx) y = csex

Hower Alkhawaja...

$$\Re \operatorname{CSC} X = \frac{1}{\operatorname{Sin} X} \Rightarrow \operatorname{Sin} X = 0 \\
X = \pi, X = 0 \\
X = 2\pi$$
8+ interval = (1,\pi)

Lorgest interval = (1, x)

Pay: Given that $y(x) = \frac{1}{x}$ and $y(x) = \frac{1}{2x}$ are two solutions of he diff. eq: - 2x2y"+ 3xy-y=0 , x>0 , find solution? Sol. :-

well brows

Tiel + lio, roles ans م نه متعم عائم مس اوی .-

- (a) find the Integrating factor of the differential equation
- (6) Solve the initial value problem
- (c) is there another method to solve this D. E (other than method you have seed), Justify?

Sol. (a)
$$\otimes \frac{\partial M}{\partial y} - \frac{\partial V}{\partial x} = \frac{1 - -1}{(y^2 \times x)}$$

$$\frac{\partial A}{\partial x} - \frac{\partial M}{\partial y} = \frac{-1-1}{y} = \frac{-2}{y} \Rightarrow \frac{1}{y} \Rightarrow \frac{1}{y}$$

$$M(y) = \frac{1}{y^2}$$

Homar-Alkhany or --

(b)
$$\frac{1}{y^2} \left[y \cdot dx + (y^2 x) dy = 0 \right] \rightarrow \frac{1}{y} dx + \left(1 - \frac{x}{y^2} \right) dy = 0$$

(c)

Pair using a suitable substitution transform the D.E (cosy) y' + X(siny) = 3 into alinear equation? ... Cinear of blashow y + x tany = 3 cosy let u = siny du = cosy y - - - - 3 - - 3 - - 3 - - 3 - - 3 - - 3 - - 3 - - 3 - - 3 - - 3 - - 3 (+659) * u' + X4 = 3 ... it is likeer # P24: consider the non-exact D.E P(X,y) dx + Q(X,y) dy = 0 - .. & if Py-Cax = 3, find an Integrating facto to 50? Sol. Py-9x = 3 = P Johne : -3

P = 3 = P Johne : -3

P = -3

John Jico P = -3

John Jico P = -3

John Jico P = -3 M(4) = e 1(y) = (=3y) Just " Q28: If you know (u=dy), find the value (A) in (u=AJy), use [1.0.1], [9(0)=0, [9(3)=8...]? 얼· u= du = Aily · y'= Ay's - (dy y's=fAdx $\frac{3}{2}y^{\frac{2}{3}} = AX + C$ $y(0) = 0 \implies C = 0$ $\frac{3}{2}y^{\frac{2}{3}} = AX$ y(0) = 8 A = 2 Y(0) = 8P29: solve: ex du + 2eexy = x2 50! Alexy (2x) dy + 2exydy = x2dx (55) d(e 3 y) = x 2 dx (e 3 y = x3 + c)

$$Q_{31} := \text{If } M(x_1y) - N(x_1y) = x \text{, then the sol. to the 1). E}$$

$$\frac{M(x_1y)}{x} \cdot dx - \frac{N(x_1y)}{y} \cdot dy = 0 \text{, } x_1y > 0$$

$$\frac{M(x_1y)}{x} \cdot dx - \frac{N(x_1y)}{y} \cdot dy = 0$$

$$M(x_1y) - N(x_1y) - N(x_1y) \cdot x = 0$$

$$M(x_1y) - N(x_1y) \cdot (1 + x) = 0 = 0 \quad \frac{M(x_1y)}{N(x_1y)} = 1 + x$$

$$\frac{1}{2} \cdot N(x_1y) + \frac{M(x_1y)}{N(x_1y)} \cdot dx - \frac{1}{2} \cdot dy = 0$$

$$\frac{1}{2} \cdot \frac{1}{2} \cdot dy = 0$$

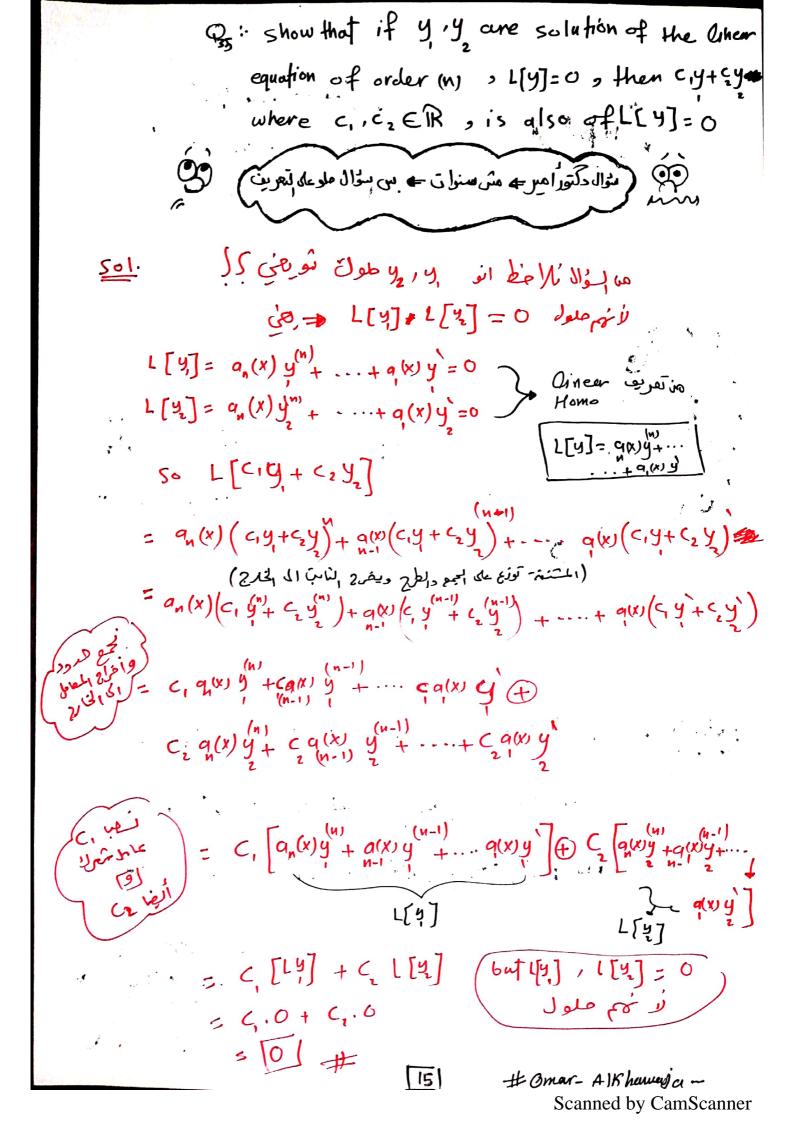
Q32: The values of m, n that make the D. E $2 \sqrt{x} (x-2y)^m . dx - (x^3 - 2n - 5) . dy = 0$ homogeneous are ?

Q₃₃: The solution of the D.E.
$$y' = x^2 + 2xy + y^2 - 1$$

 $y' = (x + y)^2 - 1$
 $y' = (x + y)^2 - 1$
 $y' = x + y$
 $y' = y' + y'$
 $y' = y' - 1$
 $y' = y' - 1$

Q34: for what the value of (K) is $(x^2+y^2)^K$ an integrating factor for -y dx + x dy = 0?

 $\frac{(x^{2}+y^{2})^{k}}{y^{2}} = -(x^{2}+y^{2})^{k}y \cdot dx + x(x^{2}+y^{2})^{k} \cdot dy = 0 - \dots \quad \text{per}; 0$ $\underline{yy} = -k(x^{2}+y^{2})^{k} \cdot 2y \cdot y - (x^{2}+y^{2})^{k} \Rightarrow -k^{2}y^{2}(x^{2}+y^{2})^{k-1} - (x^{2}+y^{2})^{k}$ $\underline{yx} = k(x^{2}+y^{2})^{k-1} \cdot 2x \cdot x + (x^{2}+y^{2})^{k} \Rightarrow 2kx^{2}(x^{2}+y^{2})^{k-1} + (x^{2}+y^{2})^{k}$ $\underline{yy} = \underline{yy}$ $\underline{yy} = -k(x^{2}+y^{2})^{k} \cdot 2x \cdot x + (x^{2}+y^{2})^{k} \Rightarrow 2kx^{2}(x^{2}+y^{2})^{k-1} + (x^{2}+y^{2})^{k}$ $\underline{yy} = -\underline{yy}$ $\underline{yy} = -\underline{yy}$


 $-2ky'(x+y')^{k-1}-(x+y')^{k}=2kx^{2}(x+y')^{k-1}+(x+y^{2})^{k}$

 $2(x^{2}+y^{2})^{k} + 2kx^{2}(x^{2}+y^{2})^{k-1} + 2ky^{2}(x^{2}+y^{2})^{k-1} = 0 \qquad (\div)(x^{2}+y^{2})^{k}$ $(x^{2}+y^{2})^{k}\left(\frac{1}{x^{2}+y^{2}} + \frac{2ky^{2}(x^{2}+y^{2})^{k}}{x^{2}+y^{2}}\right) = 0 \qquad (\div)(x^{2}+y^{2})^{k}$

 $\frac{1 + K(x^{2} + y^{2})}{(x^{2} + y^{2})} = 0 \qquad \Rightarrow 1 + K = 0$ $\frac{1 + K(x^{2} + y^{2})}{(x^{2} + y^{2})} = 0 \qquad \Rightarrow 1 + K = 0$

141

#omar. Alkhawaja ... Scanned by CamScanner

Q₃₆: Find the general solution to the D. E:
$$-2(1+X+Xy^2)y'-y=y^3$$
Sol:
$$\frac{dy}{dx} = \frac{y^3+y}{-2(1+x+xy^2)} \qquad \text{this ideque is sol}$$

$$\frac{dx}{dy} = \frac{-2-2x(1+y^2)}{y(1+y^2)} \qquad \text{tisi}$$

$$\frac{dx}{dy} = \frac{-2-2x(1+y^2)}{y(1+y^2)} \Rightarrow \frac{dx}{dy} = \frac{-2}{y(1+y^2)} - \frac{2x}{y}$$

$$X' + \frac{2}{y} Y = \frac{-2}{y(1+y^2)} \qquad \text{the arin } X$$

$$M(y) = e^{\frac{1}{y^2}} \qquad \text{the arin } X$$


$$\varphi_{37}: \text{ find the largest interval for which}$$
the I.U.P: $y' + \frac{y}{x \operatorname{cn}(e^x - 3)} = x$,
 $y'(\ln \frac{3}{2}) = u$ has a unique ?

Sol.
$$X(en(e^{x}-3))=0$$

 $(x=0)$ $e^{x}-3=1 \Rightarrow e^{x}=4$
 $(x=0)$

$$cn \neq 1$$
 $e^{x}-3 = 1 \Rightarrow x = cn y$
 $e^{x}-3 = -1 \Rightarrow x = cn 2$

largest interval (In 2, ln 2)

#Omar_Alkhawaja ...

G₃₈: consider the D.E:
$$M(x_1y).dx + N(x_1y).dy = 0$$

if $(My)^2 - (Ux)^2 = cos(x) (My + Nx) N(x_1y)$

and $cosx > 0 = (My + Nx) \neq 0 = finel the$

integrating factor of the D.E?

Sol: $(My - Nx) (My + Nx) = cos(x) (My + Nx) N(x_1y)$

$$\frac{(My - Nx) (My + Nx)}{M(x_1y) (My + Nx)} = cos(x) (My + Nx) N(x_1y)$$

$$\frac{(My - Nx) (My + Nx)}{M(x_1y) (My + Nx)} = cos(x)$$

$$\frac{My - Nx}{N(x_1y)} = cos(x)$$

 φ_{3q} : The suitable substitution that transforms the D.E: $ye^{xy}\frac{dx}{dy} + xe^{xy} = 12y^2, \quad x,y \neq 70, \quad into a seperable$ equation is: ?

Sol:- let
$$v = e^{xy} \Rightarrow e_{nv} = xy \Rightarrow x = \frac{(nv)}{y} \Rightarrow x$$

$$yv \cdot x' + \frac{c_n v}{y} \cdot v = 12y^2 \Rightarrow y \cdot v \left(\frac{yv' - v \cdot v}{v \cdot y^2}\right) + \frac{c_n v}{y} \cdot v = 12y^2$$

$$\frac{yv'}{y} - \frac{v \cdot v}{y} + \frac{c_n v}{y} \cdot v = 12y^2$$

$$v' = 12y^2 \Rightarrow 1 \cdot dv = 12y^2 \cdot dy$$
Seperable.

$$\frac{P_{40}! - \underline{H(x_{1}y)} - N(x_{1}y)}{N(x_{1}y)} = X , \text{ than the solution to}$$

$$\frac{H_{1} \cdot N \cdot E}{X} \cdot \underline{M(x_{1}y)} \cdot dX - \underline{N(x_{1}y)} \cdot dy = 0 , x_{1}y > 0 \text{ is}$$

$$\frac{M(x_{1}y)}{X} \cdot dX = \underline{N(x_{1}y)} \cdot dy \qquad \underline{M(x_{1}y)} = X + 1$$

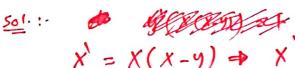
$$\frac{M(x_{1}y)}{N(x_{1}y)} = \frac{X}{y} \cdot \frac{dy}{dx} \qquad - - - \cdot \cdot \cdot \cdot \cdot$$

$$\frac{M(x_{1}y)}{N(x_{1}y)} = \frac{X}{y} \cdot \frac{dy}{dx} \qquad - - \cdot \cdot \cdot \cdot$$

$$\frac{M(x_{1}y)}{N(x_{1}y)} = \frac{X}{y} \cdot \frac{dy}{dx} \qquad - - \cdot \cdot \cdot$$

$$\frac{M(x_{1}y)}{N(x_{1}y)} = \frac{X}{y} \cdot \frac{dy}{dx} \qquad - - \cdot \cdot \cdot$$

$$\frac{M(x_{1}y)}{N(x_{1}y)} = \frac{X}{y} \cdot \frac{dy}{dx} \qquad - \frac{X}{y} \cdot$$


Qui: Classify each of the following equations as to: seperable, homo, exact, linear and Bernoulli ?

$$II \frac{dy}{dx} = \frac{xy^2 + x - y^2 - 1}{yx^2 + 2y - 3x^2 - 6}$$

$$\frac{dy}{dx} = \frac{\chi(y^{1}+1)-(y^{2}+1)}{y(x^{1}+2)-3(x^{2}+2)} \begin{vmatrix} y-3)cly \\ y^{2}+1 \end{vmatrix} = \frac{(\chi-1)}{\chi^{2}+2} \cdot d\chi$$

$$\frac{dy}{dx} = \frac{(y^{1}+1)(\chi-1)}{(\chi^{1}+1)(\chi-1)}$$
Seperable
$$\frac{(\chi^{1}+1)(\chi-1)}{(\chi^{1}+1)(\chi-3)}$$

$$\boxed{2} y' = \frac{1}{x(x-y)}$$

$$X' = X(X-Y) \Rightarrow X$$

$$X' = X(X-y) \Rightarrow X'$$

$$X' = X(X-y) \Rightarrow X = X'$$

$$X' = X(X-y) \Rightarrow X =$$

$$X = X(X-9) \Rightarrow$$
 $3 | y - 5y = 4 + y^2$

9 =
$$9 + 59 + 4$$

 $9 = (9 + 1)(9 + 4)$

$$\int 1 + \frac{1}{x} \cdot dx = \int \frac{1}{y} \cdot dy$$

$$\boxed{x + \ln|x| + C = \ln|y|} \quad \text{#}$$

$$\frac{(y-3)cly}{y^2+1} = \frac{(x-1)}{x^2+2} \cdot cl x$$

$$X' = X(X-y) \Rightarrow X' = X^2 Xy'' \Rightarrow X' + YX = X^2$$
Bernoulle

$$= D \left(\frac{dy}{(y+1)(y+4)} \right) = 1. dx$$
seperable

$$\frac{[4] \quad X' = \frac{(\frac{1}{9} + x eny)}{e^{-xy} - y eny}$$

[5]
$$(1+x^{2}).dy + (xy+x^{3}+x).dx = 0$$

 $\frac{50!}{(1+x^{2})}.dy + (xy+x^{3}+x).dx = 0$
 $\frac{50!}{(1+x^{2})}.dy + (xy+x^{3}+x).dx = 0$

$$\frac{Sol.:}{(x,y) + 2g+1} \int dy + (-2x - 6sy) \cdot dx = 0$$

$$\frac{2g}{(x,y)} = -x^2 - 8osy \cdot (x) + g(y)$$

$$\frac{2g}{(x,y)} = -x^2 - 8osy \cdot (x) + g(y)$$

$$\frac{2g}{(x,y)} = -x^2 - 8osy \cdot (x) + g(y)$$

$$\frac{2g}{(x,y)} = -x^2 - 8osy \cdot (x) + g(y)$$

$$\frac{2g}{(x,y)} = -x^2 - 8osy \cdot (x) + g(y)$$

$$\frac{2g}{(x,y)} = -x^2 - 8osy \cdot (x) + g(y)$$

$$\frac{2g}{(x,y)} = -x^2 - 8osy \cdot (x) + g(y)$$

$$\frac{2g}{(x,y)} = -x^2 - 8osy \cdot (x) + g(y)$$

$$\frac{2g}{(x,y)} = -x^2 - 8osy \cdot (x) + g(y)$$

$$\frac{2g}{(x,y)} = -x^2 - 8osy \cdot (x) + g(y)$$

$$\frac{2g}{(x,y)} = -x^2 - 8osy \cdot (x) + g(y)$$

$$\frac{2g}{(x,y)} = -x^2 - 8osy \cdot (x) + g(y)$$

$$\frac{2g}{(x,y)} = -x^2 - 8osy \cdot (x) + g(y)$$

$$\frac{2g}{(x,y)} = -x^2 - 8osy \cdot (x) + g(y)$$

$$\frac{2g}{(x,y)} = -x^2 - 8osy \cdot (x) + g(y)$$

$$\frac{2g}{(x,y)} = -x^2 - 8osy \cdot (x) + g(y)$$

$$\frac{2g}{(x,y)} = -x^2 - 8osy \cdot (x) + g(y)$$

$$\frac{2g}{(x,y)} = -x^2 - 8osy \cdot (x) + g(y)$$

$$\frac{2g}{(x,y)} = -x^2 - 8osy \cdot (x) + g(y)$$

$$\frac{2g}{(x,y)} = -x^2 - 8osy \cdot (x) + g(y)$$

$$\frac{2g}{(x,y)} = -x^2 - 8osy \cdot (x) + g(y)$$

$$\frac{2g}{(x,y)} = -x^2 - 8osy \cdot (x) + g(y)$$

$$\frac{2g}{(x,y)} = -x^2 - 8osy \cdot (x) + g(y)$$

$$\frac{2g}{(x,y)} = -x^2 - 8osy \cdot (x) + g(y)$$

$$\frac{2g}{(x,y)} = -x^2 - 8osy \cdot (x) + g(y)$$

$$\frac{2g}{(x,y)} = -x^2 - 8osy \cdot (x) + g(y)$$

$$\frac{2g}{(x,y)} = -x^2 - 8osy \cdot (x) + g(y)$$

$$\frac{2g}{(x,y)} = -x^2 - 8osy \cdot (x) + g(y)$$

$$\frac{2g}{(x,y)} = -x^2 - 8osy \cdot (x) + g(y)$$

$$\frac{2g}{(x,y)} = -x^2 - 8osy \cdot (x) + g(y)$$

$$\frac{2g}{(x,y)} = -x^2 - 8osy \cdot (x) + g(y)$$

$$\frac{2g}{(x,y)} = -x^2 - 8osy \cdot (x) + g(y)$$

$$\frac{2g}{(x,y)} = -x^2 - 8osy \cdot (x) + g(y)$$

$$\frac{2g}{(x,y)} = -x^2 - 8osy \cdot (x) + g(y)$$

$$\frac{2g}{(x,y)} = -x^2 - 8osy \cdot (x) + g(y)$$

$$\frac{2g}{(x,y)} = -x^2 - 8osy \cdot (x) + g(y)$$

$$\frac{2g}{(x,y)} = -x^2 - 8osy \cdot (x) + g(y)$$

$$\frac{2g}{(x,y)} = -x^2 - 8osy \cdot (x)$$

$$\frac{2g}{(x,y)} = -x$$

$$\ddagger (x,y) = (- - X^{2} - \omega(y)) \cdot X + y^{2} + y$$

$$\frac{My - Nx}{N} = \frac{x^{3} - 4 - 4x^{3} - 2}{x^{4} + 2x} = \frac{-3x^{3} - 6}{x(x^{3} + 2)} = \frac{-3(x^{3} + 2)}{x(x^{3} + 2)} = \frac{-3}{x}$$

$$\frac{M(x)}{N} = \frac{1}{N} \cdot F = e^{\int \frac{-3}{x} \cdot dx} = \frac{-3(x^{3} + 2)}{x(x^{3} + 2)} = \frac{-3(x^{3} + 2)}{x(x^{3} + 2)} = \frac{-3}{x}$$

