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Chapter 1
Introduction to Statistics
and Data Analysis



1.1 Overview: Statistical Inference, Samples,
Populations, and Experimental Design

-Use of Scientific Data
-Variability in Scientific Data
-The Role of Probability



Example 1.2

Often the nature of the scientific study will dictate the role that probability and
deductive reasoning play in statistical inference. Exercise 9.40 on page 297
provides data associated with a study conducted at the Virginia Polytechnic
Institute and State University on the development, of a relationship between the
roots of trees and the action of a fungus. Minerals are transferred from the fungus
to the trees and sugars from the trees to the fungus. Two samples of 10 northern
red oak seedlings are planted in a greenhouse, one containing seedlings treated
with nitrogen and one containing no nitrogen. All other environmental conditions
are held constant. All seedlings contain the fungus Pisolithus tinctorus. More
details are supplied in Chapter 9. The stem weights in grams were recorded after
the end of 140 days. The data are given in Table 1.1.



Purpose of this experiment :
if the use of nitrogen has an influence on the growth of the roots.

Table 1.1: Data Set for Example 1.2
No Nitrogen Nitrogen

0.32 0.26

0.53 0.43

0.28 0.47

0.37 0.49

0.47 0.52

0.43 0.75

0.36 0.79

0.42 0.86

0.38 0.62

0.43 0.46
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Figure 1.1: A dot plot of stem weight data.



* On average, the use of nitrogen increases the
stem weight.

* Nitrogen is effective but ,how can this be
guantified.
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Figure 1.2: Fundamental relationship between probability and inferential statistics.



1.3 Sampling Procedures; Collection of Data

Simple Random Sampling
Experimental Design

Example 1.3:1 A corrosion study was made in order to determine whether
corrosion of an aluminum metal coated with a corrosion retardation substance
reduced the amount of corrosion. The coating is a protectant that is advertised to
minimize fatigue damage in this type of material. Also of interest is the influence of
humidity on the amount of corrosion. A corrosion measurement can be expressed
in thousands of cycles to failure. Two levels of coating, no coating and chemical
corrosion coating, were used. In addition, the two relative humidity levels are 20%
relative humidity and 80% relative humidity.



Table 1.2: Data for Example 1.3

Average Corrosion in

Coating Humidity Thousands of Cycles to Failure
’ 5
Uncoated 20% 97:
80% 350
0
Chemical Corrosion 20% 1750
80% 1550
2000

Chemical Corrosion Coating

Averdte Corroaion
g

Uncoated

0 20% 80%

7o
Humidity

Figure 1.3: Corrosion results for Example 1.3.



Data Analysis
Measures

v v
Measures of center of Location (Central Tendency) Measures of variability (Dispersion)

(where the data center is in a sample) measures of spread

Me:im Variance
Median Standard Deviation
Mode Range

Other methods of quantifying the center of
location:

Trimmed mean
“trimming away” a certain percent of both the
largest and smallest set of values)
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1.4 Measures of Location: The Sample Mean and
Median

Definition 1.1:

Definition 1.2:

Suppose that the observations in a sample are x1, x2,...,z,. The sample mean,
denoted by z, 1s

T
i_zit _$1‘|‘$2+"‘+$n
n n '
i=1

Given that the observations in a sample are zy, o, ..., z,, arranged in increasing
order of magnitude, the sample median 1s

i {m{ﬂﬂw, if n is odd,

aTr =
1 - .
3(Tn2 + 25 /241), ifnis even.

As an example, suppose the data set 1s the following: 1.7, 2.2, 3.9, 3.11, and
14.7. The sample mean and median are, respectively,
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=512, #=3.9.




Clearly, the mean 1s influenced considerably by the presence of the extreme obser-
vation, 14.7, whereas the median places emphasis on the true “center” of the data
set. In the case of the two-sample data set of Example 1.2, the two measures of
central tendency for the individual samples are

Z (no nitrogen) = 0.399 gram,
T (no nitrogen) = .35 —2|— 042 = 0.400 gram,
T (nitrogen) = 0.565 gram,
T (nitrogen) = 049 —2|_ 0.52 = 0.505 gram.
5} 565
F— | —_— —t = = — —_ — | — b —
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Figure 1.4: Sample mean as a centroid of the with-nitrogen stem weight.