Ger) Aux: using a suitable substitution to tranform the D.E: $(2x-2) dy - (2x+y) dx = -y \cdot dy$ into a separable equ., the resulting equation is given by:

Sol. (2x-1) dy + y dy - (2x+y) dx = 0 $(y-2) \cdot dy - y = 0$ $(2x-2+y) \cdot dy - (2x+y) dx = 0$ $(y-2) \cdot (y-2) = y$ $(y-2) \cdot (y-2) = y$

(Sol) Pas: lef y(x) the solution for the D.E $(y-xe^x)\cdot dx + (x+2)\cdot dy=0$ (x-2), with y(x)=3, find y(0)=??(x-2) (x-2) (

Que: The best substitution to tranform the D.E: $(x^{3}-yx^{2})y'+x=0 \quad \text{in to olinear equ. is given by ?}$ $sol: y'+\frac{x}{x^{2}-yx^{2}}=0 \quad \text{in to olinear equ. is given by ?}$ $x'+yx=-x^{2}$ $y'=-x^{2}$ $y'=-x^{2}$ y'

Quit: let yx) be the solution for the D.E: $y \cdot dx + (xy-2y^2)dy=0$, if $y(\frac{1}{e})=1$, then at X=-2, the value of y will satisfy=?

$$\frac{|Sol|}{|Sol|} \frac{|Sol|}{|Sol|} + \frac{|Xy-2y|}{|Y|} = 0$$

$$|X| + |X| = |2y|$$

$$|X| + |X| = |2y|$$

$$|X| = |C| + |C| = |C|$$

$$|X| = |C| + |C|$$

$$|X| = |C|$$

$$|X| = |C| + |C|$$

$$|X| = |C|$$

$$|X| = |C| + |C|$$

$$|X| = |C|$$

(39) Qu8: when using the substitution U=yx in the D.E

$$\frac{(u^{2}-u)}{y^{2}} + \frac{u}{y^{2}(1+u)} + \frac{u}{y} = 0$$

$$\frac{(u^{2}-u)}{y^{2}} + \frac{u}{y^{2}(1+y)} + u^{2} = 0$$

$$\frac{u^{2}-u}{y} + \frac{u}{y(1+u)} + u^{2} = 0$$

$$\frac{y}{u^{2}-u} + \frac{y(1+u)}{u} + \frac{y}{u} = 0$$

$$\frac{y}{u^{2}-u} + \frac{y}{u} + \frac{y}{u} = 0$$

$$\frac{y}{u^{2}-u} + \frac{y}{u} + \frac{y}{u} = 0$$

HOIMON A IN HOMANA --

Qua: Using a suitable substitution to tranform the D.E: $-ydx + (x+\sqrt{xy})dy = 0$ into seperable equation the resulting D. E will be :-

알 · 기 부 + (1 + / 국) y--q u= y = y = x.u + u 4 + (1 + J4) (x 4 + 4) =0 4 + X.u' + Ju X.u' + M + Ju u = 0

24+ X.u'+ 1 x.u'+ 544=0 24+ x. n' (1+ Ju) + Ju " = $Y.u' = -\frac{(2u - \sqrt{u} u)}{(\sqrt{u} + 1)}$ se perable

Oso: find the value of K such that the substitution u= y tranform the D.E: (y2+3x4).dx + 5xy.dy = 0 into a sep.equ.?

sel y = u xx + y= kux+uxx $y' + \frac{y' + 3x''}{5xy} = 0$

 $\kappa u \chi^{k-1} + u \chi^{k} + \frac{u^{2} \chi^{2} + 3 \chi^{4}}{5 \chi^{4} u} = 0$ $u' X'' + \frac{u^2 x^{2K} + 3 x^{4}}{5 x^{K+1}} + \frac{K u' X' \cdot 5 u' K'}{5 x^{K+1} u} = 0$

u'x'' + u'x'' + 3x' + 5KX''u' = 0 5x''+1

 $u x^{k} + \frac{x(u^{2} + 5ku^{2}) + 3x^{k}}{5x^{k+1}u} = 0$ والذال ذكر الوالماله seperable عن من الفال ر ایجب اُفد X عاط مشترل لئی بتے الفعل بن ۲٬۷ ان رجب أن يكون نفس الأس لكي يعب عامل مشترك -- ؟ ∑⊈ رخو 2K=4= K=21

(مؤلاً مِد مِعْنِ ؟ مُمْ

(°) this is life...♥

إن إذي بِرزِجِي سُينًا بهعت ولِفاء ولو حاربتم الأنس ولهن ... ما قصد ای قمم اکا نیاد تدرکها تجری لریاح کی رادت لها لسنن...

#Omar_ Alkhaweja ...

Osi: find the general solution to the D. E

$$\begin{cases}
2y^{2y} \\
(\sin(2x) + 2 \cos y) \cdot dx + (\frac{2x}{y} + ye^{y}) \cdot dy = 0
\end{cases}$$

$$\begin{cases}
\sin(2x) + 2 \cos y \cdot dx + (\frac{2x}{y} + ye^{y}) \cdot dy = 0
\end{cases}$$

$$\begin{cases}
\sin(2x) + 2 \cos y \cdot dx + (\frac{2x}{y} + ye^{y}) \cdot dy = 0
\end{cases}$$

$$\begin{cases}
\cos(x) + \cos(x) + \cos(x) + \cos(x) + \cos(x)
\end{cases}$$

$$\begin{cases}
\cos(x) + \cos(x) + \cos(x) + \cos(x)
\end{cases}$$

$$\begin{cases}
\cos(x) + \cos(x) + \cos(x)
\end{cases}$$

$$\begin{cases}
\cos(x) + \cos(x) + \cos(x)
\end{cases}$$

$$\begin{cases}
\cos($$

$$g(y) = ye^{y}$$

$$g(y) = ye^{y} - e^{y}$$

$$C = -\frac{1}{2} \cos 2x + 2x \ln y + ye^{y} - e^{y}$$

$$+ \cot x + 2 \sin y + \sin y = -e^{y}$$

$$+ \cot x + 3 \sin y + \cos y = -e^{y}$$

$$+ \cot x + 3 \sin y + \cos y = -e^{y}$$

$$+ \cot x + 3 \sin y + \cos y = -e^{y}$$

$$+ \cot x + 3 \sin y + \cos y = -e^{y}$$

$$+ \cot x + 3 \sin y + \cos y = -e^{y}$$

$$+ \cot x + 3 \sin y + \cos y = -e^{y}$$

$$+ \cot x + 3 \sin y + \cos y = -e^{y}$$

$$+ \cot x + 3 \sin y + \cos y = -e^{y}$$

$$+ \cot x + 3 \sin y + \cos y = -e^{y}$$

$$+ \cot x + 3 \sin y + \cos y = -e^{y}$$

$$+ \cot x + 3 \sin y + \cos y = -e^{y}$$

$$+ \cot x + 3 \sin y + \cos y = -e^{y}$$

$$+ \cot x + 3 \sin y + \cos y = -e^{y}$$

$$+ \cot x + 3 \sin y + \cos y = -e^{y}$$

$$+ \cot x + 3 \sin y + \cos y = -e^{y}$$

$$+ \cot x + 3 \sin y + \cos y = -e^{y}$$

$$+ \cot x + 3 \sin y + \cos y = -e^{y}$$

$$+ \cot x + 3 \sin y + \cos y = -e^{y}$$

$$+ \cot x + 3 \sin y + \cos y = -e^{y}$$

$$+ \cot x + 3 \sin y + \cos y = -e^{y}$$

$$+ \cot x + 3 \sin y + \cos y = -e^{y}$$

$$+ \cot x + 3 \sin y + \cos y = -e^{y}$$

$$+ \cot x + 3 \sin y + \cos y = -e^{y}$$

$$+ \cot x + 3 \sin y + \cos y = -e^{y}$$

$$+ \cot x + 3 \sin y + \cos y = -e^{y}$$

$$+ \cot x + 3 \sin y + \cos y = -e^{y}$$

$$+ \cot x + 3 \sin y + \cos y = -e^{y}$$

$$+ \cot x + 3 \sin y + \cos y = -e^{y}$$

$$+ \cot x + 3 \sin y + \cos y = -e^{y}$$

$$+ \cot x + 3 \sin y + \cos y = -e^{y}$$

$$+ \cot x + 3 \sin y + \cos y = -e^{y}$$

$$+ \cot x + 3 \sin y + \cos y = -e^{y}$$

$$+ \cot x + 3 \sin y + \cos y = -e^{y}$$

$$+ \cot x + 3 \sin y + \cos y = -e^{y}$$

$$+ \cot x + 3 \sin y + \cos y = -e^{y}$$

$$+ \cot x + 3 \sin y + \cos y = -e^{y}$$

$$+ \cot x + 3 \sin y + \cos y + \cos y = -e^{y}$$

$$+ \cot x + 3 \sin y + \cos y + \cos$$

$$Q_{52}: \text{ solve } (Xy^{2}-y^{2}-X+1)y' + y + X + Ky = -1, y \neq -1$$

$$Sol. \quad y' = -y - X - Xy - 1 \quad y' = -\frac{(y+1)(X+1)}{(y-1)(y+1)(X-1)}$$

$$y' = -\frac{y(1+X)-(X+1)}{y^{2}(X-1)-(X-1)}$$

$$y' = \frac{-(y+1)(X+1)}{(y^{2}-1)(X-1)}$$

$$Solve (Xy^{2}-y^{2}-X+1)y' + y + X + Ky = -1, y \neq -1$$

$$Y' = -\frac{(y+1)(X+1)}{(y^{2}-1)(X-1)}$$

$$Y' = \frac{-(y+1)(X+1)}{(y^{2}-1)(X-1)}$$

find a suigble substitution to transform the D.E. y + X Tan(24) into alinear equ. the find the resulting 1+4y X+1 > Chear. eq. (don't solve the equ.) ? $\frac{V'(1+49')}{(1+49')^2} + \frac{\chi^2 V}{\chi+1} = \frac{1}{\chi}$ (1+4y2 X+1 = X $U' + \frac{2x^2}{X+1}U = \frac{2}{X}$ V = tan (27) y= V (1+492) v'= 2y' => allear in U فكذا لحل فقط 4 لافظ هوماليالوال

Q54: If /(x)= eh(x) is internating factor of the linear D.E:

$$(39)$$
 $\times \frac{dy}{dx} - h(x)y = sin(x) - x^2y$, then the function $h(x)$ is given by ?

$$y' + (x^2 - h(x))y = \sin x$$

$$M(x) = e^{h(x)} = e^{\int \frac{x^2 - h(x)}{x} \cdot dx}$$

$$h(x) = \int x - \frac{h(x)}{x} \cdot dx$$

$$h(x) = x - \frac{h(x)}{x}$$

$$h(x) + \frac{1}{x} h(x) = x$$

$$h(x) = e^{-\frac{1}{x}} \left[c + \int_{X}^{x} x \cdot x \cdot dx \right]$$

$$h(x) = \frac{1}{x} \left[c + \frac{x^{3}}{3} \right] \left[\frac{1}{4} + \frac{1}{3} \right]$$

$$\frac{h(x)}{3} = \frac{1}{x} \left[c + \frac{x^{3}}{3} \right] \left[\frac{1}{4} + \frac{1}{3} \right]$$

(35): $ye^{\frac{1}{3}} \cdot dx - (xe^{\frac{x}{3}} - 3y^2)dy = 0$, $y \neq 0$ (35), is it possible to solve the equ. using the substitution $u = \frac{x}{y}$ if yes find the general solution, if No find another method?

$$\frac{\text{Solve:}}{\text{ye's}} = \frac{y e^{\frac{1}{9}}}{y e^{\frac{1}{9}}} = \frac{y e^{\frac{1}{9}}}{x e^{\frac{1}{9}} - 3y^2} = \frac{y e^{\frac{1}{9}}}{x e^{\frac{1}{9}} - 3y^2}$$

$$x' = \frac{x e^{xy}}{y e^{xy}} - \frac{13y^2}{y e^{xy}} + x' = \frac{y}{y} - \frac{3y}{e^{\frac{1}{9}}} + u = \frac{x}{y} - \frac{x}{y} = \frac{y}{y} - \frac{y}{e^{\frac{1}{9}}} = \frac{y}{y} = \frac{y}$$

$$u \cdot y + u' = u' - \frac{3y}{e^{y}}$$
 $u \cdot y = -\frac{3y}{e^{y}} \Rightarrow \int e^{y} \cdot du = \int \frac{3y}{y} \cdot dy$

$$e^{y} = -\frac{3y}{e^{y}} + C$$

$$e^{y} = -\frac{3y}{2} + C$$

Ops: finel the values of ox and B that make the D.E:
$$\left(\frac{1}{x+2} + \frac{cx}{y}\right) \cdot dx + \left(xy^{3B} + 1\right) \cdot dy = 0$$
 an exact ?

sol. exact so
$$\frac{\partial y}{\partial \mu} = \frac{\partial x}{\partial \nu}$$

$$\frac{\partial \mu}{\partial y} = \frac{-\alpha}{y^2}$$

$$-\alpha y^{2} = y^{3}B$$

$$-\alpha = 1 \Rightarrow \alpha = 1$$

$$-2 = 3B$$

$$\beta = \frac{-2}{3}$$

$$\varphi_{57}$$
: Solve $\left(\frac{\sin y}{y} - 2e^{-x}\sin x\right) \cdot dx + \left(\frac{\cos y + 2e^{x}\cos x}{y}\right) \cdot dy = 0$
Hint: Try again I. F of the form $\mu(x_1y) = ye^{x}$

(Exsiny - 2y sin x) dr (excesy+2cosx) dy o M(xiy) = ctsiny + 2 cosx y + y xx

Sel. We
$$y e^{x} (\frac{\sin y}{y} - 2e^{x} \sin x) \cdot dx$$
 $y e^{x} (\cos y + 2e^{x} \cos x) \cdot dy$
 $f(x_{1}y) = e^{x} \sin y + 2 \cos x \cdot y + gx$
 $f(x_{1}y) = e^{x} \sin y + 2 \cos x \cdot y + gx$
 $f(x_{1}y) = e^{x} \sin y + 2 \cos x \cdot y + gx$
 $f(x_{1}y) = e^{x} \sin y + 2 \cos x \cdot y + gx$
 $f(x_{1}y) = e^{x} \sin y + 2 \cos x \cdot y + gx$
 $f(x_{1}y) = e^{x} \sin y + 2 \cos x \cdot y + gx$
 $f(x_{1}y) = e^{x} \sin y + 2 \cos x \cdot y + gx$
 $f(x_{1}y) = e^{x} \sin y + 2 \cos x \cdot y + gx$
 $f(x_{1}y) = e^{x} \sin y + 2 \cos x \cdot y + gx$
 $f(x_{1}y) = e^{x} \sin y + 2 \cos x \cdot y + gx$
 $f(x_{1}y) = e^{x} \sin y + 2 \cos x \cdot y + gx$
 $f(x_{1}y) = e^{x} \sin y + 2 \cos x \cdot y + gx$
 $f(x_{1}y) = e^{x} \sin y + 2 \cos x \cdot y + gx$
 $f(x_{1}y) = e^{x} \sin y + 2 \cos x \cdot y + gx$
 $f(x_{1}y) = e^{x} \sin y + 2 \cos x \cdot y + gx$
 $f(x_{1}y) = e^{x} \sin y + 2 \cos x \cdot y + gx$
 $f(x_{1}y) = e^{x} \sin y + 2 \cos x \cdot y + gx$
 $f(x_{1}y) = e^{x} \sin y + 2 \cos x \cdot y + gx$
 $f(x_{1}y) = e^{x} \sin y + 2 \cos x \cdot y + gx$
 $f(x_{1}y) = e^{x} \sin y + 2 \cos x \cdot y + gx$
 $f(x_{1}y) = e^{x} \sin y + 2 \cos x \cdot y + gx$
 $f(x_{1}y) = e^{x} \sin y + 2 \cos x \cdot y + gx$
 $f(x_{1}y) = e^{x} \sin y + 2 \cos x \cdot y + gx$
 $f(x_{1}y) = e^{x} \sin y + 2 \cos x \cdot y + gx$
 $f(x_{1}y) = e^{x} \sin y + 2 \cos x \cdot y + gx$
 $f(x_{1}y) = e^{x} \sin y + 2 \cos x \cdot y + gx$
 $f(x_{1}y) = e^{x} \sin y + 2 \cos x \cdot y + gx$
 $f(x_{1}y) = e^{x} \sin y + 2 \cos x \cdot y + gx$
 $f(x_{1}y) = e^{x} \sin y + 2 \cos x \cdot y + gx$
 $f(x_{1}y) = e^{x} \sin y + 2 \cos x \cdot y + gx$
 $f(x_{1}y) = e^{x} \sin y + 2 \cos x \cdot y + gx$
 $f(x_{1}y) = e^{x} \sin y + 2 \cos x \cdot y + gx$
 $f(x_{1}y) = e^{x} \sin y + 2 \cos x \cdot y + gx$
 $f(x_{1}y) = e^{x} \sin y + 2 \cos x \cdot y + gx$
 $f(x_{1}y) = e^{x} \sin y + 2 \cos x \cdot y + gx$
 $f(x_{1}y) = e^{x} \sin y + 2 \cos x \cdot y + gx$
 $f(x_{1}y) = e^{x} \sin y + 2 \cos x \cdot y + gx$
 $f(x_{1}y) = e^{x} \sin y + 2 \cos x \cdot y + gx$
 $f(x_{1}y) = e^{x} \sin y + 2 \cos x \cdot y + gx$
 $f(x_{1}y) = e^{x} \sin y + 2 \cos x \cdot y + gx$
 $f(x_{1}y) = e^{x} \sin y + 2 \cos x \cdot y + gx$
 $f(x_{1}y) = e^{x} \sin y + g(x_{1}y) + g(x_{1}y)$
 $f(x_{1}y) = e^{x} \sin y + g(x_{1}y) + g(x_{1}y)$
 $f(x_{1}y) = e^{x} \sin y + g(x_{$

(A)
$$y^2 y + \cos(t) y^3 = \cos t$$

 $y(\frac{\pi}{2}) = 2$

Widely 151

B
$$Xyy = X^2e^{\frac{y}{x}}+y^2$$
, $y_10=2$

Solve $y = X^2e^{\frac{y}{x}}+y^2$, $y_10=2$

Solve $y = X^2e^{\frac{y}{x}}+y^2$

Let $y = y^2$

Let $y = y^2$

Let $y = y^2$

$$V = e^{-3sint} \left[c + e^{3sint} \right]$$

$$u = 3sint \left[c + e^{3sint} \right]$$

$$\frac{du}{3cost} = dt$$

$$\frac{du}{3cost} = e^{u} = \frac{3cost}{2cost}$$

$$= e^{u} = \frac{3sint}{2cost}$$

$$V = e^{3sint} \left[c + e^{3sint} \right]$$

$$y^{3} = e^{3sint} \left[c + e^{3sint} \right]$$

$$y^{4} = e^{3sint} \left[c + e^{3sint} \right]$$

$$y^{4} = e^{3sint} \left[c + e^{3sint} \right]$$

Q59: find general solution for
$$e^yy' - \frac{e^x}{x^2 + xy} + e^y = 0$$
 $(x^2 + xy)$

Sol. $y' - \frac{1}{x(x+y)e^{x+y}} + 1 = 0$
 $(x^2 + xy) =$

y= f(x1y) is homogenous Peo: show that the differ ey. if and only if f(+x, ty) = f(x,y)

Sol if and only if) كه هذا معى الحب بالريا خوات بشكل صاء حي مني بدنا عثار ننت نين الو أيمين = سياد ﴿ إِيارَ أَيِن (في ا تعاهيب) General equation homogenous: $f(x,y) = G(\frac{y}{x})$

$$\Rightarrow f(x,ty) = G(\frac{xy}{xx}) = G(\frac{y}{x})$$

$$= \xi f(x,ty)$$

$$= \xi f(x,t$$

only on the quantity xy, then the differ eq.:

Cet
$$u = Xy \Rightarrow M_X - My = f(xy)$$

$$\overline{XM - yN} = f(xy)$$

$$M + Ny = 0 \rightarrow M(x_1y) dx + N(x_2y) dy = 0$$

$$\frac{\partial \mu}{\partial y} = \frac{\partial M}{\partial u} \cdot \frac{\partial u}{\partial y} = \frac{\partial M}{\partial u}$$

$\frac{\partial \mu}{\partial x} = \frac{\partial M}{\partial u} \cdot \frac{\partial u}{\partial x} = \frac{\partial M}{\partial u}$

by chain Rule

$$X.M \frac{\partial \mu}{\partial u} - y.N \frac{\partial \nu}{\partial u} = \mu_{(N)}.Nx - \mu_{(N)}My$$

$$\frac{\partial \mu}{\partial u}(xM-Ny) = \mu_{(N)}(Nx-My)$$

(3)
$$xy' + (2x + 1)y - \bar{e}^{2x} = 0$$
, with $y(1) = \bar{e}^{2}$ find value of $y(2)$

$$\frac{sol.}{y'} + \left(2 + \frac{1}{x}\right)y = \frac{e^{-2x}}{x}$$

$$H(x) = e^{2x} + cux$$

$$= e^{2x}$$

$$= x e^{2x}$$

$$y = [c + x] \frac{1}{xe^{2x}}$$

$$y(t) = e^{2x} - e^{-x} = [c + 1] \frac{1}{|x|e^{2x}}$$

$$|x| = c = b |c = 0|$$

$$y = \frac{1}{e^{2x}} \rightarrow y(2) = \frac{1}{e^{4}}$$

963: find the values of B so that the substitution y=VX transform the D.E (X+3x2y)y'+ xy2= y into a seperable equation?

Selimon B=-1

$$y = \frac{\sqrt{x}}{x} \Rightarrow y = \frac{x \cdot y + y}{x^2}$$

$$x(1+3x) = \frac{x \cdot y + y}{x^2} + \frac{x \cdot y^2}{x^2} = \frac{y}{x}$$

$$x(1+3y) = \frac{x \cdot y + y}{x^2} + \frac{y^2}{x^2} = \frac{y}{x}$$

$$(1+3v) \left(v' + \frac{v}{x}\right) + \frac{v^{2}}{x} = \frac{4}{x}$$

$$v' + \frac{v}{x} = \frac{(v-v^{2})}{x(1+3v)}$$

$$v' = \frac{v-v^{2}-v(1+3v)}{x(1+3v)}$$

$$v' = \frac{-uv^{2}}{x(1+3v)}$$

$$v' = \frac{-uv^{2}}{x(1+3v)}$$

$$v' = \frac{-uv^{2}}{x(1+3v)}$$

$$v' = \frac{-uv^{2}}{x(1+3v)}$$

Pou: find the general sol. to the D.E (y'exy'+ 4x').dx 1

$$(2xy^{2y^{2}} - 3y^{2}).dy = 0$$

#omer-Alkhawaya ...

Q66: If M(x,y) = 1 is an I.F of the D.E (x=y=y)-(x2-y2-x)y=0, then the general solution is given by: ?

$$\frac{\sum_{y} A(x,y) = \frac{1}{2} \frac{y}{x^2 y^2} dx + (-1 + \frac{x}{x^2 y^2}) dy = 0}{M(x,y)} dy = 0$$

$$\frac{M(x,y)}{(x^2 - y^2)^2} \frac{y \cdot (-2y)}{(x^2 - y^2)^2} \frac{-(x^2 + y^2)}{(x^2 - y^2)^2}$$

$$\begin{aligned}
\mu_{X} &= -\left(x^{\frac{2}{2}}y^{\frac{1}{2}} + X(2x)\right) = -\left(x^{\frac{1}{2}}y^{\frac{1}{2}}\right) \\
My &= \mu_{X} \text{ is exact} \\
\int \frac{\partial f}{\partial x} \cdot dx &= \int 1 - \frac{\mu_{X}}{x^{2} - y^{2}} \cdot dx \\
f(x,y) &= \chi - \mu_{X} \cdot \left(\frac{\chi}{y}\right) + \frac{\eta}{y} \cdot dx
\end{aligned}$$

$$\begin{aligned}
f(x,y) &= \chi - \mu_{X} \cdot \left(\frac{\chi}{y}\right) + \frac{\eta}{y} \cdot dx
\end{aligned}$$

$$\begin{aligned}
f(x,y) &= \chi - \mu_{X} \cdot \left(\frac{\chi}{y}\right) + \frac{\eta}{y} \cdot dy
\end{aligned}$$

Q67: find the integraping factor of the D.E

$$e^{x}(x+1) + (ye^{x} + xe^{x})y' = 0, \text{ then fried general Solution }$$

$$sol. e^{x}(x+1)dx + (ye^{y} + xe^{x}) \cdot dy = 0$$

$$My = 0, Mx = -xe^{x} - e^{x} \Rightarrow \text{ non exact}$$

$$Mx = -(xe^{x} + e^{x}) = -e^{x}(x+1)$$

$$Mx = -(xe^{x} + e^{x}) = -e^{x}(x+1)$$

$$Mx = -(xe^{x} + e^{x}) = -e^{x}(x+1)$$

$$M(y) = e^{x} - (x+1) = -1$$

$$M(y) = e^{x} - (x+1) =$$

Sol.
$$e^{x}(x+1)dx + (ye^{y}-xe^{x})\cdot dy=0$$
 $My = 0$
 $My = 0$
 $Mx = -xe^{x}-e^{x}$
 $= 0$
 $Mx = -(xe^{x}+e^{x})=-e^{x}(x+1)$
 $= -(xe^{x}+e^{x})=-e^{x}(x+1)$

Pro: find the general solution of the D. E:
$$dy = (\frac{1}{x} - \frac{1}{y^2+1} - \frac{1}{x(y^2+1)} + 1) dx$$

Sol. Character $dy = (y^2+1-x^2-1+xy^2+x^2)$
 $(y^2+1) dy = (y^2+1) dx$
 $(y^2+1) dy = (y^2+1) dx$

Seperable $\frac{1}{2}$
 $\frac{1}{2}$

Find the general solution of the D.E.
$$X(2x-y^3)y'-y'=2xy$$

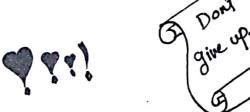
$$\frac{59}{2} = X(2x-y^3)dy + (-y^4-2ky).dx = 0$$

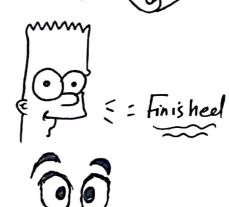
$$My = -4y^{3} = 2x$$

Nx = 4x - y³

Nnon exact

 $My = \frac{4x - y^{3} + 4y^{3} + 2y}{M} = \frac{4x - y^{3} + 4y^{3} + 2y}{-y^{4} - 2xy}$


$$\frac{6X + 3y^{3}}{-y(y^{3} + 2X)} = \frac{3(2X + y^{3})}{-y(y^{3} + 2X)} - \frac{-3}{y}$$


$$f(y) = e^{\int \frac{-3}{3} - dy} = \left[\frac{1}{y^3} \right] \rightarrow (2x^2y^{-3} - x) dy + (-y - 2xy^2) dx = 0$$

١١ اللم لك محدوالشكر ١١

اعتذر عن اي فطا عامل فهو عمل إناي فقط ولا يفلوا لال

سزان ـ دين ـ ١ ـ سكند

تعفيز : مها جبت بالفيرس أمامك 70 علامة المحدد المسكند- المسكند المامك بعض المامك بعض المامك المامك

إِنَّ النَّذِي يُورُهِي كُسِياً بِهِتَّمِهِ مُلْقَاهُ لُوْعَارِيَّهُ إِنْ النَّهِ وَإِنَّ اللَّهِ الْمُ

عمر- لفواجه - رياضيان منه - أولى

 $Q_{i}: if w[e^{3x}, y'] = e^{3x}, y(0) = 0, y'(1) = \frac{2}{3}$

find y?

Aux. eq . Y-3r=0 - 7=0 , r=3

 $y_{p} = A \times y_{p} = A \times y_{p}'' = 0 \xrightarrow{ij} 0 - 3A = 1 \Rightarrow A = \frac{1}{2}$

 $y = C_{1} + C_{2}e^{3X} + \frac{1}{3}X \rightarrow y^{(0)} = 0 \qquad y^{(0)} = 0 \qquad y^{(0)} = \frac{2}{3}$ $y' = 0 + 3C_{2}e^{3X} - \frac{1}{3} \rightarrow y^{(0)} = \frac{2}{3}$ $C_{1} = \frac{1}{4} \qquad y = \frac{1}{4} + \frac{2}{4}e^{3X} + \frac{1}{3}X \rightarrow y^{(0)} = \frac{2}{3}$

Q: find the general sol. of y" + 4y" + 5y"=3x" + 5 cs x

501. Aux.eq. r4+4r3+5r2=0

 $r^{2}(r^{2}+4r+5)=0$ $r_{1}=0$ $r_{2}=0$ r_{3} , $r_{4}=-2+2i$ $y=1, y=X, y=e^{2}X\cos X, y=e^{2}X\sin X$ (x=-2+2i)

y= (Ax+BX+c) x2 + DX65x + EX sin x + FXe cosx + Gxe sin x

Mote: y= q+ & X+ C = 2X cosx + Cy = 2X sinx

Qs: find the general sol. of x3y = 3x2y = 5xy = X lnx

 $\sum_{i=1}^{3} (-x^{2})^{2} = 2xy^{2} - 5y = 2xx$ $\sum_{i=1}^{3} (-x^{2})^{2} = 2xy^{2} - 5y = 2x$ $\sum_{i=1}^{3} (-x^{2})^{2} = 2xy^{2} - 5y = 2x$

Aux.eq = 124x-5=0 = 125 ----

y = q = t + q = t y = At + 13 y = A y = 0

D.E => 0 - 4A - 5At - 5B = t

 $\Rightarrow -5A = 1 \Rightarrow A = \frac{1}{5}$

 $y = ce^{5t} + c_{1}e^{t} - \frac{1}{5}t + \frac{y}{25}$ $y = c_{1}x^{5} + c_{2}x^{5} - \frac{1}{5}e_{1}x + \frac{y}{25}$ $y = c_{2}x^{5} + c_{2}x^{5} - \frac{1}{5}e_{1}x + \frac{y}{25}$

 Q_{7} :- find the general solution to D.E: $\chi^{2}y^{2}$ -6 $y=\chi^{2}$ cn(x); $\chi>0$

sol $x^2y'' - 6y = x^3 ln(x)$ #emar-Alkhawaja

 $lef t = en x \rightarrow x = e^{t} \rightarrow g(t) = \tilde{e}^{t}, t$

 $y^{-}y^{-}6y = 0 \Rightarrow r^{2}r^{-}6z0 \Rightarrow r_{+} = 3 \Rightarrow r_{z} = -2$ $y_{z} \in \partial^{z} + c_{z} = 0 \Rightarrow r^{2}r^{-}6z0 \Rightarrow r_{+} = 3 \Rightarrow r_{z} = -2$

y= c= t+ c= t+ (At+Bt) = t y(x) = c X+ c_X + (A(enx)+Benx) X +

(3

Og: find the homo. D.E. with constant coeff. of at least order which has the sal. $y(x) = 3 x^2 + 5 x e^{2x} - \cos(3x)$ Le ail at Jestin ea columna D.E well al la lia in SAL y(x) = 3 x2 + 5 x 2x - (0x(3x)) $3x^{2} = 6$, 0, 0, $5x^{2x} = 2,2$ $-6 > (3x) = 0 \pm 3i$ (اب X منی X منی X منی کررب X فنی مکررب (اب X منی کررب) الم Γ^{3} $(\Gamma^{2}+9)$ (يغرب بعض) = 1³ (x-2)² (x²+9) = 0 $Y^7 - 4Y^6 + 13Y^5 - 36Y^4 + 36Y^4 = 0$ $y^{(7)} - 4y^{(6)} + 13y^{(5)} = 0 +$ Q= : let y(x) = sin(x2) be asolution of xy=y+4x2y=0 ; X 70, use the reduction of order method to find the general salution? #Omar_ Alkhawaja-Sol. (+x) y" - 1 y + 4xy = 0 $y = y \int \frac{e^{\int PW \cdot dv} \left(PW \right)}{\left(Y_{i} \right)^{2}} dx = \sin(x^{2}) \int \frac{e^{\int \frac{1}{x}} \cdot dx}{\sin^{2}(x^{2})} \cdot \sin(x^{2}) \int \frac{X}{\sin^{2}(x^{2})} dx$ $eet u = x^{2} \rightarrow du = dx \rightarrow sin(u) \int \frac{x}{sin^{2}(u)} du$ $= sin(u) \int csc^{2}(u) du \rightarrow sin(x)^{2} \times cet(x^{2}) \int sin^{2}(u) du$ $y_{1}=-\frac{\cos(x)}{2}$

Op: use the method undefermined coef	f. to find the form
of the particular sal you of t	he D.E
$y^{(6)} + 3y^{(5)} + 4y^{(4)} + 2y^{(8)} = x^2 + sin(2x)$)
Sel v + 3r5 + 4r4 + 2r3 = 0	$\frac{Y^2+2r+2}{Y^3+3r^2+4r+2}$
$r_3(r_3+3r_5+4r+5)=0$	
(r+1) =0	$\frac{-\sqrt{3}-r^2}{2x^2+4r+2}$
(r+1)(r+2r+2)	-21° 2r
	27+2
ry==1 complex rg. rg=1ti	-2.K-3
V=1	L
$y=1 \qquad y=X \qquad y=\bar{e}^X$	d &
بِ ٢٠٠٠ لِعْنِي كُمْ لِحُلُولُ طِعِنَا هِمْ إِلَيْ	د الد درج در کار ١٥٠
بِتُ بِهِ نِعْنِي كُلِ لِحُلُولُ طُعِنَا مِ مِلَّالِهِ مِنْ الْحِيْقِ كُلُ لِحُلُولُ طُعِنَا مِ مِلْ الْحِيْقِ كُلُ لِحُلُولُ طُعِنَا مِ مِنْ الْحَارِيمُ الْمُعْرَاهُ اللهِ مَا يَعِيْقِ كُلُ لِخُلُولُ طُعِنَا مِ الْحَيْقِ فِي الْحَيْقِ فِي الْحَيْقِ فِي الْحَيْقِ اللَّهِ عَلَيْهِ مِنْ اللَّهِ عَلَيْهِ مِنْ الْحَيْقِ فِي اللَّهِ عَلَيْهِ مِنْ اللَّهِ عَلَيْهِ عَلَيْهِ مِنْ اللَّهِ عَلَيْهِ عَلَيْهِ مِنْ اللَّهِ عَلَيْهِ لَلْعِنْ عَلَيْهِ عَلَيْهِ عَلَيْهِ عَلَيْهِ عَلَيْهِ عَلَيْهِ عَلَيْهِ عَلِي عَلَيْهِ عَلَيْ	عين لتاه وعلول
	ف ما مد مناتوه
7=(AX+BX+C) + D sin(2X) + E	(a s(z x)
تکام اذا نفرب در (۲)	
پ مرب به در حلها مقط یلی فیه تشاری الله الله فیه تشاری الله الله الله الله الله الله الله الل	J + E @X2X)
بُصْرِي كِها دلة كلها مقط يلي فيه تك به #	الملاصط بالتكابر ما
، أنك مَصِ وَمنتظ وَمدعط ، ولن يُطِي	ستنكر أن لله يعا
كمة هو بعلمها م وإن خال ك مد فثق	عما لاً سيلا
لِمِر وَاقْفُ إلى مَا أَكْثِراً ٧	ما في مرك علم
	<u> </u>
# @max - Alkhawaja	* ***
(5)	

91: Solve y"+ y'+ 4 =0

solution: y", y = -4

 $* y'' + y' = 0 \implies r^{2} + r^{2} = 0 \implies r = 0, -1$

 $y_i = e^{\circ x} = 1$ $y_i = \bar{e}^x$

y = C + C = X # emar_Alkhawoja

YX Y = A NOTINGES Y = AX | y = AX |

y=y+y = Ax+ <+ <zex #

معكن يعي بالده ال إن هد قعة بياب ٨ نشق ب مرتبين وبنوع الماب ...

On: find the homogeneous D.E with constant coeff.

where general solis given by

 $y(x) = C_{\bar{e}^{2x}} + C_{z} X \bar{e}^{zx} + 3 \sin x$

501: - Y = < e2x + C x e2x r= -2

 $(r+2)(r+2)=0 \Rightarrow r^2 + 4r + 4 = 0$

y'+4y'+4y=0 -- homo.

y'+4y'+4y = 0 -- homo.

 $y_{p} = 3 \sin x - y_{p} = 3 \cos x - y_{p} = -3 \sin x$

3 Sin X + 12 COSX + 12 Sin X = G(X)

g(x) = 12 Gsx + 9 sin x

i. D. E = y' + 4y' + 4y = 12 GSX + 9 Sin X #

Q13: find the general solution of D.E y'- 2y'+ y= x'ex sal. y" 24 4 4 = 0

$$\frac{SG!}{V_1^2 - 2V_1^2 + V_2^2} = 0 \Rightarrow r = 1.1$$

$$V_1 = -\int \frac{y_2}{e^2x} = \frac{g(x)}{e^2x} \cdot dx = -\int \frac{Xe^2 \cdot Xe^2}{e^2x}$$

$$V_1^2 = -\int \frac{e^2x}{e^2x} = \frac{e^2x}{e^2x}$$

$$V_1 = -\int \frac{y_2}{w} \frac{g(x)}{dx} \cdot dx = -\int \frac{x^2}{e^{2x}}$$

$$V_1^2 = -\int \frac{e^{2x}}{e^{2x}} = -\frac{x}{e^{2x}}$$

$$g(x) = \frac{e^{x}}{x} \qquad \frac{\text{ver}(\text{ution})}{\text{ver}} \qquad v_{2} = \int \frac{y_{1}}{x} \frac{dx}{x} = \frac{e^{x}}{x} \cdot \frac{x^{2}}{x} \cdot dx$$

$$W = \begin{vmatrix} e^{x} & \chi e^{x} \\ = \omega(y_{1}+y_{2}) \end{vmatrix} = v_{1}y_{1} + v_{2}y_{2}$$

$$= \chi e^{x} + e^{x}$$

$$= -\chi e^{x} + e^{x} + c_{1}x_{2}$$

$$= -\chi e^{x} + e^{x} + c_{2}x + c_{3}x_{4}$$

$$= -\chi e^{x} + e^{x} + c_{4}x_{4}$$

$$= -\chi e^{x} + e^{x} + c_{5}x_{4}$$

Q14: The auxiliary equation of the D.E

$$y^{(6)} = 5y^{(5)} + 8y^{(4)} = 10y^{(3)} + 13y^{(3)} = 5y^{(4)} + 6y = 0$$
 is Criven

$$y^{(5)} - 5y^{(5)} + 8y^{(4)} - 10y^{(3)} + 13y^{(4)} - 5y^{(4)} + 6y = X \cos X$$

$$\frac{50!}{(r^2+5r+6)(1+1)^2} = 0 \Rightarrow (r+1)(r+3)(r^2+1)^2 = 0$$

$$r=2,3$$
, $r=\pm i$, $r=\pm i$

$$y = e^{2X}$$
 $y_1 = e^{3X}$ $y_2 = \sin X$ $y_3 = \sin X$

$g(y) = X GSX \rightarrow Y_p = (AX+B) GSX + (CX+D) SI'NX$
د فلهم بعفل ع ١٠ ١ إلا ما يكون في ١٠٠٠
y = Ax cosx + B cosx + & x sin x + D sin x
بنه عي لقينا حلو تك مهرب بـ <u>لا</u>
y = Ax3cosx + Bxcosx + Cx3sinx + Dx2sinx

انتی ہے ال لارہ کال ہلا اللہ کا

 Q_{15} : Salve: $y'' + \frac{y}{x} + \frac{4}{x^2}y = 0$. X > 0Sal: X^2 نفری بر X^2 Y'' + Xy' + Yy = 0 cauchy - enlar

 $Y^{2} + (1-1)r + 4 = 0 \Rightarrow Y^{2} + 4 = 0$

y = x cos264x = cos264x y = X° sinzenx = Binzenx

4 (x) = C Cos (2enx) + C Sin (2enx)

Q16: Find general solution to the diffe eq. xy-(x+1)y+y=0 , X 70, given that fix = ex is asal to this D.E.

 $\frac{Sol}{P(x)} \cdot y'' - \left(\frac{X+1}{x}\right)y' + \frac{1}{x}y = 0$ $P(x) = \frac{1}{2}(x)$

 $y_2 = y_1 \int \frac{e^{-\int RX \cdot dx}}{e^{-\int RX \cdot dx}} dx = e^{x} \int \frac{e^{+\int +\frac{x+1}{x} \cdot dx}}{e^{-2x}}$

 $= e^{x} \int e^{x} e^{x} dx = e^{x} \int e^{x} e^{x} dx$

 $= e^{X} \int \frac{e^{X} \cdot x}{e^{2X}} dX = e^{X} \int \overline{e}^{X} \cdot x \cdot dx \xrightarrow{J \models 1} u = X \cdot du = e^{-X}$

 $-xe^{-x} + \int e^{x} dx = e^{-x}$ $-xe^{-x} + \int e^{x} dx = e^{-x}$ $-xe^{-x} + \int e^{x} dx = e^{-x}$ $-xe^{-x} + \int e^{x} dx = e^{-x}$

yn= c, ex+ c2 (-x-1) #

Q17: Solve y" -y = 0

 $x^{\frac{y}{1}} = 0 \Rightarrow (x^{2})(x^{2}) = 0 \Rightarrow x^{2} = 1 \Rightarrow x$

y = cex + cex + cex + cusinx #

Q18: 1et y, y be two linearly independent sol.