Figure 1.1: A dot plot of stem weight data.



Frequency

Mean and Median

Histogram of Symmetric Continuous Histogram of Skewed Continuous
Mean 100.67 Median 101.06 Median 27581 Mean 36624
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Other Measures of Locations

-Trimmed Mean

e.g., In computing 10% trimmed mean, we cancel
the highest 10% and the lowers 10% of our data
-Benefit:

1)Having a mean close to median

2) Reduce the effect of very high and very low
value

size 1s 10 for each sample. So for the without-nitrogen group the 10% trimmed
mean is given by

032403740474+ 043 +0.36 +0.42 +0.38 +0.43

Ttro) = : — 0.39750,

and for the 10% trimmed mean for the with-nitrogen group we have

043404740494+ 052 +0.75+0.79 +0.62 + 0.46

1481 (10) = 2 = 0.56625.




** Trimmed Mean for No-Nitrogen

No-Nitrogen Nitrogen
0.28 0.26
— 0.32 0.43 .
- - Ltriioy =0.32+0.36+0.37+0.38+0.42+0.43+0.43+0.47
0.37 0.47 8
0.38 0.49 =0.3975
0.42 0.52
0.43 0.62
et el ** Trimmed Mean for Nitrogen
— 0.47 0.79
— — FLri1oy = 0.32+0.36+0.37+0.38+0.42+0.43+0.43+0.47
8
= 0.56625

The trimmed means are close to both the mean and median for the individual samples
Trimmed mean is more insensitive to outliers than the sample mean but not as insensitive
as the median.

The sample median is a special case of the trimmed mean in which all of the sample data
are eliminated apart from the middle one or two observations.



Measures of Variability
-Range
- Variance and Standard deviation

Range = Xmax — Xpin

The sample variance, denoted by s?, is given by
T

—\2
Q_Z(l’-z'—l')
5 = n—]_ .

i=1

The sample standard deviation, denoted by s, 1s the positive square root of
2 .
s“, that 1s,

s =Vs2.
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Example 1.-—l:| In an example discussed extensively in Chapter 10, an engineer is interested in
testing the “bias” in a pH meter. Data are collected on the meter by measuring
the pH of a neutral substance (pH = 7.0). A sample of size 10 is taken, with results
given by

7.07 7.00 7.10 6.97 7.00 7.03 7.01 7.01 6.98 T7.08.

The sample mean z 1s given by

- 7.07 + 7.00 + ;010 +---4+7.08 _ 7 0950.

2 -

The sample variance s 1s given by

§[(7 07 — 7.025)% + (7.00 — 7.025)% + (7.10 — 7.025)?
4+ -4 (7.08 — 7.025)%] = 0.001939.

As a result, the sample standard deviation is given by

= +/0.001939 = 0.044.

So the sample standard deviation 1s 0.0440 with n — 1 = 9 degrees of freedom.
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Statistical Modeling, Scientific Inspection, and
Graphical Diagnostics

1) Scatter Plot

At times the model postulated may take on a somewhat complicated form. Consider,
for example, a textile manufacturer who designs an experiment where cloth specimen
that contain various percentages of cotton are produced. Consider the data in Table
1.3.

Table 1.3: Tensile Strength

Cotton Percentage Tensile Strength

15 7,7,9, 8,10
20 19, 20, 21, 20, 22
25 21, 21, 17, 19, 20
30 8,7,8,0,10

18
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Figure 1.5: Scatter plot of tensile strength and cotton percentages.



2) Stem-and-Leaf Plot

e.g., To illustrate the construction of a stem-and-leaf plot, consider the data of Table
1.4, which specifies the “life” of 40 similar car batteries recorded to the nearest tenth
of a year.

Table 14: Car Battery Life

2.2 41 35 45 3.2 3.7 3.0 2.6
34 16 3.1 33 3.8 31 4.7 3.7
25 43 34 36 29 33 39 31
33 31 377 44 32 41 19 34
47 3.8 32 26 39 3.0 42 35

Table 1.5: Stem-and-Leaf Plot of Battery Life

Stem Leaf Frequency
1 69 2
2 25669 5
3 0011112223334445567778899 25
4 11234577 8

20



Table 1.6: Double-Stem-and-Leaf Plot of Battery Life

Stem Leaf Frequency
1- 69 2
2 2 1
2- 5669 4
S 001111222333444 15
3- 5567778899 10
Aok 11234 5
4. a7 3

21
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3) Histogram

Table 1.7: Relative Frequency Distribution of Battery Life

Mean of Histogram
Y. Class MidpointXf
Xf

Mean=

_1.7><2+2.2><1+---+4.7><3

2+1++3
=3.4125

Class Class Frequency, Relative
Interval Mlidpoint f Frequency
1.5-1.9 1.7 2 0.050
2.0-24 2.2 1 0.025
2.5-2.9 2.7 4 0.100
3.0-3.4 3.2 15 0.375
3.5-3.9 3.7 10 0.250
4.0-4.4 4.2 5 0.125
4.5-4.9 4.7 3 0.075
0.375
=
§ 0.250(
g
L
it}
=
T 0125
[11]
i

1.7 2.2 2.7

3.7 4.2 4.7

Battery Life (years)

Figure 1.6: Relative frequency histogram.



First Quartile and Third Quartile

Definitions:

23

The lower half of a data set is the set of all values that are to the left of the median
value when the data has been put into increasing order.

The upper half of a data set is the set of all values that are to the right of the median
value when the data has been put into increasing order.

The first quartile, denoted by Q4 , is the median of the lower half of the data set. This
means that about 25% of the numbers in the data set lie below Qs and about 75% lie
above Q1 .

The third quartile, denoted by Qs , is the median of the upper half of the data set. This
means that about 75% of the numbers in the data set lie below Qs and about 25% lie
above Qs .



™ " IQR /o

Q1-15xIQR Q3 + 1.5 xI1QR Outlier
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First, we write data in Example 1: Find the first and third quartiles of the data set {3,
7,8,5,12,14, 21, 13, 16, 18}.

, 14,16, 18, 21. inincreasing order: 3,5, 7, 8, 12, 13

Location of Q1: (10+1)*0.25=2.75

Interpolation -

Ql=value of location 2+0.75*( aIu,é of location 3- value of location 2)
Q1=5+0.75*(7-5)=6.5 -

Location of Q2: (10+1)*0.5=5.5

Q2= (12+13)/2=12.5

Location of Q3: (10+1)*0.75=8.25

Q3=value of location 8+0.25*(value of location 9- value of location 8)
Q3=16+0.25*%(18-16)=16.5

Inter quartile range (IQR)=
Q3-Q1

IQR =16.5-6.5=10



4) Box-and-Whisker Plot or Box Plot
-You have to know to estimate the percentile and quartile

e.g., Nicotine content was measured in a random sample of 40 cigarettes. The data
are displayed in Table 1.8.

Table 1.8: Nicotine Data for Example 1.5

1.09 1.92 231 1.79 228 174 147 1.97
0.85 1.24 158 203 1.70 217 255 211
1.86 1.90 1.68 1.51 1.64 0.72 169 1.85
1.82 1.79 246 188 208 1.67 137 1.93
1.40 164 209 1.75 1.63 237 1.75 1.69

In order

0.72 085 1.09 1.24 1.37 14 147 151 158 1.63
164 164 167 168 1.69 1.69 1.7 174 1.75 1.75
1.79 179 182 185 1.86 1.88 19 192 193 1.97
203 208 2.09 211 217 228 231 237 246 2.55



Location of Q1: (40+1)*0.25=10.25
Q1: 1.63+0.25*(1.64-1.63)=1.6325

Q2=(1.75+1.79)/2=1.77

Location of Q3: (40+1)*0.75=30.75 1.51QR
Q3: 1.97+0.75%(2.03-1.97)=2.015
IQR
IQR=2.015-1.6325=0.3825
1.5IQR=0.57375
Outlier
Outlier _ /
'\ ~
S % ___________
/ \
Ql T T | | \ Q3
1.0 & 2.0 25
Micotine QZ

27 Figure 1.9: Box-and-whisker plot for Example 1.5.



Percentile

* Find 62% percentile of {3, 7, 8, 5, 12, 14, 21,
13, 16, 18}.