 $x^{2}y^{4} + Xy^{4} + qwy = 0$, X > 0, if w[y, y]w = 5

find w[4,14,](10)?

 $sol \quad xy'' + xy + qxxy = 0 \quad (auch - eular)$

 $y'' + \frac{1}{x}y + \frac{1}{x}y = 0$

 $w(y,y_x)(x) = c \cdot e^{-\int pxy \cdot dx} - c \cdot e^{\int \frac{1}{x} \cdot dx} = \left[c \cdot \frac{1}{x}\right]$

but = 0

 $u(y, y_1)(10) = 5 + \frac{1}{10} = \frac{1}{2}$

Q19: let 1[4]:0 be alinear diffieq. with constant coeff.
whose auxiliary eq. is $(r+1)^2 r^3 = 0$: Find
a) The order of L[y]-0
b) ageneral sol to L[4]=0
c) a form for aparticular sol to L[4]=X+3sin2x
using the unddermined coeff. method
d) defermined whether we can use the undetermined
coeff method to find a particular sol to L[y] = Sin2x
$561.$ a) $r^{5} + 2r^{4} + r^{3} = 0 \Rightarrow y^{(5)} + 2y^{(4)} + y^{(3)} = 0$
Lifth order#
b) r= 6,0,0, r=-1,-1
$y = 1$ $y = x^2$ $y = \overline{p}^X$ $y = \overline{p}^X$
$y = 1 \qquad y = x \qquad y = \bar{E}^{X} \qquad y = \bar{E}^{X} \qquad x$
y = < + <2 x + <3 x + <4 e + <5 Xe x
ا فرضاها م الفراد الفرضاء الم
$g(y) = X^{2} + 2 + 3 \sin 2x$
y = (AX+BX+C) + D sin2X + E Gs2X
y = (AX ² BX+C) + D sin2X + E @s2X
y = (AX5 + BX + CX3) + D sin2x + E cos2x
79
الوال تعالى بدو تحدد انو نقدر اوجه ع كا كالم كلة . unde. coeff. الوالم تعدد انو نقدر اوجه على الم
$9(x) = 8in^2x - \frac{1}{2} - \frac{1}{2} cos 2x$
y: A+Baszx+csinzx - Csapé
رَا عَلَى اللهِ اللهِيَّا اللهِ اللهِ اللهِ اللهِ اللهِ اللهِ اللهِ اللهِ اللهِ اللهِي اللهِ الل

Q20: Find ageneral gol. to $(\sin x)y'' + (\sin x)y = 1$ $0 < x < \frac{\pi}{2}$, if $y = C \sin x + C \cos x$ is the general sol. to the corresponding homo equation?

Sel. y = sin X , y = 6 s x = D. Ly sin X de proi

 $W(sinX, GsX) = |sinX| GsX | = -(sin^2X + Gs^2X)$ $GsX - sinX| = -(sin^2X + Gs^2X)$

 $V_{i} = -\int \cos x \cdot \frac{1}{\sin x}$ $V_{i} = -\ln |\sin x|$

 $V_2 = \int \frac{\sin x}{\sin x} \cdot \frac{\sin x}{\sin x}$ $V_2 = -x$ $V_3 = \frac{1}{\sin x} \cdot \frac{\sin x}{\sin x} - x \cdot \cos x$

y= C, sinx + C, cosx + (enlsinx) sinx - x cosx #

P21: The largest interval on which the I.V.p

 $y'' + \frac{y}{x-2} - e^{x}y = 1$, y(3) = 1, y'(3) = 0 has

aunique sol· is?

Sal. X-2=0 de 0 in which 0 is 0 in 0

 Q22: The substitution X = et transforms the equation

 $L[y] = X^2y''(x) + 4xy'(x) + y(x) = 0$, X > 0into?

Sol. X = et -> cauch-Eular

a=1 b=4 $c=1 \Rightarrow r^2+3r+1=0$

y"+3y'+y=0 # صدا سؤلا فع دائر مهذا هو لجوال. ما

Q23: The sol to y"(x) + 4 y(x) + 4 y(x) = 0 is?

 $sol Y^2 + 4r + 4 = 0$ $(r + 2)^2 = 0$

 $y = e^{-2x}$ $y = e^{-2x}$ $y = e^{-2x}$ y = C, ē²x + C, x e⁻²x - قرائر على المرائح المرا

Given that (m2-1) (m2+1) 3=0 is the auxiliary eq. of some linear D.E L[y] = 0 with constant

Coefficents, answer parts Q24, Q5, Q5:

 Q_{24} : The order of the D.E L[y] = 0 is? $\frac{50!}{10!} \cdot \frac{50!}{10!} \cdot (m^2-1) \cdot (m^6 + 3m^4 + 3m^2 + 1) = 0$ order of [8] ising

O25: The largest number of elements of a fundemental sol. set of the D.E L[4]=0 is?

Sol argest number of elements

له بقص الكر إبين موجود ...

<u>=> 81</u>

Q20: The form of aparticular sol. to L[4] = Xsin x is?
المجد وانحا بالبرايتم الاعتان بوجي يحون نيات به الدي
وما تفيع علما علامة من الله الله علامة الله الله
$r = \pm i$ $r = \pm i$
Y= ±i Y= ±i
$y = e^{x}$ $y = e^{x}$ $y = sin x$ $y = cos x$
$y = e^{x} y = e^{x} y = \sin x y = \cos x$ $y = x \sin x y = x^{2} \sin x y = x^{2} \cos x$
y= c,ex+ c,ex+ c, sinx + c, cosx + G, X sinx+ c, X cosx
+ C, X sin x + C X cas X #
gr = X sin x
y = (AX + B) sin X + (AX + D) cos X
= Axsinx + Bsinx + Cx cosx + D cosx
يومد ــک به نفر ب د د ۲۸
(مر) با الله الله الله الله الله الله الله ا
(") NC / 16) 10 00 000 000 000 000 000 000 000 000
少 #
Q27:- Give that fix = x3 is asol, to the DE
L[9] = X2 y'(x) + X y'(x) - 9 you = 0 - x > 0 -
then a second linearly independent sol. to
[19] =0 , X>0 is ?
fiv = x3 = y, y, where is y who
$u'' + \frac{1}{2} u'_{\alpha} x_1 - \frac{q}{2} u(x) = 0$
$y_2 = y_1 \int \frac{e^{-\int RX \cdot dx}}{e^{-\int RX \cdot dx}} \cdot dx = x^3 \int \frac{e^{-\int \frac{1}{x}}}{x^6} \cdot dx \longrightarrow \frac{y_1^2 x_1^2}{x^6}$ $(y_1)^4 \qquad (y_2)^4 \qquad (y_3)^4 \qquad (y_4)^4 \qquad (y_5)^4 \qquad (y_$
(١٦) * آبه آبه طب #

Q28: find the wonskian w[ex = 3ex]

 $W[e^{t},3e^{t}] = |e^{t},3e^{t}|$ Light de mil

3e2x 3e2x = Ol

· indep. u = Su Zero is dep. je [6] Uland julius

u'= y" => \(\(\frac{1}{4} \) \(\frac{1}{4} \)

u2 - (u.du = 3x+C

 $\frac{1}{9}(x) = \frac{1}{9}(6x-5)^{\frac{3}{2}} + \frac{8}{9}$

indep. or depen so le the conversion indep.

Q29: solve the I.Up: $\frac{d^2y}{dx^2} \frac{dy}{dx} = 3$, y(y) = y(y) = 1?

X + C but = y (v = 1

 $\int y = \int \frac{3}{2} \cdot 6 \times -5 \Rightarrow y = \frac{(6x-5)^{\frac{3}{2}}}{\frac{3}{2} \cdot 6} + C = \frac{1}{9}(6x-5)^{\frac{3}{2}} + C$

but y(1)=1 ⇒ C= 8 (8),200)

930:- If w[3x+1, y(x)] = 5x-3; w(1) =-1

Find you?

 $\frac{50!}{3}$ w [3x+1, yx] = |3x+1 yw| = |5x-3|

 $y(x) = \frac{5x-3}{3x+1}$ $y(x) = \frac{5x-3}{3x+1}$

y = (3X+1) C + $\int \frac{5X-3}{(3X+1)^2} dx$

 $y = (3X+1) \left[c + \frac{-1}{3} \left(\frac{5X-3}{3X+1} \right) + \left(\frac{5}{3X+1} \right) \frac{1}{3X+1} \right]$ $v = (3X+1) \left[c + \frac{-1}{3} \left(\frac{5X-3}{3X+1} \right) + \left(\frac{5}{3X+1} \right) \frac{1}{3X+1} \right]$ $v = (3X+1) \left[c + \frac{-1}{3} \left(\frac{5X-3}{3X+1} \right) + \left(\frac{5}{3X+1} \right) \frac{1}{3X+1} \right]$ y = (3x+1) $\left[C - \frac{5x-3}{9x+3} + \frac{5}{3} cn | 3x+1 \right]$

صا موں ناقعا بدنا حمر کے 6 نفر ہوال اعقال معلومة

W= Ce - Spordy من المعروب ال

W = C(3x+1) = -1 = C.4 = C= -1

 $y = (3x+1) \left[\frac{-1}{4} + \frac{3-5x}{9x+3} + \frac{5}{3} en |3x+1| \right]$

سُوَال علو نُوعًا ما .. ٧

 Q_{31} : find the general solution of the D.E: $\chi^2 y'' + \chi(x-1) y' - \chi y = 3 \chi^3$

 $\sum_{x_1} x_2' + x_2' - xy' - xy = 3x^3$ | let u = y' + y' | $x^2(y' + y') - x(y' + y) = 3x^3$ | ci = y' + y'

 $x^{2}u' - x u = 3x^{3}$ $u' - x u = 3x - M(x) = e^{-x}$

 $U = X \left[C + \int \frac{1}{x} 3X \cdot dx \right] \Rightarrow u = X \left[C + 3X \right]$

 $u = 3x^{2} + CX$ (but u = y' + y) $y' + y = 3x^{2} + CX$ $M(x) = e^{x} + e^{x}$

 $y = e^{x} [3x^{2}e^{x} - 6x + 6x - C + Ce^{x} - Ce^{x} + C]$

 Q_{3z} : Solve the D.E: $\chi^2 y''' + \Lambda (\chi + 3) y'' + (-3\chi + 2)y' + 2y = 0$ $\chi^2 y''' + \chi^2 y'' + 3\chi y'' + 3\chi y' + 2y' + 2y = 0$ $\chi^2 (y'' + y'') - 3\chi (y' + y') + 2(y' + y) = 0$

 $X^2u' + 3Xu' + 2u = 0$ (Equal - eulor)

 $r^2 + 4r + 2 = 0$ $\rightarrow r = 2 \pm \sqrt{2}$

4- (2+JZ) + CZ X(2-JZ)

 $y = e^{X} \left[c_3 + \int (c_1 x^2 \cdot x^2 + c_2 x^2 \cdot x^{-\sqrt{2}}) e^{X} . dx \right]$

رى عنا يوعيى ... لأن ريال ما ارقامه غير مدروهة عداً ولك تج بنكرة نف ... ٧

Oss: The form of a particular sol to the D.E:

siy bee y"+ 4y+ 4y = cosh 2x is:?

9= Ge2x + C, Xe2x

 $9(x) + (a + b) = e^{2x} + e^{2x} \Rightarrow y = Ae^{2x} + Be^{2x}$

934: Solve: 4"- 4" = X+ex

 Q_{34} : Solve: $\chi^2 y''_+ \chi (2x+10) y'_+ (10x+30) y = 0$

 $\frac{501}{x} = \frac{y'' + (2 + 10)}{x} y' + (\frac{10}{x} + \frac{30}{x^2}) y = 0$

W= Ce = Ce - Ce - Ce . e

- C-2X .

 $\frac{y}{2} = x^{2} \int \frac{e^{-2x}}{x^{2m}} x^{-10} = \left(x^{m} \int \frac{(-10-2m)}{x} e^{-2x} dx\right)$

but y= xm = y= m x = y= m(m-1) X

x (m (m -1)) x + X(2X+10) m x + (10X+30) X =0

 $m(m-1)X^{m} + (2X+10)mX^{m} + (10X+30)X^{m} = 0$ $m^{2}X^{m} + mX^{m} + 2XmX^{m} + 10mX^{m} + 10xX^{m} + 30X^{m} = 0$

208 \$ 2X m X" + 10 x x X" = 0

 $2 \times m \times m = -10 \times m = -5$

 $= \frac{x^{-5}}{x^{-5}} \left(\frac{x^{0} \cdot e^{-2x}}{e^{-2x}} \right) dx$

 $y_2 = x^{-5} \cdot \frac{e^2}{e^2}$

[18]

سؤال مرتبا عدا

 $Q_{35}: A general sol. of <math>y'-7y'-3=0$

s) 30 801. r - 7r =0 4 - 7y - 3 /

r(r-7)=0 y = AX y = AX

P P

 $y = c_1 + c_2 e^{7X}$ $A = c_1 + c_2 e^{7X}$ $A = c_1 + c_2 e^{7X}$ $A = c_1 + c_2 e^{7X}$

اذا ما ركزت لا سع للسم ... ٧

Q36:- If w(f,g)(x) = X GSX - Sin X

and if U = f + 3g and V = f - g, then find $W(U_1V)$?

Sol. w(f,g) = |f|g| = fg' - fg = XGSX - SinX

also w(u,v) - | u v | = uv-vu | but u = f + 3 q

=(f+3g)(f-g')-(f-g)(f'+3g') u'=f'+3g'

= f(x) + g(x) + 3g(x) - 3g(x) - (f(x) + 3g(x) - g(x) - 3g(x)) = f - g(x) - g(

 $-4(\frac{eg'-g}{\omega(eg)}) \Rightarrow \left[-4(x\cos x - \sin x)\right]$

Q37: Given that y = \(\int_{\text{cosx}}\) , is a sol. the D. E

Cosx y"- y' + 3y = 0 , if the method of reduction

of order is used to obtain a second linearly

independent sol. , find y (x)?

<u>sol</u>. y" - se ay + 3 se a y = 0

y = y $\int \frac{e^{-\int p(x) \cdot dx}}{(y_1)^2} - \int \frac{1+\sin x}{\cos x} \int \frac{e^{-\int x \cdot e^{-x} \cdot dx}}{\cos x}$

THSINX (SECX + temx) KOSX JX

= 1+sinx 1 + sinx 1 x

O38: {1, ex, ex} is a fundamental set of sol. to the D.E

y" - y'= 0, A particular sol to the non-homo.

D.E y"-y'= g(x), where g(x) is a nonzero

continuous function, is assumed to be of the form

y (x) = u(x) + u(x) ex + y(x) ex , then find u(x)?

 $\frac{Sol.}{y_{px}} = \frac{y_{(x)} \int \frac{w_{(x)}}{w_{(x)}} \cdot g(x) \cdot dx + y_{(x)} \cdot g(x) \cdot dx +$

 $W = \begin{vmatrix} e^{-\frac{\alpha}{2}} & e^{-\frac{\alpha}{2}} \\ e^{-\frac{\alpha}{2}} & e^{-\frac{\alpha}{2}} \end{vmatrix} = \frac{1(e^{\alpha} + e^{\alpha}) + e^{-\frac{\alpha}{2}}(0 - 0) + e^{-\frac{\alpha}{2}}(0 - 0)}{-[2]}$

(20

 $W_{\bullet} = \begin{vmatrix} 0 & e^{x} & e^{-x} \\ 0 & e^{y} & -e^{y} \end{vmatrix} = 1(-1-1) - e^{x}(0-0) + e^{x}(0-0)$

 $y(x) \cdot y(x) = y(x) \left(\frac{w_2(x)}{w(x)} \cdot g(x) \cdot dx \right)$ $u_1(x) = \int_{-\infty}^{\infty} g(x) \cdot dx$

01/10 = \ - 19(x) dx | # (1) = (1) = (1) 1

Q3q: Solve: y"-2y"-5y+6y=0 <u>Sol</u>. 13-212-5r+6=0 1=1 (1-1)(12r-6)-0 أحوالية المحالية المحا

(r-1) (r-3)(r+2)=0 r=1,3,-2 ⇒ yt) = c,e+c,e3+c,e2+

Quo: If $y = e^{3x} \sin 2x$ is a sol. of y'' + by' + cy = 0find by c = 2

sol. $y = e^{3x} \sin 2x \Rightarrow d=3$ $\beta = 2$

 $(r_{1}) = 3 \pm i2$ $\Rightarrow (r_{3})^{2} = -4$

 $r^{2}-6r+9=-4 \Rightarrow r^{2}-6r+13=0$

y'' - 6y' + 13 = 0

b= -6 | [c = 13] #

Qy1: X2y"- Xy + y = X Cn x , solve?

sol. r2_2r+1=0

 $(r-1)^{2} = 0$ r = 1 = 1 $y_{1} = X$ $y_{2} = X^{2}$

 $t = \ln x \Rightarrow e^{t} = x$

 $y = e^{t} \quad y = e^{2t}$ $y = (A + B) e^{t} \cdot t$

= (A cnx + B) X cnx y= Cx + Cx2+ (Alnx+B)(cnx).x #

Qu: X2"-2y= X2n(2X)-3X, solve?

sol t= enx - xe = xy"-2y=0

 $y = x^{2}$ $y = x^{1}$ $y = e^{\pm}$ $y = e^{\pm}$

 $g(x) = X^{2} ln(2x) - 3X = X^{2} (en2 + en X) - 3X$

 $9tt = e^{2t}(u_1 + t) - 3e^{t}$

y = (A+B) e^{2t} + Ce^t

 $y = (A \ln x + B) X^2 \cdot \ln X + C X$

y = c, x2 + c, x + (Alnx + B) x2. lnx + C x #

و من من أو خامر أبلك تفاوم لكن لأمن من ... أو خامر أبلك تفاوم لكن لأمن ... "

Q43:	Solve: y	`+4=	8 Sinzx		
<u></u>	y"+ y = 0		14t=0=	:. ! =	±1

$$y = sin x$$
 $y = cos x$
 $y = 8 sin^2 x = 4(1-cos 2x) = 4-4 cos 2 x$

$$Q_{yy}:=y''+\frac{1}{x^2}y=0, \text{ solve:}$$
(c'auchy-eular)

$$Y_{1} = X^{2} \sin \left(\frac{\sqrt{3} \ln X}{2} \right)$$

$$y_{2} = x^{\frac{1}{2}} \cos \left(\frac{\sqrt{2} \cos x}{2 \cos x} \right) + C_{1} x^{\frac{2}{2}} \sin \left(\frac{\sqrt{3} \cos x}{2 \cos x} \right) + C_{2} x^{\frac{1}{2}} \sin \left(\frac{\sqrt{3} \cos x}{2 \cos x} \right) + C_{3} x^{\frac{1}{2}} \sin \left(\frac{\sqrt{3} \cos x}{2 \cos x} \right) + C_{4} x^{\frac{1}{2}} \sin \left(\frac{\sqrt{3} \cos x}{2 \cos x} \right) + C_{5} x^{\frac{1}{2}} \cos x \right) + C_{6} x^{\frac{1}{2}} \sin \left(\frac{\sqrt{3} \cos x}{2 \cos x} \right) + C_{6} x^{\frac{1}{2}} \sin \left(\frac{\sqrt{3} \cos x}{2 \cos x} \right) + C_{6} x^{\frac{1}{2}} \sin \left(\frac{\sqrt{3} \cos x}{2 \cos x} \right) + C_{6} x^{\frac{1}{2}} \cos x \right) + C_{6} x^{\frac{1}{2}} \cos x \right) + C_{6} x^{\frac{1}{2}} \cos x + C$$

$$Q_{45}: (X+1)^2 y'' + 6(X+1) y' + 6y = 0$$

$$y = C_1 Z^{-3} + C_2 Z^{-2}$$
 $y = C_1 Z^{-3} + C_2 Z^{-2}$
 $y = C_1 (X+1)^{-3} + C_2 (X+1)^{-2} + C_2 (X+1)^{-2}$

Que: 2xy + pxy + y = 0, y(x) = C, x + C, x enx
Find 2 , 13
هُن عَنْ اللهِ مَنْ مَنْ مَنْ مَا مُنْ مَنْ مَا لَكُ مَا لِكُ مَنْ مَا لِكُ مَنْ مَا لِكُ مَنْ مَا لِكُ مَنْ م مُنْ عَنْ اللهِ مَنْ مَنْ مَنْ مَنْ مَنْ مَنْ مَنْ مَنْ
ــــــــــــــــــــــــــــــــــــــ
r = r = -2
$(r+2)^2 = 0 \Rightarrow r^2 + 4r + 4 = 0$
$\alpha = 1 \longrightarrow \{\alpha = 1\}$
فلفنا تن المحال ال
b = 5 - 1 (b - 5)
Quz: Xy"+ (2+8x)y' + (8+16x) y =0 use u = xy
to solve the D.E.?
$(s_{\underline{a}}, u = Xy) \rightarrow u' = Xy' + y \rightarrow u'' = X \cdot y'' + 2y'$
$ x_y'' + 2y' + 8xy' + 8y + 16xy = 0$
u''' + 8u' + 16u = 0
$r^2 + 8r + 16 = 0 \implies r_1 = r_2 = 4$
$U = C_i e^{4x} + C_i x e^{4x} +$
- 6 1 /3 ¹¹ 2 11
$Q_{48} = Solve := X^3 y'' + x^2 y'' = 0$
Sal. Tei de To ou cauchy eular is to la lia
ما نعبر الم تعديم ما كرد (b-a) + c=0 حرك أو الم
عود مش بذا تر من بغري في القالاه لرسي X = ي ويشتف وبعوف .
$y = x^{r} \Rightarrow y' = r x^{r-1} y'' = r(r-1)(r-2)X^{r-2}$
$X'(r(r-1)(r-2)) + X'r(r-1) = 0 \qquad (+x'+0)$
$r(x_{-1})(x_{-2}) + r(x_{+1}) = 0$
24)

 $r(r-1)(r-2+1)=0 \Rightarrow r(r-1)(r-1)=0$

y=c,+c,x+c,enx,x #=

واللم ونية كريا) با على على المارك .. لا با (Xy)) با با على على المارك .. لا با (Xy) المارك .. لا با (Xy)

 $Xy'+y'+\frac{1}{2}y=0$ $\boxed{+X}$

 $(x^{2}y'' + xy' + y = 0) \rightarrow (x^{2} + (x + 1) = 0)$

y = C cos(lnx) + C sin(lnx) #

Q50: If y=(x+1) is asol. for (x2+3x+2)y'-(2x+4)y'+2y-0, find the

second lanewlify independent sol. ?