Location of 62% percentile is (n+1)*0.62=6.82

62% percentile=Value of location 6+0.82*(Value of location 7-Value of
location 6)=13+0.82*(14-13)=13.82

* Find 29% percentile of Table 1.8

Location of 29% percentile is (40+1)*0.29=11.89

29% percentile=Value of location 11+0.89*(Value of location 12-Value of
location 11)=1.64+0.29*(1.64-1.64)=1.64
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e Statisticians use the word experiment to

describe any process that generate a set of
data.

* Example of a statistical experiment is the
tossing of a coin.



Sample Space



Definition 2.1: | The set of all posmible outeomes of a statistical expenment 15 called the sample
space and 1= represented by the syvibol S

Each outcome mn & sample space 15 called an element or & member of the
sample space, or simply & sample point. If the sample space has & fimite number
of elements, we may list the members separated by commas and enclosed mn braces.
Thus, the sample space 5, of posnble outcomes when & coin 15 flipped, may be

WTitten
8={HT}

where H and T correspond to heads and tails, respectively.

Example 2.1 .| Consider the expenment of tossing a die. If we are interested in the number that
shows on the top face, the sample space 1=

S, = {1,2,3,4,5,6}.

If we are interested only 1 whether the number 15 even or odd, the sample space
15 simply

52 = {even, odd}. 1

** More than one sample space can be used to describe the outcomes of an

experiment.
In some experiment it is helpful to list the elements of the sample space by means of

a tree diagram.



Example E.E:l An expeniment consists of fippmg a com and then fipping 1t a second time if &
head occurs. If & tawl occurs on the first fip, then a die 1 tossed once. To hst
the elements of the sample space providing the most information, we construct the
tree diagram of Figure 2.1. The various paths along the branches of the tree give
the detinct sample pomnts. Starting with the top left branch and moving to the
nght along the fimst path, we get the sample poimt HH, indicating the possibality
that heads ocours on two successive Hipﬁ- of the com. Likewise, the sample pomt
T3 indicates the possibility that the coin will show a teil followed by & 3 on the
toss of the die. By proceeding slong all paths, we see that the sample space 15

S={HH, HT, T1, T2, T3, T4, T, T&}. =
First Sacond Sample
Chrtcome Crurtcomes Piint
H' HH

2 T2
3 T3
4 T4
5 TS
[ TE

Figure 2.1: Tree disgram for Example 2.2.




Example 2.3:| Suppose that three items are selected at random from a mamfacturing process.
Each iem 15 mspected and classified defective, I, or nondefective, N. To hst the
elements of the sample space providing the most information, we construet the tree
dingram of Figure 2.2. Now, the vanous paths a.lnngt.hnhmndmanfthctrm g;m::
the distinct sample points. St.ﬂ.rtmg with the first path, we get the sample pomnt
DD, indheating the possibality that all three 1tems inspected are defective. As we
proceed along the other paths, we see that the sample space s

§={DDD, DDN, DND, DNN, NDD, NDN, NND, NNN}.

Frst E-eru:l Third  Sample

Ilam Paoint

DoD

‘< oo

DND

DNN

D NDD
D-<

N NDN

J""'< D NND
H<

N NNN

Figure 2.2 Tree disgram for Example 2.3,



 Sample spaces with a large or infinite number of
sample points are best described by a statement
or rule.

* For example, if the possible outcomes of an
experiment are the set of cities in the world with
a. population over 1 million:

S={x | x is a city with a. population over 1 million},

which reads "S is the set of all x such that x is a city
with a population over 1 million.



Events



 Definition 2.2: An event is a subset of a
sample space.

S = {DDD, DDN, DND, DNN, NDD, NDN, NND, NNN}.

* Event B represents the number of
defectives is greater than 1

B = {DDN, DND,NDD,DDD}



Example 2. 1:| Given the sample space § = {t | t = 0}, where ¢ 1= the life in years of a certain
electronic component, then the event A that the component fails before the end of
the fifth year is the subset A = {t |0 < ¢ < 5}. A

~

The complement of an event A with respect to S is the subset of all elements
of S that are not in A. We denote the complement of A by the symbol A’.

(-

Definition 2.3:

Example 2.6:| Consider the sample space
S = {book, cell phone, mp3, paper, stationery, laptop}.