 $\frac{Sol.}{(x+1)(x+2)}y' + \frac{2}{(x^{2}+3)(x+2)}y' = 0$

 $y = (x+1) \int \frac{e^{+\int \frac{2}{x+1} \cdot dx}}{(x+1)^{2}} = (x+1) \int \frac{(x+1)^{2}}{(x+1)^{2}} dx$

- (x+1) x) #

O5: - Solve the D.F: - y"- 2y + y = ex

501. variation - y 2y' + 4=0

y = ex y = Xex ei

SECOND OMAR ALKHAWAJA DIFFERENTIAL EQUATION I $\omega(y, y) = \begin{vmatrix} e & \chi e' \\ e & e'(1+\chi) \end{vmatrix} = e^{2\chi} \left(1+\chi\right) - e^{2\chi}\chi$ $= e^{\chi} \left(1+\chi\right) = e^{\chi} \left($ $V_1 = -\int \frac{y_2}{y_1} \frac{g(x)}{y_2} dx = -\int \frac{x}{(1+x^2)} \frac{e^{x}}{e^{x}} dx = -\int \frac{1}{2} e_{x} |1+x^2|$ $V_2 = \int \frac{y_1}{w} \frac{g(x)}{dx} \cdot dx = \int \frac{e^{x} \cdot e^{x}}{e^{x}(1+x^2)} dx = \int \frac{1}{e^{x}(1+x^2)} dx$ y = v, y + v, y = -ex cn/1+x' + xex famix1 Drz: y = Sin zx . V, + Coszx Vz for ", 44 = sec 2x , find V, ?? Sol. from $y \Rightarrow y = \sin 2x$ $\Rightarrow w(y,y) = \frac{|\sin 2x|}{|\cos 2x|}$ $y_2 = \cos 2x$ $|\cos 2x|$ $= -2\left(\sin^2 2x + \cos^2 2x\right) = -2$

U = - \(\frac{y_1 \cdot g(x)}{W} \cdot dx \rightarrow + \(\frac{cos 2x}{2x} \cdot 8ecc x \cdot dx \)

Q3: If y = G+ C2X+ C2 + 2X3, be a general solot 3rd order with constant coeff. L[4]=9(x). find g(x)?

<u>sol</u> y = y + y r2(r-1) = 0 y= c, + 2x + c, ex (3-r2=0 -> L[y]= y"- y" $y_{p} = 2x^{3}$ $y_{p} = 6x^{3} + y_{p}^{2} = 6x^{2} + y_{p}^{2} = 12x$ rosts of Auxilea of y = 12 $([y] = 0 \rightarrow r = 0, 0, 1 \rightarrow g(x) = y'' - y'' = 12 - 12X$

9 (x) = 12-12 X

Q54: Find a homo. D. E with constant Gelf. of least

order which the solution:

a) $y = 5x^{\frac{1}{2}} 2e^{3x}$ b) $y = Xe^{2x} - \sin 3x$

 $y = 5x^{2} - 2e^{3x}$

 $= r^{3}(r-3) \Rightarrow = r^{4} \cdot 3r^{3} = 0$

 $L[y] = y^{(4)} - 3y^{(3)} = 0 + 4$

b) y = Xe^{2X} - Sih3X

 $(r-2)^{2} (r^{2}-qi^{2}) -qi^{2}$ $(r-2)^{2} (r^{2}+q) -0 -qi^{2}$

 $r'' - 4r^3 + 13 r^2 - 36 r + 36 = 6$

 $L[y] = y^{(4)} - y r^{(3)} + 13 g'' - 36 y' + 36 y = 0 #$

Oss: Find a form of few such that w[x, f'] = 1

 $W[X,P'] = \begin{vmatrix} X & P' \\ 1 & T' \end{vmatrix} = \frac{1}{1} \Rightarrow XP' = \frac{1}{1}$

let y = fx = x2y"- xy=1

نعمل طریعادے و کد (X) بیطے

- 056: If y, 14, are foundemental sol, of xy"+3xy'+6x2y=0, such that w[4, 4, 7 (ens)=3 find?
- a) w [9, y,] (x) b) w (en3)
- 801. y'' + 3y' + 6xy = 0a) by Able's formula. $w[y, y] = ce^{-3x}$
- $u(y, y_1) = ce^{-3 \ln 2}$ $e^{-3 \ln 2} = 3 = ce^{-2 + 1}$
- b) $w(en3) = 24 e^{-3en3} = 24$
- O, : If w[y, y] = 3ex of ahomo. D. E:
 y" + p(x)y + q(x) y = 0, find p(x)?
- $\underbrace{Sol}_{C=3} W = \underbrace{3e^{X^{2}} e^{Y^{2}}}_{C=3}$
- $= e^{X^{2}} = e^{\int \rho x y \cdot d \cdot x} = -X^{2} = \int \rho(x) \cdot dx$ $= e^{X^{2}} = e^{\int \rho x y \cdot d \cdot x} = -X^{2} = \int \rho(x) \cdot dx$
- another sol. w' + p(ww = 0) Sole a = 0 Sole a = 0

12(X) = -2X #

Q 58: Evaluate: the wronskium W [sin(t') , as (t')](t)?

$$\frac{50!}{2!(as(l^2) - 2! sin(l))} = -2! \left(sin(l^2) - 2! (as(l^2)) \right)$$

تضيو ميك ويول مكر عارب عليم 3 علامال V. Jeù cà Lei

Q=: Consider the D.E: ax2y"+6xy+cy=0. X>0 Sue if the corresponding charactricistic equation

has double roots (r,=r,=r) and y(x)= xr

use the Reduction of order Method to show that

the second solution is y = x cnx

 $sol. \left(\frac{1}{2} a x^{2} \right) \Rightarrow y'' + \frac{b}{ax} y + \frac{c}{ax^{2}} y = 0$ $p(y) = \frac{1}{2} a x^{2}$

 $r_1 = r_2 = r = \frac{-(b-a)}{2a}$ cée double roots $\frac{1}{2}$ co

y = y ∫ e pw dx dx = xr ∫ e ax dx dx

 $x^{r} \int \frac{e^{\frac{-b}{a}} \operatorname{cn} x}{x^{2r}} dx \quad \text{but} \quad r : -lb-a}$

 $= x^r \int \frac{x^{-\frac{1}{4}}}{x^{\frac{2\alpha-2b}{2\alpha}}} dx = x^r \int \frac{x^{\frac{1}{4}}}{x! \cdot x^{\frac{1}{4}}} dx = \left[\frac{x^r \ln x}{x! \cdot x^{\frac{1}{4}}} \right]$

Q60: let y and y be two solution of A(x,y), B(x,y), C(x,y) on open interval I where A(B,C) are contained and $A(x) \neq 0$, if $W(x) = W(y,y_1)$, then

Show that A(x) dw = B(x) w(x)

Sol. y" + BW y + CW y = 0

PW 912

 $W = Ce^{-\int PW \cdot dX}$ $= enc - \int P(x) \cdot dx$ $= enc - \int P(x) \cdot dx$

 $\frac{\omega'}{\omega} = -\frac{P(x)}{2} \Rightarrow \frac{\omega'}{2} = -\frac{R\omega}{A(x)}$

 $A \times \omega' = -B \times \omega$; but $\omega' = \frac{\partial \omega}{\partial x}$

Qo.: Defermine a suitable from for the particular sol.

y(x), if the method undetermined coeff. to be

used in solving the non-homo, eq.

(Pont evaluate the constants) $y^{(6)} + 3y^{(5)} + 4y^{(4)} + 2y^{(3)} = x^1 + x e^{x} \sin x + x e^{x}$

Sol. $y^{(6)} + 3y^{(5)} + 4y^{(4)} + 2y^{(3)} = 0$ $y^{(6)} + 3y^{(5)} + 4y^{(4)} + 2y^{(3)} = 0$ $y^{(6)} + 3y^{(5)} + 4y^{(4)} + 2y^{(3)} = 0$ $y^{(6)} + 3y^{(5)} + 4y^{(4)} + 2y^{(3)} = 0$ $y^{(6)} + 3y^{(5)} + 4y^{(4)} + 2y^{(3)} = 0$ $y^{(6)} + 3y^{(5)} + 4y^{(4)} + 2y^{(3)} = 0$ $y^{(6)} + 3y^{(5)} + 4y^{(4)} + 2y^{(3)} = 0$ $y^{(6)} + 3y^{(5)} + 4y^{(4)} + 2y^{(3)} = 0$ $y^{(6)} + 3y^{(5)} + 4y^{(4)} + 2y^{(3)} = 0$ $y^{(6)} + 3y^{(5)} + 4y^{(4)} + 2y^{(3)} = 0$ $y^{(6)} + 3y^{(5)} + 4y^{(4)} + 2y^{(3)} = 0$ $y^{(6)} + 3y^{(5)} + 4y^{(4)} + 2y^{(3)} = 0$ $y^{(6)} + 3y^{(5)} + 4y^{(4)} + 2y^{(3)} = 0$ $y^{(6)} + 3y^{(5)} + 4y^{(4)} + 2y^{(3)} = 0$ $y^{(6)} + 3y^{(6)} + 4y^{(4)} + 2y^{(4)} = 0$ $y^{(6)} + 3y^{(6)} + 4y^{(4)} + 2y^{(4)} = 0$

بالبريد ١-١٠

$$r^{2}+(-1-1)r+1-0 \Rightarrow r^{2}-2r+1=0$$

$$r_1 = 1 = r_2 \Rightarrow y_1 = e^t \quad y_1 = te^t$$

$$W(y_{i},y_{i}) = \begin{vmatrix} c^{t} & be^{t} \\ e^{t} & e^{t}(t+1) \end{vmatrix} = \frac{e^{2t}}{\sqrt{2}}$$

$$V_1 = -\int \frac{t \, e^{t} \cdot \left(+\frac{3}{t}\right) \frac{1}{e^{t}} dt}{e^{2t}} dt$$

$$v_1 = -\int (t+3) e^{-2t} dt$$
 $u=t+3$ $du=e^{-2t}$ $du=1$ $u=e^{-2t}$

$$V_1 = (t+3)e^{-2t} + e^{-2t}$$

$$V_2 = \int \frac{e^{t} \cdot (1 + \frac{3}{t})}{e^{t}} = \int \frac{(t+1)}{te^{t}} dt$$

$$u = te^{t}$$

$$\frac{du}{e^{t}(t+1)} = \frac{dt}{dt} = \frac{dt}{dt} = \frac{dt}{dt}$$

$$\int u^{-1} du = -u^{-1} = \begin{bmatrix} -1 \\ -e^{\pm} \end{bmatrix} = Vz$$

$$y(t) = c_1 e^{t} + c_2 t e^{t} + e^{t} \left(\frac{(t+3)e^{-2t}}{2} + \frac{e^{-2t}}{4} \right) + t e^{t} \left(\frac{-1}{t e^{t}} \right)$$

$$4 + \frac{t^2}{4} + \frac{e^{-2t}}{4} + \frac{e^{-2t}}$$

Pos: Find a value of "B" such that the solution u - y trans form the D.E: (X+3X2y)y+Xy2= y into aseperable equation?

 $\frac{gol.}{x+3x^3y} \qquad y = \frac{y}{x^8} + \frac{g}{x} + \frac{g}{x} = \frac{y}{x} + \frac{g}{x} + \frac{g}{x} = \frac{g}{x} + \frac{g}{x} + \frac{g}{x} = \frac{g}{x} = \frac{g}{x} + \frac{g}{x} = \frac{g}{x} = \frac{g}{x} + \frac{g}{x} = \frac{g}{x} =$

 $u' - u - u^2 x^{\beta+1} - R = u - 3\beta u^2 x^{\beta+1}$ $\chi^{\beta-1} + 3u \cdot \chi^2$

 $u' = u(1-\beta) - u^2(x^{\beta+1} + 3\beta x)$

= X^{β+1} + 3 β x^{β+1} / νί α Ce do Li ρίτ

Sol.:
$$X^{2}y'' + Xy' + 9y = Section u = -\int sec(3t) \cdot Gs(3t) dt$$

 $t = lnX + e^{t} = X$

$$V^{2} + 9 - 0 \rightarrow V = \pm 3i$$
 $U_{2} - \int \sec(3t) \cdot \sin(3t)$

$$y_1 = \sin 3t$$
 $y_2 = \cos 3t$ $= \left[\frac{1}{9} \operatorname{ent} \cos 3t\right]$
 $y_1 = C_1 \sin 3t + C_2 \cos 3t$

$$W(y_1, y_2) = \begin{vmatrix} sin 3t & as 3t \\ 3as 3t & -3sin 3t \end{vmatrix} = \frac{sin(3t) \cdot \frac{1}{3}t + as(3t) \cdot \frac{1}{4}en|as 3t|}{y_1 = y_1 + y_2}$$

$$y_{p} = y_1 y_1 + y_2 v_2$$

= $sin(3t) \cdot \frac{1}{3}t + Gs(3t) \cdot \frac{1}{4}en(Gs3t)$

$$= -3(\sin^2 3t + (6\hat{3}) = -3| y_{(x)} = -3|$$

عوة - لهدي - المناد .. بنة اوى رياضيات بياد .. بنة اوى رياضيات بياد .. بيان المناد .. بيان المن

يد بالوقيق -اللجيع ..

ان لذي يوتد عن سُيناً معتمد بلقاه ... لو عارتيه الأنس ولعن ١٠٠٠

00 ?

أنس- إعروق (34) # حسن- الطريفي

مسنوات - فاينال - وني I

حدا لمل حوجمود ما مبلي من أصمان لمجمود لمبارك... ما قعر ... به هو تجميع الخسلة في ملف واحد ضقط ليسهل على إلجالب البهث عن سواست الماده ٧

م کو نوب بانالی: م م

المن الرياع ولمن البحرولفن مِلْقاه لوحارتب ١٥١٤ ولمن دُجري بريا 2 كما رادت مهالفن آجرت لرساح كما ثعرك تسيننا إذ الذك يرتبي تكينا بعمت خاقصد إلى قعم الأشياد تدركها

الله عمر- لفواجه - رياميان فريقه- اولى ...

السرال للمرابع التحمل التحيير

• بالباية أحمدًا 2 الى مراحبة جميع انكار وتمواني بارى للجعل العلى معيرًا " أكثر ... وكو شوي شوي عشان تفوت عالما وي فهما ن معيرًا " أكثر ... وكو شوي شوي عشان تفوت عالما وه فهما ن ككش وجا توفد معل في وتسب كير ... و بعج جدا "

- · largest interval: (soi apr je my or y or y .
- - seperable equation :- يقل بجهه مع اقتران بدا له ي على على على على اقتران بدا له ي على على على على اقتران بداله ي على على المواقع مع اقتران بداله ي على على المواقع مع اقتران بداله ي المواقع من الم

ا ب معادیم بیمونی الحشکالط ی - با<u>طلعای</u> شبخون میس (۲+۷) می از کامی و (۲+۷) میک دو (۲+۷) و انتخاب

Linear equation :

Incor in y \Rightarrow 1 * y' + p(x) y = g(x)Incor in $x \Rightarrow (* x' + p(y) x = g(y))$ Method sal.:- p(x) = y = 1 $M(x) = e^{-x} = 1$ $y = \frac{1}{M(x)} \left\{ c + \int M(x) \cdot g(x) \right\} \stackrel{\text{def}}{=} 2$

= Exact Equation :-

Form: M(x14).dx + N(x14)dy=0 M is dx (N is dy)

أَصِلَ مِه أَ حِلَى عِنْ لَمِرْتَهِمْ كِلَّ : رَكَزُ ا فِي بَسْتَ اوركِاصَ ما سنة للأحل أو بالنب لعكس الأعل

Method. Sol. 1- [] M b) Jisi For M(X14) = ~~

(xiy) = --- + 9(y) ج بعطینی آنب اقتران اق بدلالة المحس

الآنام = ﴿ الْمُعَالَمُ الْمُعَالَمُ الْمُعَالَمُ الْمُعَالَمُ الْمُعَالَمُ الْمُعَالَمُ الْمُعَالَمُ الْمُعَا مَا سَعُولُنُ يَسِمُّهُمُا ﴿ لَا لَا لِكُوالُمُ الْمُعَالَمُ الْمُعَالَمُ الْمُعَالَمُ الْمُعَالَمُ الْمُعَال مَا سَعُالُ

العام العربي القران العربي ال

(A) 合西型 → ~ = 3(A)

ترمع لمادلم (۲۷۹) ع C = ~ قیمته وسکان (۱۹٪) = ی #

و حلافظات بسطة ور

FINAL

Non-Exact Equation > [special integrating Factor] M(x)

Form : M(x,y).dx (+) N(x,y).dy=(0)

The var of lie Don dact is I will be

الحدى قول إلهادام (ل) ويمل عليه

Method sol. :-

 $M(y) = \sum_{i=1}^{M} M(y) = \sum_{i=1}^{M} M(x)$ $M(y) = \sum_{i=1}^{M} M(y) = \sum_{i=1}^{M} M(y$

(x) = e (x) = e

 $\frac{4}{2} \cdot \frac{\partial N}{\partial x} - \frac{\partial N}{\partial y} \cdot \frac{\partial N}{\partial x} = \frac{\partial N}{\partial x} \cdot \frac{\partial N}{\partial y} \cdot \frac{\partial N}{\partial x} = \frac{\partial N}{\partial x} \frac{\partial$

رة دخرب بعادلت الم ملة تاملة ب (x) عن (الا) ملى كلع على وهيك بكون ولت لمعادلة الى <u>exact</u> ونعل كما تعلمنا ما تقاً.. ٧

عديدة با تبة هي ألا سائية و الما في بنحولو للعادلات بالي أفدناها:

- = Exact Non-exact
 - · Linear Bernouli

FINAL

• نصر عدا الوى من المعادلات ان: المور عدا الموى من المعادلات ان: المعاد

$$\beta \mathcal{L}_{1} \Rightarrow f(x_{1}x_{1}) = G\left(\frac{x}{A}\right)$$
, let $A = \frac{x}{A}$

Tor V or V de is of of or X of or or or

نعوف مكان أو فيها ومكان كر لا قيمها لكا

هری تبصر مع نعل ۷ مع مل لحال م X مع x لحال الله عنه المرفن ... به و نک مل مده تمیم لفرفن ... به

· Almost - sep. Equation :-

Bernoulli Equation :-

Method sol :-

الله المالزة بري و بتدون المعدد و المعدد في المعدد المعدد في المعدد الم

ع: Wronskian نفذ : تامية بمصاري المعنف المع

Wrons Kian:
$$W[9,192] = \begin{vmatrix} 9, & 92 \\ 9, & 92 \end{vmatrix} = 9,92 - 99$$
 $y'_1 y'_2 = 40$

dependent indep.