Let A = {book, stationery, laptop, paper}. Then the complement of 4 is A" =
{cell phone, mp3d}. | |

S={1,2,3,4,5,6}

If event A is the even number in a tossing of a die

A={2,4,6}, A’={1,3,5}

If event B is a number greater than 3 in a tossing of a die
B={4,5,6), B'={1,2,3}
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Definition 2.4: | The intersection of two events A and B, denoted by the svmbol A M B, 1s the
event containing all elements that are common to A and B.

Example E".T:| Let E be the event that a person selected at random 1n a classroom is majoring in
engineering, and let F' be the event that the person i1s female. Then F N F is the

event of all female engineering students in the classroom. A

Example 2.8:|Let V = {a,e,i,0,u} and C = {l,r,s,t}; then it follows that V' N C = ¢. That is,
V' and C' have no elements in common and, therefore, cannot both simultaneously
OCCIT. A
For certain statistical experiments it is by no means unusual to define two
events, 4 and B, that cannot both occur simultaneously. The events A and B are
then said to be mutually exclusive. Stated more formally, we have the following
definition:

Definition 2.5: | Two events A and B are mutually exclusive, or disjoint, if AN B = ¢, that
18, 1f A and B have no elements in common.

Definition 2.6: | The union of the two events A and B, denoted by the symbol AU B, is the event
contaimng all the elements that belong to A or B or both.

Example 2.10:|Let A = {a,b,c} and B = {b,c,d,e}; then AU B = {a,b,c,d, e}. o |



Example 2.12:‘“M={I| J<z <9} and N ={y|5<y<12}, then
MUN={2|3|{lz <12},

12



* The relationship between events and the
corresponding sample space can be illustrated
graphically by means of Venn diagrams.
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The relationship between events and the corresponding sample space can be
illustrated graphically by means of Venn diagrams. In a Venn diagram we let
the sample space be a rectangle and represent events by circles drawn inside the
rectangle. Thus, in Figure 2.3, we see that

AN B = regions 1 and 2,
BnC = regions 1 and 3,

Figure 2.3: Events represented by various regions.

AUC = regions 1, 2, 3,4, 5, and 7,
B'M A= regions 4 and 7,
AnBnC = region 1,
(AUuB)NC" = regions 2, 6, and 7,
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Figure 2.4: Events of the sample space 5.

In Figure 2.4, we see that events A4, B, and ' are all subsets of the sample
space S. It i1s also clear that event B 1s a subset of event A: event B M C' has no
elements and hence B and C' are mutually exclusive; event 4 N has at least one
element; and event A U B = A. Figure 2.4 might, therefore, depict a situation
where we select a card at random from an ordinary deck of 52 playing cards and
observe whether the following events occur:

A: the card is red.

B: the card 1s the jack, queen, or king of diamonds,
" the card is an ace.

Clearly, the event AN ' consists of only the two red aces.
Several results that follow from the foregoing definitions, which may easily he
verified by means of Venn diagrams, are as follows:

1. ANé = ¢, 6. &' = S.

2, Aug = A T {A;].r:A

3 AnA =g

L Aud— 8 8 (ANB) = A'UB.
5. 5" =g 9. (AuB)y =A"nB.



 Exercise 2.7:

Four students are selected at random from a
chemistry class and classified as male or
female. List the elements of the sample space
S, using the letter M for "male" and F for
"female." Define a second sample space S,
where the elements represent the number of
females selected.



S,={MMMM,MMMF,MMFM,MFMM,
FMMM,MMFF,MFMF,MFFM, FMFM, FFMM,
FMMF,MFFF, FMFF, FFMF, FFFM, FFFF}

Sz = {O) 1) 2) 3/ 4}



* Exercise 2.14:

IfS={0,1,2,3,4,5,6,7,8,9} and

A ={0,2,4,6,8}, B={1,3,5,7,9}, C={2,3,4,5}, and
D={1,6, 7}

(a) AU C={0,2,3,4,5,6,8].

(b) ANB= 6.

(¢) C",={0,1,6,7,8,9}.

(d) (C" ND)UB;cnD={1,67} , (CND)UB ={1,3,5,6,7,9}
(e) (SNC); €={0,16,7,89}

(fy ANCn D' {24}, s0 AnC nD' = {2,4}.



Rule 2.1: [If an operation can be performed in n; ways, and 1if for each of these ways a second

operation can be performed in n: ways, then the two operations can be performed
together in nyn, ways.

cample 2.13:| How many sample points are there in the sample space when a pair of dice 1s

thrown once?