Abel's theorem: 1 + y'' + P(x)y' + q(x)y = 0 F(x') io $W = C e^{-\sum P(x) \cdot dx} \#$

Homogenous = 0

Constant Geff.

ay"+by"+ cy =0 l. Aux. |.eq.

ar2+ br+ C=0

Rule 1 4= ex

• نصرب X حالتراشائر

complex rootalo .

yn=exxsinx yz=excosx

y= < y, + < y

Cauchy- Eular

a x2y 4 b y+ cy=0 L. Auxi. Aq. ar2+ (b-4)r+c=0

الالا ب × × ماد المال ماد المال ماد المال ماد المال ماد عاد المال ماد المال

Guplerroot ≈ 0.00 $y_1 = \chi^{2} \cos (\beta \ln x)$ $y_2 = \chi^{2} \sin (\beta \ln x)$ $y = C_1 y_1 + C_2 y_2$

Reduction

الخلائ + المالا + والمالا والمالا معطى الحل الخ ول الح الح الح الح الخ ول الح الح الح الح الخ ول المال ال

• $y_2 = y_1 \int \frac{e^{-\int P(x) \cdot dx}}{(y_1)^2} \cdot dx$ • $y_2 = y_1 \int \frac{w}{(y_1)^2} \cdot dx$

- الاصلات عجمة جداً قبل ما نكيل . Hom- Homo.

I Recall:

• $sin(hx) = \frac{e^{x} - e^{x}}{2}$

 $\circ \operatorname{cesh}(X) = e^{X} + e^{X}$

• $tanh(x) = \frac{e^{x} - \bar{e}^{x}}{e^{x} + \bar{e}^{x}}$

BI · dx sinh(x) = cosh(x)

· d. cosh(x) = sin h(x)

PAGE: 6 - d tanh(x) = sech(x)

-: منطانبات مهم را

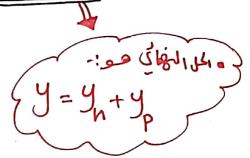
• Sin2(X) = \frac{1}{2} (1-682X) - \frac{1}{2} \text{in the solution}

· Sin(a) + sin(b) = = [(0) (a+b) - (0) (a-b)]

· (05(9) * (05(b) = 12[(05(9+6)+,65(9-6)]

• Sin(a) * cos(b) = 1/2 [Sin (a+b) + sin(a-b)]

د المرتياب الرتياب المرتياب المرتيا


· d eschox) = - eschox). cothox)

· dx sechon = - sechon · tanh or

· othis = - csch (x)

Non-Homogenous #0

I undefermined oeff:

Method. sol :-

الحد ولا الحا

على يفتص تعاعدى الانتزان (x) و: ميث اذا تن (ه) !-

9(x)	<u> </u>
نبان مر	م (ما نطخها م
يد م X+2	AX+B Solida
4 × ² مربعي	AX2+BX+C X349
8+ X لم تنجبي	AY+BX+CX+D
شانی د Sin5X	A sain5X+ B cos5X
ر الله على	A SOS 2X+B Sin2X

[2] variation of parameters:

َ الْجَدِ لِيلِ المعلول [2] المجد ليل المعلول [3]

PAGE: 7

19 y = 4+4p

*LAPLACE *

* أهم جدول بعل إشابر :-

卡 伊)	F(S)
1	5 ; 570
eat	1 5-4 3 57a
cosbt	2+4 Ps
sinbt	5 + b2
cosh (bt)	Sx. 6x
sinhbt)	5 ² - 6 ²
f _n	5nti , 5>0
e Fu	<u>n!</u> (5-4)4+1
f, to	(-1)". d" [of Fits] (Fiss)
eat \$(4)	F(s-a)
PAGE: 8	5 F(s) - f(o)

DIFFERENTIAL EQUATION

FINAL

eat asbt

eat sinbt

(n)

+ (t)

The state of the state o

 $\frac{s-\alpha}{(s-q)^{2}+b^{2}}$ $\frac{b^{2}}{(s-q)^{2}+b^{2}}$ $s^{n}F(s) - s^{n-1}(s) - s^{n-2}(s)$ $(-1)^{n} \cdot \frac{d^{n}}{ds^{n}} \cdot \left[f(t) \right]$

Cho Pro Pro Cop : $\frac{P(s)}{Q(s)}$ ulpi is $0 = \frac{1}{2} = \frac{1}{2}$

(میک حاد ردی اقتراه عَومالاف) اول مرة بنهوفوا.

 $\frac{\text{Examples!}}{\text{poisson}}$

= f +au (2)

\$ 5 sin (4 52)

المَا نَفِف ونَلْمَ عِلَى لَبْرِيب (معاندة)

Just ... VV

ا معامل ع = الآل الموبع عهد الآل عامل ع = الآل الموبع عليه الآل الموبع عليه الآل علي الموبع عليه الآل علي المربع عليه المربع على المربع على المربع عليه المربع عليه المربع على المربع عليه المربع على المربع على المربع على ا

= solve D. E By Caplace :- ay"+by + cy = Fit

الطيقة: ١١ أغذ اللهلان للجيو

1 y'la) = 524(5)-54(0)-4/01

لظ نجبه «يلا موضح للقانود

a unit step function :- u(+-a)

*Graph: $u(t-q) = \begin{cases} 0, 1 < q \\ 1, + > q \end{cases}$

Theorines: [] \(\(\frac{1}{4} \) \(\frac{1}{4} \) = \(\frac{1}{4} \) \(\frac{1}{4} \) = \(\frac{1}{4} \) \(\frac{1}{4} \)

[2] & u(+-a) = = as

 $\frac{1}{3} \int u(t-a) f(t) = e^{as} \int f(t+a)$ $\frac{1}{4} \int e^{as} f(s) = u(t-a) \int f(s) ds$ $\frac{1}{4} \int e^{as} f(s) = u(t-a) \int f(s) ds$ تع محاه کل له + (t-a) ♦ ل

Note: if
$$f(t) = \begin{cases} f_1, & t < q_1 \\ f_2, & q_1 < t < q_2 \\ f_{n-1}, & q_2 < t < q_{n-1} \\ f_n, & t > q_n \end{cases}$$

then, \$(t) = \$\frac{1}{4} \operatorname \begin{picture}(\frac{1}{2} - \frac{1}{2}) u (\frac{1}{2} - \frac{1}{2}) u (\frac{1}{2

series of solution D.E:

$$\text{II Taylor} \Rightarrow f(X) = \sum_{n=0}^{\infty} f^{(n)}(X_0) \cdot (X - X_0)^n$$

$$\sqrt{\frac{Maclurin}{X_0=0}} \rightarrow \sqrt{\frac{f(x)}{x_0}} = \sum_{n=0}^{\infty} \frac{f(n)}{n!} \cdot (x)^n$$

اذا طلع معى حيل بندهب للمشتقة يللي بعيدها ، لحد ما يعلى مش مفر ...

[3] بيت على القواعد ملى مُوف اما Taylor أفي القواعد ملى مُوف الما المواهد على القواعد ملى مُوف الما المواهد الم

PAGE: II

می خلفنا کل العلفی ، حسادور الم سائے ، بالتوفیق ←

DIFFERENTIAL EQUATION

FINAL

جشر للسر الدخمن الرحيم

الملحم لا سعلا والله ما جعلت سعلا ، وأنت رّجعل لفزن إذا شت سطلً... ◄

Q: find the inverse captuse tranform Fis = 5+4

sit 45+8

$$\frac{Sal.}{\int |F(s)|^{2}} = \int |\frac{S+U}{S^{2}+U_{S+2}}|^{2} = \int |\frac{S+U}{S^{2}+U_{S+2}+U_{S+2}}|^{2} = \int |\frac{S+U}{S^{2}+U_{S+2}+U_{S+2}}|^{2} = \int |\frac{S+U}{(S+2)^{2}+U}|^{2} = \int |\frac{S+U}{(S+2)^{2}+U}|^{2} + \int |\frac{U}{(S+2)^{2}+U}|^{2} = \int |\frac{S+U}{(S+2)^{2}+U}|^{2} + \int |\frac{U}{(S+2)^{2}+U}|^{2} = \int |\frac{S+U}{(S+2)^{2}+U}|^{2} = \int |\frac{S+U}{(S+2)^{2}+U$$

Q2: The value of the integral. of zoosity. eat. of where a>0, find it?

$$\frac{50!}{5}$$
 $\int_{0}^{\infty} 2 \cos^{2} t \cdot e^{at} \cdot dt = \int_{0}^{-1} 2 \cos^{2} t \cdot e^{at}$
 $= \int_{0}^{-1} 2 \cdot \frac{1}{2} \left[1 + \cos 2t \right] = \int_{0}^{-1} 1 \cdot e^{at} \cdot e^{at}$

$$= \frac{1}{a} + \frac{\alpha}{a^2 + 4} + \#$$

لم بعالست فرم على بدل ع كانوبال فال معمل على هل عن على ... وما مقال فهودائرة بعن واخع معلان...♥

Q3: If F(s) = $\frac{s}{s^2+1}$ is the laplace tranform of the function f(t), then find the value of $\int \{t \cdot f(t)\}(s)$ at s=1?

 $\frac{Sel}{\int_{0}^{\infty} F(s)} = \int_{0}^{\infty} \frac{S}{S^{2}+1} = \frac{1}{\int_{0}^{\infty} \frac{S}{S^{2}+1}} = \frac{1}{\int_{0$

 $\frac{50}{50}: \int \left[\frac{1}{t} \cdot f(t)\right] = \int \left[\frac{1}{t} \cdot \sin t\right] = \left[\frac{-25}{5^2+1}\right]$ $= \frac{-25}{(5^2+1)^2} \quad \text{but at } 5=1 \implies = \frac{-2}{4} = \left[\frac{-1}{2}\right]$

 Q_4 : If y(s) is the laplace tranform of the f(t) of the J.U.P y''-2y=t, y(0)=0, y'(0)=-1, find y(s)?

Sol. y'' - 2y = t f y'' - 2 f y = f t $s^{2} y(s) - sy(s) - y(s) - 2 y(s) = \frac{1}{s^{2}}$ $s^{3} y(s) + 1 - 2 y(s) = \frac{1}{s^{2}} y(s) = \frac{1}{s^{2}-1}$ $y'(s) = \frac{1-s^{2}}{s^{2}(s^{2}-2)}$ # 26 N/61

The lease is a circle of the size is a circle of the cir

ان و جودك على إكوكب هو لا اركه تشعقه عمال والمتخدامه بالمطوب لا اركه تشعقه عمال والمتخدامه بالمطوب لشك فيد خليفة على هذه الأرض...

DIFFERENTIAL EQUATION

FINAL

Qs: use the Integrating factor $M(y) = e^y$, to find the general solution of the D.E (X + Xy)y' + y = 0?

$$f'(y) = e^{\int \frac{1}{y} + 1} = |y e^{y}|$$

$$X = \frac{1}{M(y)} [c + \int M(y) \cdot o \cdot dy]$$

$$X = \frac{1}{y} e^{y} [c + \int G(y) = x = \frac{c}{y} e^{y}$$

 Q_6 : If $y_1 = e^{\chi^2}$ is a sol. of the D.E $y_1'' + p(x)y_1' + q(x)y_2 = 0$ where p(x) and q(x) are cont. function on \mathbb{R} , find a second linearly independent sol. y_2 given that $W[y_1,y_2] = e^{2\chi^2}$

Sol. reduction equation:

$$y_2 = y_1 \int \frac{w[y_1, y_2]}{(y_1)^2} dx = e^{X^2} \int \frac{e^{X^2}}{(e^{X^2})^2} dx$$

$$= e^{X^2} \int |\cdot dx| = e^{X^2} \int \frac{e^{X^2}}{(e^{X^2})^2} \frac{dx}{(e^{X^2})^2} = e^{X^2} \frac{e^{X^2}}{(e^{X^2})^2} = e^{X^2} \frac{e^{X^2}}$$

Q7: Find the general sol. of the seperable diff.cq.

y'- ex-y = 3x^2e^-y

$$\frac{50!}{0!} \cdot y' = e^{X-y} + 3x^{2}e^{y} \implies y' = e^{X} \cdot e^{y} + 3x^{2}e^{-y}$$

$$\frac{dy}{dx} = e^{y} \left(e^{X} + 3x^{2} \right) \implies \int e^{y} \cdot dy = \int e^{X} + 3x^{2} \cdot dx$$

$$e^{y} = e^{X} + x^{3} + C \implies \left| e^{y} - e^{X} = x^{3} + C \right|_{\mathcal{H}} = \frac{50!}{20!} = \frac{50!}{20!} = \frac{50!}{20!}$$

Q8: Find the fundemental sol. set to the D.E of constant Geff. whose characteristic equation is given by $(r^3-4r)(r^3-8) = 0$?

$$r=0 \rightarrow y=1$$

$$r=2 \rightarrow y=e^{2X}$$

$$r=2 \rightarrow y=Xe^{2X}$$

$$r=2 \rightarrow y=Xe^{2X}$$

$$r = -1 + iJ\overline{3}$$

$$Y = \overline{e}^{x} \sin J\overline{3} \times$$

$$r = -1 - iJ\overline{3}$$

$$Y = \overline{e}^{x} \cos J\overline{3} \times$$

Sol. set = { 1, ex, Xex, e2x, e2x, ex sin J3 x, ex cos J3 x}

الله المن ولك إجزد من اليوم الذي تتذكر فيه مع أن الأمر طعباً ومعقداً لكنه الأمر طعباً ومعقداً لكنه النهى، وها أنت بنهد الآن ... الله على أزرف مدا

DIFFERENTIAL EQUATION

Qa: Find the general sol. of the D.E Xy'-y=X2cos(\$) Eul. Homo · equation => y'- = x cas(y) let V = \(\frac{1}{x} \) = \(\frac{1}{x} \) + \(\frac{1}{x} \) + \(\frac{1}{x} \) 2. V'. X + V - V = X (05(V) $X \cdot V' = X \cos V \Rightarrow \int V' = \int \cos V$

 $V = \sin V + C \Rightarrow \left| \frac{y}{x} = \sin(\frac{y}{x}) + C \right|$

Q10: Use the variation of parameters method to find the general sol. of Non-homo. D.E $x^{2}y'' - X(x+2)y' + (x+2)y = X'$, x > 0

given that {x, xex} is a fund. sol. set of the corresponding homo. equation. ?

Sel. $y'' - (\frac{x+2}{x})y' + (\frac{x+2}{x^2})y = X$

 $V_1 = \int \frac{-y_2 \cdot g(x)}{\omega \left[y_1 \cdot y_2 \cdot \gamma \right]} = \int \frac{-x \cdot x e^x}{v^2 \cdot e^x} = \left[-x \right]$

 $V_2 = \int \frac{y_1 \cdot g(x)}{w \left[y_1, y_1\right]} = \int \frac{x}{x^2 e^x} = \left[-\frac{e^x}{e^x}\right]$

y = yn + yp = yn + [4,4,+4,2,2]

 $W = \begin{bmatrix} X & X e^{X} \\ & X e^{X} + e^{X} \end{bmatrix}$ = x ex + xex - xex $= \left[\chi^2 e^{\chi} \right]$

النب الإجاء تعلق الملائل على عبد المراك المراك المراك عبد المراك الم مرد بالبا واحد إنما عدك بته عي انو عند خوب اين مباب مكلاً (البواهر) يرجى نس ألى ١٠٠٠

Scanned by CamScanner

Q_{II}: Find the Inverse Captace transform of Fis = $\frac{S+1}{s^2-9s}$ Sul. $f(F(s)) = f'(\frac{S+1}{s(s-3)(s+3)})$ partial fraction $= f'(\frac{A}{s} + \frac{B}{s-3} + \frac{C}{s+3})$

A(S-3)(S+3) + B S(S+3) + C S(S-3) = S+1when $S=0 \Rightarrow A = \frac{-1}{4}$ $S=-3 \Rightarrow B = \frac{2}{4}$ A(S-3)(S+3) + B S(S+3) + C S(S-3) = S+1 $S=-3 \Rightarrow B=\frac{2}{4}$ A(S-3)(S+3) + B S(S+3) + C S(S-3) = S+1 A(S-3)(S+3) + B S(S+3) + C S(S-3) = S+1 A(S-3)(S+3) + B S(S+3) + C S(S-3) = S+1 A(S-3)(S+3) + B S(S+3) + C S(S-3) = S+1 A(S-3)(S+3) + B S(S+3) + C S(S-3) = S+1 A(S-3)(S+3) + B S(S+3) + C S(S-3) = S+1 A(S-3)(S+3) + B S(S+3) + C S(S-3) = S+1 A(S-3)(S+3) + B S(S+3) + C S(S-3) = S+1 A(S-3)(S+3) + B S(S+3) + C S(S-3) = S+1 A(S-3)(S+3) + B S(S+3) + C S(S-3) = S+1 A(S-3)(S+3) + B S(S+3) + C S(S-3) = S+1 A(S-3)(S+3) + B S(S+3) + C S(S-3) = S+1 A(S-3)(S+3) + C S(S-3) = S

Q12: use the method undetermined coeff. to find the form of the particular sol. Yp of the D.E

y"+ 4y = Sin(X)COS(X) + X GS(X) [Don't find constants]

Sel. $y'' + 4y = 0 \Rightarrow r^2 + 4 = 0 \Rightarrow r = \pm 2i$ y'' = 5 + 2iy'' = 5 + 2i

الم المانية على المانية المانية المانية على المانية المان

y = Axsin2x + Bx cos2x + (cx+D)cosx + (Ex+F) sinx

DIFFERENTIAL EQUATION

FINAL

93: If [ux), ux) exiz is the fund. sal. set of D. E Xy"-y'-4xy =0, X>0, find form function u(x)?

$$W = ce^{\int \frac{1}{x} \cdot dx}$$

$$= ce^{\int \frac{1}{x} \cdot$$

$$4x \cdot e^{2x^{2}} = \frac{c \cdot x}{u^{2} \cdot x} \Rightarrow \sqrt{u^{2}(x)} = \sqrt{\frac{c}{u \cdot e^{2x^{2}}}}$$

$$u(x) = \sqrt{c} \cdot \frac{1}{2 \cdot e^{x^{2}}} = \left|\frac{1}{2}c^{2} \cdot e^{x^{2}}\right|; \left|c^{2} - \sqrt{c}\right|$$

Q14: Find a suitable substitution to transform the D.E 6 y2dx - X(2x3+y).dy=0, into a linear equation. then, find the resulting linear eq. [don't solve eq.]

$$\frac{dx}{dy} - \left[\frac{2x^4 + xy}{6y^2}\right] = 0 \implies x + \left(\frac{1}{6y}\right)x - \frac{x^4}{3y^2} = 0$$

$$X' - \left(\frac{1}{6y}\right)X = \frac{1}{3y^2} \cdot X'' \rightarrow V = X = \left[\frac{1}{x^{-3}}\right]$$

$$V' = -3 \times X \cdot X'$$

DIFFERENTIAL EQUATION

Q15: Find the laplace transform of F(t) - tet sin(t)

$$= (-1) \frac{d}{ds} \left[\frac{2}{s^2 + 4} \right] = (-1) \cdot \frac{-2 \cdot 52}{(s^2 + 4)^2}$$

$$= (-1) \cdot \frac{d}{ds} \left[\frac{2}{s^2 + 4} \right] = (-1) \cdot \frac{-2 \cdot 52}{(s^2 + 4)^2}$$

$$= \frac{|4(s+2)|}{((s+3)^2+4)^2} \neq$$

P16: Consider the D.E: Xy"+ (2+8x)y+ (8+16x)y=6# to answer the following two parts:

- a) when using the substitution u=(xy) into this D.E the resulting diff. eq. will be?
- b) Use the result in part (a) above to find the general sol, to D. E in (*)

هو معطي معادلتر وطالب ع) له كل لجديد كـ الله الم المعادلة وطالب عن الله على الله المعادلة وطالب عن الله المعادلة وطالب عب الله المعادلة وطالب عب الله المعادلة وطالب عب الله المعادلة وطالب عب الله المعادلة وطالب الم

From (*)
$$xy' + 2y' + 8xy' + 8y + 16xy' = 0$$

$$y'' + 2y' + 8xy' + 8y' + 16xy' = 0$$

$$y'' + 8y' + 16y = 0$$
Theorem second

$$(r+4)^{2}=0 \Rightarrow e^{-4x} \times e^{-4x}$$

$$(y=(e^{-4x}+c_{2})^{2})$$

Piz: One the following pairs of function are Cheatrly dependent on (0,00)

c)
$$f = e^{x} \cos x$$
, $g = e^{x} \sin x$ $\int \int f = e^{x} \cdot g = \lambda + 2$

= 101 depen. #

النكرة بالكال انو بدلاتحب لكل مائرة لل خاذا کان الجواد: ara بعوی dep. وبعون مو امنی راهامید لانغ الفال لمال الولكوك dep. كولا الولكوك e^{x} $w[f_{19}] = \begin{vmatrix} e^{x} & e^{x+2} \\ e^{x} & e^{x+2} \end{vmatrix} = e^{x} \cdot e^{x+2} - e^{x} e^{x+2}$

P18: One the following is a fundemental solution set for the 4th order D.E: y'+ y'= 0

هو سيال فع دارى بساحة الخد الحلول ويكون الجوان بامدلافن اليك r4+r20 => r3(r+1)=0 r=0,0,0 r=-1

Que: Find the Integrating fector of the following linear equation $y' - \frac{2}{x} \times y = \sin(x^2)$, $\times 70$

$$SU = Y - 2y = \sin x^{2}$$

$$M(x) = e^{-\int_{0}^{2x} dx} = \left| e^{2x} \right|_{0}^{2x}$$

تنظومه والأسلم للم المفعة على أص المتعال والع يفي 6 علامات بالجيبة ... المادى جدا سيلمة ... ولسا برخو لي المنان كيك المحلم. اعْمَا وْتُوْمَلِ وَلُمْدُ الْمُعْمَّةِ ... 🎔

DIFFERENTIAL EQUATION

FINAL

 $\frac{Q_{20}:-\text{ find the general sol. of the D.E: } zxy^2e^{x}.dx-e^{x}dy=0$ $\frac{zu!}{zxy^2e^{x}} = e^{x}y^1 \Rightarrow \int 2x\cdot dx = \int \tilde{y}^2.dy$ $x^2+c=-1.\tilde{y}^1 \Rightarrow y=\frac{-1}{x^2+c} = \frac{1}{z^2+c} = \frac{1}{z^2+c$

2: Find wronskian of any two solutions of the D.E! \frac{1}{2} y"+ 2xy"+y=0

50! Y"+4×y+2y=0 → W=ce-Spw.dx

 $W = C = \frac{-S 4 \times .d \times}{|C|}$

Q22: suppose that $r^3(r-5)^2(r^2+4)^2=0$ is the auxiliary equation of some different with constant well.

Find the order of this equation?

 $\frac{50!}{3} = \frac{(1+4)^2}{3} = 0$ 3 2 4 3+2+4 = 9 order

923: If use substitution y=XV in the D.E

 $\frac{dy}{dx} = \frac{3Xy + y^2}{X^2}$, find form D. E after subst.?

 $\frac{dy}{dx} = 3\frac{y}{x} + \left(\frac{y}{x}\right)^{2}$

 $X \cdot \frac{dv}{dx} + V = 3V + V^2 \Rightarrow \left(\overline{X} \cdot \frac{dv}{dx} = 2V + V^2 \right)$

Q24: Find the Captace transform \$ (cost)?

$$= \frac{1}{2} \cdot \left[\frac{1}{5} + \frac{5}{5+4} \right] \Rightarrow \left| \frac{1}{25} + \frac{5}{25+8} \right| = \frac{1}{25} + \frac{5}{25+8} = \frac{1}{25} + \frac{1}{25} + \frac{5}{25+8} = \frac{1}{25} + \frac{1}{25} + \frac{1}{25} = \frac{1}{25} = \frac{1}{25} + \frac{1}{25} = \frac$$

 $\frac{Q_{25}}{3}: \text{ Find the laplace transform } \int \left[\frac{\pm^2}{3e^2}\right]$ $\frac{5e^{1}}{3} \int \left[\pm^2 \cdot e^{3t}\right] = \frac{1}{3} \left[\frac{2!}{5^3}\right]_{5 \to 5+3}$

$$\frac{1}{3} \cdot \frac{2}{(5+3)^2}$$

Q₂₆: find the inverse laplace trans. $f(\frac{1}{55+2})$ $\frac{1}{5}$ $\frac{1}{5}$

ا حلافات بسیان بر ای سات من 17-35 حای با فنطای و احد عشر ا فری کر فری 2.5 علامات الله علی کر فریم 2.5 علامات اللی کا علامت بوف م بریه ساعت ۱۰۰ استعای می اللی کا علامت بوف مربر از ۱۰۰ بیمنا دُمل لعی و اعل فرستند ۱۰۰ بیمنا دُمل لعی و ا

 $\frac{Q_{27}!}{Y''+5y'+6y=xe^{2x}}$?

 $\frac{Q_{28}}{Y''+y'} = A \sin X + B \cos X$ is a particular sol. of $y''+y' = -3 \sin X$, find the values $A_{3}B_{3}$?

 $\frac{Sol.}{y_p'} = A \cos x + -B \sin x$ $y_p'' = -A \sin x - B \cos x$

= y" + y = -3 sin x = - A sin x - 13 Gsx + A Gsx - Bsinx = -3 sin x

sih x (-A - B) + cosx (-B + A) = -3 sin x

-A - B = -3 -B - B = -3 -2B = -3-2B = -3

B== = A== #

Pzair Find the inverse Caplace trans. 8 13 (574) (574)

 $\frac{3}{5} \int_{0}^{1} \frac{(s^{2}+4) - (s^{2}+4)}{(s^{2}+4)(s^{2}+4)} = \frac{3}{5} \int_{0}^{1} \frac{(s^{2}+4)$

 $= \frac{3}{5} \left[\int \frac{1}{s^2 + 4} - \int \frac{1}{s^2 + 4} \right] \Rightarrow \frac{3}{5} \left[\frac{1}{3} \int \frac{3}{s^2 + 4} - \frac{1}{2} \int \frac{2}{s^2 + 4} \right]$

 $= \frac{3}{5} \left[\frac{1}{3} \sin 3t - \frac{1}{2} \sin 2t \right]$ $= \left[\frac{1}{5} \sin 3t - \frac{3}{10} \sin 2t \right] \#$

المليد الشولين على أحوال حروبي بمفعوصة الموصفة الموصفة المحدث المين على شباك التذاكر للمشاكر الكالم الكالم

FINAL

Q30: Find the Caplace inverse & 5

 $\frac{50!}{5[(5-3)^2+4]} = \frac{5-3}{(5-3)^2} + \frac{3}{(5-3)^2-4}$ 3t g s + 3e t e 1 2

= Get cash zt + 3 et sinh zt) #

Q31: Given the I.U.P for D.E y'-4y=cos(2t). y 60 = 0 , find f(y H) = y x) ?

Sel fy-4fy= foset $y(s) = \frac{s}{(s^2+4)}$ $y(s) = \frac{s}{(s^2+4)} + \frac{s}{(s^2+4)}$ $y(s) = \frac{s}{(s^2+4)(s-4)} + \frac{s}{(s^2+4)(s-4)}$ $y(s)(s-4) = \frac{s}{(s^2+4)}$

V... Partial ... Ulóas

932: Find the general Sol. for x2y"+ 4xy1-3y=0

Cauchy-enlow:

ar2+(b-4)r+c=0 $r^2 + 3 r + 3 = 0 \Rightarrow r_1, r_2 = \frac{-2}{3} \pm \frac{1}{21}$

١٠ = ١٠ = المنافعة ا

y = X = 1 = 1 = 1

y = c, y, + c, y, ... #

المعيز 🕀 يعني Complex was voot

DIFFERENTIAL EQUATION

FINAL

$$\frac{541}{5+25+1-1+5} = \frac{5-5}{(5+1)^2+4}$$

$$= \int_{-\infty}^{\infty} \left\{ \frac{s+1+1+5}{(s+1)^2+4} \right\} = \int_{-\infty}^{\infty} \left\{ \frac{s+1}{(s+1)^2+4} \right\} - 6 \int_{-\infty}^{\infty} \frac{1}{(s+1)^2+4} \times \frac{2}{2}$$

$$= e^{\pm} \int \left(\frac{s}{s^2 + 4} \right) - \frac{6}{2} e^{\pm} \int \left(\frac{2}{s^2 + 4} \right)$$

$$Q_{34}$$
 Find the laptace trans.: $\int \int f(t) \int (s) = \frac{3+5}{5^2}$, $\int e^{t} \cdot f(t+1) \cdot dt$?

$$= \int_{-1+1}^{2} e^{(t-1)} f(t+1-1) dt = \int_{0}^{2} e^{t} e^{t} \cdot f(t) \cdot dt$$

$$e \times \frac{3+5}{S^2} = e \cdot \frac{4}{1} = 4e$$

$$= \frac{1}{t} \int_{t}^{\infty} \left[\int_{t}^{\infty} f(s) \right] = \frac{1}{t} \int_{t}^{\infty} \left[\int_{t}^{\infty} f(s) \left[\int_{t}^{\infty} f(s) \right] = \frac{1}{t} \int_{t}^{$$

 $\begin{array}{lll}
Q_{36}: & \text{Find general sol. by Caplace } & \text{fran. for } D \cdot E \\
y_{ij}^{"} = g(t), & \text{if } g(t) = \begin{cases} 0, & t < 4 \\ (t - 4)^5, & t > 4 \end{cases} \\
& \text{and } y(0) = 0, & y(0) = 0 \end{cases}$ $\begin{array}{lll}
Y_{ij}^{"} = 0 + (t - 4)^5, & U(t - 4)
\end{array}$

 $\int y'' = \int (t-4)^{5} u(t-4)$ $\int y'' = \int (t-4)^{5} u(t-4)$

s'y(s) - sy(0) - y(0) = e4s f(±5)

 $s^{2}y(s) = e^{-4s} \cdot \frac{5!}{s^{6}} \Rightarrow y(s) = \frac{e^{4s} \cdot 5!}{s^{8}}$ $\int y(s) = 5! \int \frac{e^{-4s}}{s^{8}} \Rightarrow y(t) = 5! u(t-4) \int \frac{1}{s^{3+1}}$

 $y(t) = \frac{5!}{7!} u(t-4) \int_{S^{\frac{7}{1}}}^{1} \left\{ \frac{7!}{S^{\frac{7}{1}}} \right\}_{t\to (k-4)}$ $y(t) = \frac{1}{42} u(t-4) \cdot (k-4)^{\frac{7}{1}}$

و لکل فرق معلی مران آیا مه معه ، لک من یتعمل مفول الهیا ه فوق معلی در است الکی الم من المهرت رومه من فرلی آبعب ، لکل من آجیب بالمیسة من امتحانات او صواد علمیة معقدة ، لکل من دعمل لذبل لعلم کس خاص او سود خلق آو کلمة جارجه ، لاباس علی ملل ، سعطی السی می فضله ما کنت تدهنی ، ورباب لایسی ۱۰۰۰ علی شاهد الایسی ۱۰۰۰ می فضله ما کنت تدهنی ، ورباب لایسی ۱۰۰۰ ها

DIFFERENTIAL EQUATION

FINAL

938: Find the general Sol. for the D.E:

$$501.$$
 $y(1) + 3y(1) + y(1) = 4 + 0 + 2 \Rightarrow |y(1) = 0|$

$$\Rightarrow y + 3xy + 10y'' = \frac{8x}{x^{4}} \Rightarrow y(1) = 20$$

$$y = -1 + 1(x-1) - \frac{4}{41}(x-1) + \frac{20}{5!}(x-1)^{5}$$

Q39: Thegeneral sol. to the initial value problem

auxi: r2+4r+9=0 - r=-2±5

Quo: which of the following equations can be transformed into a seperable equations?

(a)
$$xy' = y en(xy)$$
 (b) $(x-y+1)y' + y = x-3$

المجرب لعد ولك فيم يغي بيس معك انو 0 مانع B من الأحسط وهكذا

طبعا المؤالة عا والله يعول الى . وعلى الكول الله عرف وغي الموال على الموالة عا والله يعني الموالة عا الله يعول الله على الموالة على الموا

$$(V+1)(1-V') = V-3$$

$$v=x-y$$
 $(v+1)(1-v) = v-3$ $v'-1=-y'$ \Rightarrow $v+1\to v v\to v'-1$ $= v-3$ $(v-1)v'=-4 \Rightarrow sep. \# [E]$

 Q_{41} : Find The First three non-Zero terms in the solution of $J \cdot U \cdot P : y'' - xy' - y = 0$, y(0) = 0, y'(0) = L

$$y''' - xy'' - y' - y' = 0 \rightarrow y''(0) = 2$$

$$y'' - xy'' - y' - y' - y'' = 0 \rightarrow y'(0) = 0$$

$$\Rightarrow$$
 $y = \sum_{i=1}^{n} \frac{f^{(n)}(x)}{n!}$

$$y = X + \frac{2}{3!} X^3 + \frac{8}{5!} X^5 #$$

Quz: Find the values of a which makes the D.E $(4 \times^3 y^3 - 2y) + (\alpha \times^4 y^2 - 2x + 2y) y' = 0; \text{ exact ?}$

 $\underbrace{\text{SOI}}_{M} \left(4 x^{3} y^{3} - 2 y \right) \cdot dx + \left(a x^{4} y^{2} - 2 x + 2 y \right) dy = 0$

$$My = 12 \times^{3}y^{2} - 2$$

$$DX = 4a \times^{3}y^{2} - 2$$

My=NX 12xxyx-x= 49x3y2-2

3=9

Qus: let y, y be two solutions to the D.E

y"+ poxy+ q(x)y=0, with W[y, y] = Xex, and

y(x) = x , Find Y(x)

$$\frac{\sum_{i=1}^{n} y_{i}^{2} = y_{i} \int \frac{w_{i}w_{i}}{y_{i}^{2}} = x \int \frac{x^{2}e^{x}}{x^{2}} = x \int x e^{x} dx}{\sum_{i=1}^{n} y_{i}^{2} = x \int x e^{x} dx}$$

Quy: For the initial value problems: y"-2y'+y=et

y(0)=5, y'(0)=0, Find Couplace trans. You of the

solution y(t)?

 $\frac{50!}{5^{2}y-5y(0)-y(0)-25y+2y(0)+y=\frac{1}{5-1}}$ $\frac{5^{2}y-5s-25y+10+y=\frac{1}{5-1}}{y(s^{2}-25+1)-55+10=\frac{1}{5-1}}$

 $y(s^2-25+1) = \frac{55^2-155+10}{5-1} \Rightarrow y(s) = \frac{55^2-155+10}{(5-1)^3} \Rightarrow y(s) = \frac{55^2-155+10}{(5-1)^3}$

Qu5: Consider $L[y]H = t^2y'' + ty' + (t^2 + 1)y$, if $(t^2 + 2)y' + ty' + (t^2 + 1)y' + (t^2 +$

; t70 is Given by ?

Sol. 9(x) = t= → yp = At= → yp = 5At= yp = 5At=

 $-\frac{15}{4}A + \frac{5}{2}A - \frac{1}{4}A + \frac{5}{2} + A + \frac{9}{2} = \pm^{\frac{5}{2}}$ $\left[\frac{15}{4}A + \frac{5}{2}A - \frac{1}{4}A \right] \pm^{\frac{5}{2}} + A \pm^{\frac{9}{2}} = \pm^{\frac{5}{2}}$

15A + 10 A - A = 4

 $A = \frac{4}{24} \longrightarrow A = \frac{1}{6} = \frac{50}{6} = \frac{$

DIFFERENTIAL EQUATION

FINAL

Que: Find the inverse caplace trans. 1 5 = 35

$$\frac{50!}{5^{2}+9} = \frac{5^{2}}{5^{2}+9}$$

$$3^{2}+9$$

$$3^{2}+9$$

$$4 = \frac{7}{3} + (\frac{1}{5}) = \frac{5}{5^{2}+9}$$

$$5^{2}+9$$

g Fr) = cos3t → g sē3 = +(t-≤).u(t-≤)=)

Quz: If fit = { 3 , 1< t < 2 } then find the laptace trans. [[fit) ?

는 +(b)= 1 + 2 U(+-2) + 3 U(t-3)

f ft) = f(+ 2 fu(+-2) + 3 fu(+-3)

I fil) = y(s) = \frac{1}{5} + 2\frac{1}{2}^2 + 3\frac{1}{5}^2 #

Que: - Consider the initial value problems: -

(sinx).y + xy' = 1 , y(x) = 1 , what is the

Cargest interval on which we expect aunique

sol. to be defined ?

Sul. $y + \frac{\sin(x)}{x}y = \frac{1}{x}$

الم فذ نقالم عدم من تصال (ا صفار بلقام)

30: Congest interval (0,4) (3.14 = > = = 0x

Qua: Find the integrating factor of XCnX du + y = 2 en X

$$My = 1$$

$$\frac{My - Nx}{N} = \frac{1}{X \operatorname{en} X} = \frac{-\operatorname{en} x}{X \operatorname{en} X}$$

$$\int_{-\infty}^{\infty} \frac{1}{x} \cdot dx = -\frac{1}{x}$$

$$\int_{-\infty}^{\infty} \frac{1}{x} \cdot dx = -\frac{1}{x}$$

$$\int_{-\infty}^{\infty} \frac{1}{x} \cdot dx = -\frac{1}{x}$$

$$\frac{50!}{5!} \cdot \frac{5!}{5!} \cdot \frac{5}{5!} \cdot \frac{5}{5$$

$$\int_{0}^{\infty} \frac{5+3}{(5+5)^{2}+7} - \frac{3}{\sqrt{7}} \int_{0}^{\infty} \frac{\sqrt{7}}{(5+3)^{2}+7}$$

Psi: The general sol. for y"-y"-y+y=0 is?

$$\frac{50!}{}$$
 $r^3 - r^2 - r + 1 = 0$

$$(r-1)(r^2-1)=0$$

PAGE: 32

Y-1 Y2-1-Y+1

DIFFERENTIAL EQUATION

952: Find the form of the particular sol. to the D.E y" + zy' + zy = 4 x sin(2x), using the undetermined coeff. method [don't evaluate constants] ?

auxieq.: r2+2r+2=0 - | r=-1+i| sol. Y = C e cosx + C e sinx

9p = (Ax+13x+c) [Cod2x) + sin(2x)] #

P33: Find & ct. 4(++2) :-= e 1{\deltat-6} = e 1 dt. e 6 = es e f (et) - es. 1

Q54: Find fiers

50! q=7 , $F(s)=\frac{1}{5\frac{3}{4}4}=\frac{1}{2}\frac{2}{5\frac{3}{4}4}$ عدد المفاول الموريم المرابع المفاول المرابع ا JFer: F由= + Sinzt $\int_{\frac{e^{-7s}}{2u}} = f(+-7) u(+-7)$

Q55: If $y = \frac{1}{3} \times \sin x$ so 1. to D. E $ay'' + by' + cy = q \cos x$, Find values of a,b,c?

501. $y = \frac{1}{3} \times \sin x$ $y' = +\frac{1}{3} \times \cos x + \frac{1}{3} \sin x$ $y'' = -\frac{1}{3} \times \sin x + \frac{1}{3} \cos x + \frac{1}{3} \cos x$ = $-\frac{1}{3} \times \sin x + \frac{2}{3} \cos x$

: 9 y"+ 6 y + cy = 9 cosx

() = = = = = X Sin X + = = COSX + = X COSX + = Sin X + = X Sin X = 9 GsX

 $X\sin X\left(\frac{-q}{3} + \frac{C}{3}\right) + \frac{q^2}{3}\cos X + \frac{b \times \cos X}{3} = q \cos X$

x - \ar{3} + \frac{2}{3} = 0 → - \ar{a} = \cdot \ar{a} = \cdot \ar{a}

* $\frac{d}{3} 2 \cos x = 9 \cos x \Rightarrow a = \frac{27}{2}$ $\frac{1}{3} b = 0 \Rightarrow b = 0$ $\frac{1}{3} b = 0 \Rightarrow b = 0$

= 27 y + 27 y = 9 cosx

بتعة فوق ستبداً و رابتك ، لا تعبى بهوماك ، لا تشاف في المحانياتك ، لا تعتمد الك أقل من غيرك مها كانت المعلومات والمناهج ، ومها كانت العقد الك أقل من غيرك مها كانت العلومات والمناهج ، ومها كانت تعقيدات مرحلتك ، نذكر أن لاس ا وجد فيك ما يعنيك على تجاوز عقبوات العيان ، كق بنغلك واكتشف قدراتك ، شقت أحلامك ، تذكر ألك العظيم الك وحاك لهذه الموحلة لوحدل ... المحال العظيم الك وحاك لهذه الموحلة لوحدل ... المحال العظيم الك وحاك لهذه الموحلة لوحدل ...