Solution: The first die can land face-up in any one of n; = 6 ways. For each of these 6 ways,
the second die can also land face-up in n; = 6 ways. Therefore, the pair of dice

can land in nyn, = (6)(6) = 36 possible ways.

1

Example 2.14:| A developer of a new subdivision offers prospective home buyers a choice of Tudor,
rustic, colonial, and traditional exterior styling in ranch, two-story, and split-level
floor plans. In how many different ways can a buyer order one of these homes?

Solution:

Since ny; = 4 and n; = 3, a buyer must choose from

nyny = (4)(3) = 12 possible homes.

19

Exterior Style Floor Plan
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Figure 2.6: Tree diagram for Example 2.14.




Example 2.15:| If a 22-member club needs to elect a chair and a treasurer, how many different
ways can these two to be elected?

Solution: For the chair position, there are 22 total possibilities. For each of those 22 pos-
sibilities, there are 21 possibilities to elect the treasurer. Using the multiplication
rule, we obtain n; x ng = 22 x 21 = 462 different ways. o |

The multiplication rule, Rule 2.1 may be extended to cover any number of
operations. Suppose, for instance, that a customer wishes to buy a new cell phone
and can choose from n, = 5 brands, ny, = 5 sets of capability, and nz = 4 colors.
These three classifications result in nynang = (5)(5)(4) = 100 different ways for
a customer to order one of these phones. The generalized multiplication rule
covering k operations is stated in the following,.

Rule 2.2: |If an operation can be performed in n; ways, and if for each of these a second

operation can be performed in n; ways, and for each of the first two a third
operation can be performed in ng ways, and so forth, then the sequence of E
operations can be performed in nn, ---n; ways.

Example 2.16:[ Sam 1= going to assemble a computer by himself. He has the choice of chips from
two brands, a hard drive from four, memory from three, and an accessory bundle
from five local stores. How many different ways can Sam order the parts?

Solution: Since n, = 2, n, = 4, ny = 3, and n, = 5, there are

nxMa xng xng=2x4dx3=x5=120

different ways to order the parts. A
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2.22 In a medical study patients are classified mn 8
ways according to whether they have blood type AB™,
AB~, AT, A", BY,B~, O%, or O, and also accord-
ing to whether their blood pressure 1s low. normal. or

high. Find the number of ways in which a patient can
be classified.



* Answer ( Ex. 22)

n,n,= 8*3=24 classification



2.27 A developer of a mnew subdivision offers a

prospective home buwver a choice of 4 designs., 3 differ-
ent heating systems. a garage or carport, and a patio or

screened porch. How many «dlifferent plans are awvailable
to this buyer?

23



* Answer ( Ex. 27)

n,n, n;n, = 4*3*2*2=48 different house plans
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2.33 A witness to a hit-and-run accident told the po-
lice that the license number contained the letters RLH
followed by 3 digits. the fArst of which i1is a 5. If the wit-
ness cannot recall the last 2 digits. but is certain that
all 3 digits are different. find the maximum number of
automobile registrations that the police mawy have to
check.



Answer ( Ex. 33)

n,n, = 9*8=72 registrations to be checked.



2.37 In how many ways can 4 boys and 5 gurls sit m
a row 1if the boys and gurls must alternate?

(5)(4)(4)(3)(3)(2)(2)(1)(1) = 2880
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Example:

How many even three digit numbers can be
performed from the digits 1,2,5,6 and 9 if each
digit can be used only once?

n,n,n; =(4)(3)(2)= 24



Example 2.17:| How many even four-digit numbers can be formed from the digits 0, 1, 2, 5, 6, and

29

9 1if each digit can be used only once?

Solution: Since the number must be even, we have only n, = 3 choices for the units position.
However, for a four-digit number the thousands position cannot be 0. Hence, we
consider the units position in two parts, 0 or not (. If the units position is 0 (i.e.,
n; = 1), we have n, = 5 choices for the thousands position, n; = 4 for the hundreds
position, and ny = 3 for the tens position. Therefore, in this case we have a total

of
nyngngng = (1)(5)(4)(3) = 60

even four-digit numbers. On the other hand, if the units position is not 0 (Le.,
n1 = 2), we have ny = 4 choices for the thousands position, ns = 4 for the hundreds
position, and n, = 3 for the tens position. In this situation, there are a total of

nyngngng = (2)(4)(4)(3) = 96
Since the above two cases are mutually exclusive of each other, the total number
of even four-digit numbers can be calculated by 60 + 96 = 156

Definition 2.7: | A permutation is an arrangement of all or part of a set of objects.