I AUL : 31

DIFFERENTIAL EQUATION

FINAL

Q56: Find the general sol. to the D.E:

$$Xy^3 + (5y^2 - Xy + y^3 \sin(y))y' = -y^2$$

$$\stackrel{501}{=} (xy^3 + y^2) dx + (5y^2 - xy + y^2 \sin(y)) dy = 0$$

$$My = 3xy^2 + 2y$$

$$Dx = -y$$

$$My \neq Nx \text{ so non-exact}$$

$$* \frac{NX - My}{M} = \frac{-y - 3Xy^{2} - 2y}{Xy^{3} + y^{2}} = \frac{-3(Xy^{3} + y)}{y(Xy^{3}y)} - \frac{3}{y}$$

$$M(y) = e^{\int \frac{-3}{y^2} \cdot dy} = -3e^{-3} = \left[y^{-3} \right]$$

$$My = \frac{-1}{9^2}$$
 $P(x,y) = X + y^{-1}$
 $P(x,y) = X^2 + Xy^{-1} + g(y)$

$$N(x,y) = \frac{-X}{y^2} + g(y)$$

⇒
$$5y^{-1} - yy^{-2} + Siny) = \frac{-x}{y^2} + 9(y)$$

$$\leq 0 : C = \frac{\chi^2}{2} + \chi y' + 5 eny - 6 sy$$

DIFFERENTIAL EQUATION

FINAL

Der: use the substitution u=y-x to find the general sol to the D. E: $y'-\frac{y}{x}=x^3y^2+x^5-2x^4y$ #

$$y = u + x$$

$$y' = u' + 1 - (u + x) = x^{2}(u + x)^{2} + x^{2} - 2x^{2}(u + x)$$

$$y' = u' + 1$$

$$\Rightarrow u' + 1 - u - 1 = \chi'(u^2 + 2u + \chi^2) + \chi' - 2\chi'' - 2\chi''$$

$$u' - u = \chi''u^2 + 2u \chi' + \chi'' + \chi'' - 2\chi'' - 2\chi''$$

$$V = \frac{1-2}{4} = \frac{1}{4} = \frac{1}{4}$$

$$V = \frac{1}{M(x)} \left[C + \int M(x) \cdot g(x) \cdot dx \right]$$

$$V = x' \left[C + \int x \cdot -x^3 \cdot dx \right]$$

$$V = \chi^{-1} \left[C - \frac{\chi^{5}}{5} \right] \implies \frac{1}{u} = \frac{1}{\chi} C - \frac{\chi^{4}}{5}$$

$$U = \frac{X}{C} - \frac{5}{X^{4}} \Rightarrow y - X = \frac{X}{C} - \frac{5}{X^{4}}$$

Find the general sol. to the D.E y"+2y3, 44y - 2y-54=0

Sol. r4+2r3+4r2-2r-5=0

بالمتمة الموالي على (1-1) (1-4 312 + 7+5)=0 ما المتمة الموالي الم بالنفريب ١- يم ه

(r-1)(r+1)(r2+2r+5)=0 = (r-1)(r+1)(r+1)(r+5)=0

 $r_1 = 1$ $r_2 = -1$ $r_3, y = -1 \pm 2i$

y = e y = e y = e sinzx y = e coszx

y = < ex + czex + czex coszx + cuex sinzx

Pga: Find the form of the particular sol. Y(x) to the non-homo. D.E.:

y'-8y'+16y = exsin(4x) + 3e" + x [don't evaluate constants] ?

+2-8r+16=6

y = e'x y = e'x

1/2 = < e4x + CXE"x

501. y"- 8y+16y=0 9 9 = ex sin(x) + 3e4x + x

 $Y^{2} - 8r + 16 = 6$ (r - 4)(r - 4) = 0 $Y = Ae^{2x} \sin 4x + Be^{2x} \cos(4x)$

92 = Ce4. X2 2

1 70, = DX + E

4 = A ex sin 4 x B B e Cas(4x) + C e x +

FINAL

Qso: Find ase and anearly independent solution $y_2(x)$ to the D. E: y'' + pwy' + q(x)y = 0, $x \neq 0$ if the $w[y_1y_2] = x^2e^{-x^2}$, and $y_1x_2 = 3x$ sol. $y_2 = y \int \frac{w(y_1y_2)}{(y_1)^2} dx = 3x \int \frac{x^2e^{-x}}{4x^2}$ $= \frac{1}{3}x \int e^{-x} \Rightarrow |y_2| = -xe^{-x}| +$

 $\frac{Q_{61}}{\sqrt{59}}$: Find the tup been trans. $y_{(5)}$ of the sol. $y_{(4)}$ of the $I \cdot V \cdot P$ y'' + y' - y = 2 o $y_{(6)} = 0$ o $y' \in Y_{(5)} = 1$? $y'' + y'' - y'' - y'' = y^2 = 3$ $y_{(5)} - y_{(5)} - y_{(5)} = 3$ $y_{(5)} - y_{(5)} - y_{(5)} = 3$

 $\Rightarrow s^{2}y(5) - 1 + 3y(5) - y(5) = \frac{2}{5}$ $(s^{2} + 5 - 1) y(5) = \frac{2}{5} + 1 \Rightarrow y(5) = \frac{2 + 5}{5(s^{2} + 5 - 1)} + \frac{2}{5}$

Q62! Find $\int \frac{1}{s^2 + 6s + 8}$ Sol! $\int \frac{1}{(s+4)(s+2)} pout that Praction = \int \frac{A}{s+4} + \frac{B}{s+2}$ when $-0s = -2 \rightarrow B = \frac{1}{2}$ when $-0s = -2 \rightarrow A = -\frac{1}{2}$

= == == # #

Ocs: Find & en (5=3)

$$\frac{1}{50!} = \frac{50!}{5!} = \frac{50$$

Qui: Given that J(+1)(s) = (C-1)e, where I denotes captace trans. , then find the values of of C

$$\int_{S_{0}}^{S_{0}} f(U) = \int_{S_{0}}^{S_{0}} \frac{(C_{-1})e^{5}}{S^{3}}$$

$$f(U) = e^{5} \int_{S_{-2+1}}^{T_{-1}} \frac{(C_{-1})e^{5}}{S^{2+1}}$$

$$6ut \quad t^2 = \frac{21}{5^{2+1}} \implies C-1 = 2!$$

Pos: The solution to the I.V.P: y'-y=g(t), y(0)=0 where g(t) = {0,05651, find it?

$$\frac{501}{5}$$
 $\frac{1}{3}$ $\frac{$

$$Y(s)(s-1) = \frac{\overline{e}^{s}}{s}$$

$$\int_{s}^{s} Y(s) = \int_{s}^{s} \frac{\overline{e}^{s}}{s(s-1)}$$

$$Y(s)(s-1) = \frac{-s}{s}$$
 $= \frac{-s}{s} = A(s-1) + Bs$
 $S=0 \Rightarrow A=-1, s=1 \Rightarrow B=e^{-1}$
 $S=0 \Rightarrow A=-1, s=1 \Rightarrow B=e^{-1}$
 $S=0 \Rightarrow A=-1, s=1 \Rightarrow B=e^{-1}$

 $\frac{Q_{66}!}{\int_{-\infty}^{\infty}} \frac{1}{\int_{-\infty}^{\infty}} \frac{1}{\int_{-\infty}^{\infty$

 $\frac{Q_{57}^{2}}{\text{Find the inverse Gyplace trans.}} \int_{S^{2}-2S+5}^{2} \int_{S^{2}-2S+5}^{2} \int_{S^{2}-2S+1}^{2} \int_{S^{2}-2S+1}^{2}$

Question of any two solves the D. E $\chi y'' + (\chi + 1) y' + y = 0$ is $\chi > 0$

$$\frac{50!}{x} = y'' + (1 + \frac{1}{x})y' + \frac{1}{x}y = 0$$

$$W[y, y,] = e^{\int (1 + \frac{1}{x}) \cdot dx} = e^{(x + enx)}$$

$$= e^{x} \cdot \frac{e^{x}}{x} = e^{x}$$

Qeq: let y(x) be the sol. for the D.E (y-xex-ex).dx + xdy = 0 ; x > 0 with y(1) = e

Find y(3)?

$$xy' + y - xe^{x} - e^{x} = 0 \Rightarrow xy' + y = xe^{x} + e^{x}$$

 $xy' + \frac{1}{x}y = e^{x}(1 + \frac{1}{x})$

$$y = \frac{1}{x} \left[c + \int x \cdot \left(e^{x} + \frac{e^{x}}{x} \right) \right] \Rightarrow = \frac{1}{x} \left[c + \int e^{x} (x+1) \right]$$

$$y = \frac{1}{x} \left[c + (1+x) - \int e^{x} dx \right]$$

Pzo: Find the integrating Pactor of the diff. eq.

 $Q_{\mp 1} := If y_1 = e^{x^2} is a sol. of the D.E: y'+ p(x)y'+ q(x)y = 0$ where p(x) and q(x) are Continuous functions on \mathbb{R} .

Find a second Cihearly independent sol. $y_2(x)$ given that $W[y_1,y_2] = xe^{2x^2}$

 $y_2 = e^{\chi^2} \int \frac{\chi e^{2\chi^2}}{e^{2\chi^2}} = e^{\chi^2} \int \chi \cdot dx = \frac{\chi^2 \cdot e^{\chi^2}}{\frac{2}{H}}$

Q72: If y(x) = \(\frac{1}{2} \) 9, x is a series sol. of allinear

O.D. E of a second order which satisfying the recursive reation $(n+2)q_{n+2}-(n+3)q_{n+1}-q_n=0$ under the initial · V.P y(0)=0, $y^1(0)=1$

sol: we know $y(6) = n! a_n$, then $y(6) = 0! a_6 = [1]$ $y'(6) = 1! \cdot a_1 \implies [a_1 = -1]$

if $\underline{n:0} \rightarrow (0+2)a_2 - (0+3)a_1 - a_0 = 0 \Rightarrow [2=-1]$

if n=1 => (1+2) q - (1+3) q - q = 0

مودانر عوض من الله الله عرض من الله عرض عن الله عرض عن الله عرض عن الله عرض عن الله ع

DIFFERENTIAL EQUATION

FINAL

 G_{+} : If y(s) is the laplace trans. of the sol. y(t) of the $T \cdot V \cdot | 2 \cdot y' + 3y = u(t-2)$, y(t) = 0, y(t) = 1?

$$\int y'' + 3 \int y = \int u(1-2)$$

$$\int y'(y) - \int y'(y) - y'(y) + 3y(y) = \frac{e^{2}}{2}$$

$$\int y'(y) \left(\int \int y''(y) - \int y'(y) - \int y''(y) - \frac{e^{2}}{2} + \frac{e^{$$

Azu: using the substitution u=Xy for the D.E

Xy"+(2+2x)y' +2(1+x)y =0 , Find the resulting

D. E will be?

$$y'' = \frac{x^{2}(xu'' + u' - u') - (xu' - u)^{2}x}{x^{2}}$$

$$= x^{2}u'' - 2xu' + 2u$$

$$= x^{3}$$

 $\frac{\chi^{2}u'' - 2\chi u' + 2u}{\chi^{2}} + (2 + 2\chi)(\frac{\chi u' - u}{\chi^{2}}) + \frac{2\chi u + 2u}{\chi} = 0$

$$x^{2}u'' + 2x^{2}u' + 2x^{2}u + 2x^{2}u - 2xu + 2x^{2}u + 2x^{2}$$

P75: If F(x) =
$$\frac{5+2}{5^3+1}$$
 is the laplace trans. of
the function fell), then find the values of
 $\int L \cdot f'(t) = 4t = 1$?

$$\frac{|s_0|}{|s_0|} = \int \frac{1}{s_0} \left[\frac{1}{s_0} + \frac{1}{s_0} \right] = \frac{1}{s_0} \left[\frac{1}{s_0} + \frac{1}{s_0} \right] = \int \frac{1}{s_0}$$

$$=(-1)\cdot\frac{1}{ds}\left[s\int_{S} f(t)\right] = -1\cdot\left[sf(s) + f(s)\right]$$

but
$$f(s) = s^{3}+1-(s+2)\frac{3s}{3s}$$

$$-\left[S, \frac{s^3+1-3s^2-65}{\left(s^3+1\right)^2} + \frac{S+2}{s^3+1}\right]$$

$$-\left[1, \frac{1+1-3-6}{(2)^2} + \frac{1+2}{1+1}\right]$$

Qz6: Suppose that y6) = 612 x +5 xex

and y(x) = 3 e^{2x} + 5 xex are two sol. of the D.E

y"+by'+cy = g(x), where 6 and c are constants,

Then find the general sol. to this D. E?

PAGE : 44

سے یتعے کمل

Constant coeff Polary 131 constant + b, Coil 501 يغي صيحون إلى اما مكور او فعلين او اعالهما. لك الحلول لست على الأشكال الطبيعية بلى ذكرتم مو يغي مفاة الهم اقتران صو ملا يفي ١١٥ له ٥٠ اذا يجبان يكون ولا كلاصر بالطلين بدون تغيس: Y = 6 = 3x (+5) ex

Homolowed ale Momo 6 Golia

Y= 3e2X + 5xex => SO Y=c,ex+czex+5xex صوا به غودانه سي

OFF: If y(x) = X" is asol. of the D. E $x^2y'' - x(2x + 4)y' + (4x + 6)y = 0 = x>0$ for some MER , find the general sol. of this D.E ?

الما اولا انجاد مَمِم الله المكن ١٥٥٠ ولغي يعقف إعاد الله ylx- x y (x) = m X => y x m (m-1) X

 $\sqrt{y} \sqrt{y} \sqrt{y} = 0$ $\sqrt{(2x+4)m} \sqrt{(4x+6)} \sqrt{(4x+6)} = 0$ $m(m-1)X^{m} - (2Xm - 4m)X^{m} + (4X+6)X^{m} = 0$

X JE F 2 (m²-m) -2m X - 4m + 4 X + 6 = 6 (4-2m)x + (m2-5m+6) =0

PAGE: 45

RJ =>

$$M^{2}-5M+6=0$$
 — (1)
 $4-2M=0$ — (2) $M=0$ — (3) $M=0$ — (4) $M=0$ — (4) $M=0$ — (5) $M=0$ — (6) $M=0$ — (6) $M=0$ — (7) $M=0$ — (8) $M=0$ — (9) $M=0$ — (10) M

2 = M = 2 = 1

 $y(x) = X^{2} \implies X^{2}y'' + (-2X^{2} - 4X)y' + (4X + 6)y = 0$ $y(x) = X^{2} \implies y'' + (-2X^{2} - 4X)y' + (4X + 6)y = 0$ $y(x) = X^{2} \implies y'' + (-2 - 4X)y' + (4X + 6)y = 0$ $y(x) = X^{2} \implies y'' + (-2 - 4X)y' + (4X + 6)y = 0$ $y(x) = X^{2} \implies y'' + (-2X^{2} - 4X)y' + (4X + 6)y = 0$ $y(x) = X^{2} \implies y'' + (-2X^{2} - 4X)y' + (4X + 6)y = 0$ $y(x) = X^{2} \implies y'' + (-2X^{2} - 4X)y' + (4X + 6)y = 0$ $y(x) = X^{2} \implies y'' + (-2X^{2} - 4X)y' + (4X + 6)y = 0$ $y(x) = X^{2} \implies y'' + (-2X^{2} - 4X)y' + (4X + 6)y = 0$ $y(x) = X^{2} \implies y'' + (-2X^{2} - 4X)y' + (4X + 6)y = 0$ $y(x) = X^{2} \implies y'' + (-2X^{2} - 4X)y' + (4X + 6)y = 0$ $y(x) = X^{2} \implies y'' + (-2X^{2} - 4X)y' + (4X + 6)y = 0$ $y(x) = X^{2} \implies y'' + (-2X^{2} - 4X)y' + (4X + 6)y = 0$ $y(x) = X^{2} \implies y'' + (-2X^{2} - 4X)y' + (4X + 6)y = 0$ $y(x) = X^{2} \implies y'' + (-2X^{2} - 4X)y' + (4X + 6)y' = 0$ $y(x) = X^{2} \implies y'' + (-2X^{2} - 4X)y' + (4X + 6)y' = 0$ $y(x) = X^{2} \implies y'' + (-2X^{2} - 4X)y' + (4X + 6)y' = 0$ $y(x) = X^{2} \implies y'' + (-2X^{2} - 4X)y' + (4X + 6)y' = 0$ $y(x) = X^{2} \implies y'' + (-2X^{2} - 4X)y' + (-2X^{2}$

$$y = y, \int \frac{e^{-\int PX} \cdot dx}{(y_i)^2} \cdot dx = \chi^2 \int \frac{\int 2 + \frac{4}{x} \cdot dx}{e^{-\frac{1}{x}}}$$

$$= \chi^2 \int \frac{e^{2X} \cdot \chi^4}{e^{4X}} \cdot dx = \left[\frac{\chi^2 \cdot e^{2X}}{2} \right]$$

y = c, x2 + c, x2 e2x # هذا هو لعمان

لاصط صرب المرك ال غرب منهاه کان لا بخوتر اطلاعاً على كل ... ركز كثير بتيجى عالفكرة مولن والطالب مفكر الو فش اجالة والقال علط " كن

Q78: Find the inverse caplace trans. of Fis) = 5-4

$$\underline{Sol}. \quad \underline{S-4} \qquad (-\frac{4}{2})^{\frac{2}{2}} = \underline{[4]}$$

$$\int_{S^{2}-4S+4-4+8}^{-1} = \int_{S^{2}-4S+4}^{-1} \frac{S-4}{(S-2)^{2}+4}$$

$$-\int_{-1}^{1} \frac{S-u}{(s-2)^2+4}$$

$$\int_{0}^{-1} \frac{(5-2)^{2}-2}{(5-2)^{2}-1}$$

$$\int \frac{(s-2)^2+4}{(s-2)^2+4} = \int \frac{s-2}{(s-2)^2+4} - \int \frac{2}{(s-2)^2+4}$$

Oza: using on appropriate substitution to transform the D.E: 4y2.dx-X(2X3+y)dy=0 into linear equation, Find the regulation?

$$4y^{2}x^{2} - 2x^{4} + yx = 0 \Rightarrow x^{2} - 2x^{4} - yx = 0$$

$$4y^{2}x^{2} - 2x^{4} + yx = 0 \Rightarrow x^{2} - \frac{2x^{4}}{4y^{2}} - \frac{yx}{4y^{2}} = 0$$

$$X' - \frac{1}{4y}X = \frac{1}{2}X''y^2 \implies V = X'' = \sqrt{3}X''X''$$

DIFFERENTIAL EQUATION

INAI

Q81:- Use the substitution u = Xy to find the general Sol. of the D.E $(y^2 + \frac{1}{X^2})dx + 3Xy \cdot dy = 0$ Sol. $y = \frac{y}{X} \Rightarrow y' = \frac{Xu' - u}{X^2}$

 $y^{2} + \frac{1}{X^{2}} + 3Xy \cdot \frac{dy}{dx} = 0$ $\frac{u^{2}}{X^{2}} + \frac{1}{X^{2}} + 3U \left[\frac{Xu' - u}{X^{2}} \right] = 0$ $\frac{u^{2}}{X^{2}} + \frac{1}{X^{2}} + \frac{1}{X^{2}} = 0$ $\frac{u^{2}}{X^{2}} + \frac{1}{X^{2}} + \frac{1}{X^{2}} = 0$ $\frac{u^{2}}{X^{2}} + \frac{1}{X^{2}} = 0$

 $3 \times u' = \frac{2u^2 - 1}{u}$

ويتم

$$\int \frac{u}{2u^2-1} du = \frac{1}{3X} \cdot dX \rightarrow \frac{1}{4} \int \frac{4u}{2u^2-1} \cdot du = \int \frac{1}{3X} \cdot dx$$

 $\left| \frac{C_{1}|x|-\frac{3}{4}|C_{1}|^{2}|x|^{2}|^{2}}{C_{1}|x|-\frac{3}{4}|C_{1}|^{2}|x|^{2}|x|^{2}} \right| = C^{1}$

HISHF

فيديوط تو كانت كانية وزياده جداً لانجار في عقل...

• اللم الي الله علماً نافعاً

الما تعلق المسادية

ركز - بطال - وأبي - لعالم ... ٧

ا الما المار العير العي

دعوى - لوالدك - ووالدى ... ٧

Motivation - From - Shroug - Altiti --- V

م انت الكوكش لمياعل

وهلك تبكون خلعت معركة عالفعل ...

ا فتعها بهم وانجاز

ونها به تعبل علها تكون علوة ...

عي نترك أمبوع وبس ، اتعب فيها وارتاح بعدت معلان عظامة مشور وثوب ، اعمل فيها اللي بدك الحات عظامة من عشار اللي بدك الحاء ، بس هسا درامة وتركيز عثمان نهمه تتاج تعبا ... الله حما مب لهدى - لا - يذهل العفويا تبلغ نقي ... الله عما مب لهدى - لا - يذهل العفويا تبلغ نقي ... الله

ع جزيل إشكر للعبري المهندس أنس المعروق ...
ح جزيل إشكر للدم العنوي من الحاليم شودة الهيمي ..
ح جزيل إشكر للدم العنوي من الحالي يؤن المطيب ..

إعداد: عفر موسى لفواجا 220160562 إدار

إن لاك يوتجي ثينًا بعمة سلفاء نو حاربَ الان ولهن ...