Consider the three letters a, b, and ¢. The possible permutations are abe, ach,
bac, bea, cab, and cha. Thus, we see that there are 6 distinct arrangements. Using
Rule 2.2, we could arrive at the answer 6 without actually listing the different
orders by the following arguments: There are n; = 3 choices for the first position.
No matter which letter is chosen, there are always ns = 2 choices for the second
position. No matter which two letters are chosen for the first two positions, there
is only nz = 1 choice for the last position, giving a total of

nyneng = (3)(2)(1) = 6 permutations
by Rule 2.2. In general, n distinct objects can be arranged in
n{n—1)(n—2)---(3)(2)(1) ways.

There i1s a notation for such a number.



Theorem 2.1: | The number of permutations of n objects is nl.

The number of permutations of the four letters @, & ¢ and & will be 4! = 24,
MNow consider the number of permutations that are possible by taking two letters
at a time from four. These would be ab, e ad, bHa, bc, bd, ca, cb, cod, da. &b, and
de. Using Theorem 2.1 again. we have two positions to fill with #27; = 4 choices for
the first and then o= 3 choices for the second for a total of

gt = {4) (3) = 12

permutations. In general. n distinct objects taken 7 at a time can be arranged in

regr— L) —2)---(m—or + 1)

wayvs. We represent this product by the syvmbol

!

ndf = T — "

As a result we have the theorem that follows.

Theorem 2.2:| The number of permutations of n distinct objects taken r at a time 1s

|
.
nFr =

(n—r)l’
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Example 2,1S:| In one year, three awards (research, teaching, and service) will be given to a class
of 25 graduate students in a statistics department. If each student can receive at
most one award, how many possible selections are there?

Solution: Since the awards are distinguishable, it 15 a permutation problem. The total
number of sample points is

25! 25!
(25—3)1 22

= (25)(24)(23) = 13, 800.

23P3=



‘xample 2.19:]

Solution:
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A president and a treasurer are to be chosen from a student club consisting of 50
people. How many different choices of officers are possible if

(a) there are no restrictions;

(b) A will serve only if he is president;

)
(c) B and C will serve together or not at all;
d) I) and E will not serve together?

)

(
(

a) The total number of choices of officers, without any restrictions, 1s
s0P _ 0 50)(49) = 2450
50 E—E—{ )(49) = 2450.

(b) Since A will serve only if he is president, we have two situations here: (1) A 1s
selected as the president, which yields 49 possible outcomes for the treasurer’s
position, or (i1) officers are selected from the remaming 49 people without A,
which has the number of choices 4o P = (49)(48) = 2352. Therefore, the total
number of choices 1s 40 + 2352 = 2401.

(¢) The number of selections when B and €' serve together iz 2. The number of
selections when hoth B and C' are not chosen 18 4 P, = 2256. Therefore, the
total number of choices in this situation 18 2 + 2256 = 2258,

(d) The number of selections when D) serves as an officer but not E is (2)(48) =
06, where 2 1s the number of positions ) can take and 48 15 the number of
selections of the other officer from the remaining people in the club except
E. The number of selections when E serves as an officer but not ) is also
(2)(48) = 96. The number of selections when both I) and E are not chosen
is 455 = 2256. Therefore, the total number of choices 1s (2)(96) 4+ 2256 =
2448, This problem also has another short solution: Since D) and E can only
serve together in 2 ways, the answer is 2450 — 2 = 2448, A

Start again with the 2450 permutations. If B
other than C who might be treasurer. And if E
other than C who might be president. We mt

also eliminate the 96 outcomes in which C w
2450 - 96 - 96 = 2258



Example 4

- TI————
A president and a treasurer are to be chosen from a student club consisting of
20 people. How many different choices of officers are possible if
(a) There are no restrictions?
(b) A will serve only if he is president?
(c) B and C will serve together or not at all?

Solution: : 0 oot
501 50150 49 481 _ i

@) 5.8 = = =i—= ——— =50 - 49 = 2450
(50 —2)1 48! 481

(b) Since A will serve only if he is president, we have two situations here: A is
selected as the president, which yields 49 possible outcomes for the
treasurer’s position, or officers are selected from the remaining 49 people
without A, which has the number of choices 4P, = 49 x 48 = 2352. Therefore,
the total number of choices is 49 + 2352 = 2401.

(c) The number of selections when B and C serve together is 2. The number of
selections when both B and C are not chosen is 43P, = 2256. Therefore, the
total number of choices in this situation is 2 + 2256 = 2258.




Example

A president and a treasurer are to be chosen
from a student club consisting of 50 people.
How many different choices of officers are
possible if

— (¢) B and C will serve together or not at all:
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Theorem 2.3: | The number of permutations of n objects arranged in a circle is (n — 1)L
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So far we have considered permutations of distinct objects. That is, all the
objects were completely different or distinguishable. Obwviously, if the letters b and
¢ are both equal to x, then the 6 permutations of the letters a, b, and ¢ become
arx, arr, rar, rar, rra, and rra, of which only 3 are distinct. Therefore, with 3
letters, 2 being the same, we have 3!/2! = 3 distinct permutations. With 4 different
letters a, b, c, and d, we have 24 distinct permutations. If we let a = b = r and
¢ = d = y, we can list only the following distinct permutations: rryy, ryry, yrry,
yyzrr, ryyr, and yryr. Thus, we have 4!/(2! 2!) = 6 distinct permutations.

Theorem 2.4: | The number of distinet permutations of n things of which n; are of one kind, no
of a second kind, ..., n; of a kth kind is
n!
nilna!---mg!
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Example 2.20:1In a college football traiming session, the defensive coordinator needs to have 10
players standing in a row. Among these 10 players, there are 1 freshman, 2 sopho-

mores, 4 jumors, and 3 semors. How many different ways can they be arranged in
a row 1f only their class level will be distinguished?

Solution: Directly using Theorem 2.4, we find that the total number of arrangements 1s
10!

o a g 12600,

Theorem 2.5:| The number of ways of partitioning a set of n objects into r cells with n, elements

in the first cell, n; elements in the second, and so forth, is

( n ) n!
- | !
M. Mg, ... T, n,!n,! - --n,.l

where ny +na 4+ --- 4+ N, = N.

Example 2.21:| In how many ways can 7 graduate students be assigned to 1 triple and 2 double
hotel rooms during a conference?

Solution: The total number of possible partitions would be

7 T!
(3,2., 2) TR A

- B -




Example 2.23:| How many different letter arrangements can be made from the letters in the word
STATISTICS?
Solution: Using the same arcument as in the discussion for Theorem 2.6, in this example we
can actually apply Theorem 2.5 to obtain

10 100

Here we have 10 total letters, with 2 letters (S5, T') appearing 3 times each, letter
I appearing twice, and letters 4 and ' appearing once each. On the other hand,
this result can be directly obtained by using Theorem 2.4. A
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In many problems, we are interested in the number of ways of selecting r objects
from n without regard to order. These selections are called combinations. A
combination 1s actually a partition with two cells, the one cell containing the r
objects selected and the other cell containing the (n — r) objects that are left. The
number of such combinations, denoted by

n , n
( ), 18 usually shortened to ( ),
rm—r r

since the number of elements 1n the second cell must be n — r.

Theorem 2.6:

The number of combinations of n distinct objects taken r at a time 1s

() ==y

Example 2.22:

Solution:

A young boy asks his mother to get 5 Game-Boy'™ cartridges from his collection

of 10 arcade and 5 sports games. How many ways are there that his mother can
get 3 arcade and 2 sports games?
The number of ways of selecting 3 cartridges from 10 1s

10 10!
(3) “wo—g 2

The number of ways of selecting 2 cartridges from 5 is

b 5
(ﬁj = 571 = 10

Using the multiplication rule (Rule 2.1) with n; = 120 and n, = 10, we have
(120)(10) = 1200 ways. A

Rule 2.1: | If an operation can be performed in n; ways, and if for each of these ways a second

operation can be performed in n, ways, then the two operations can be performed
together in nyn, ways.




Circular Permutation

Permutation

Linear Permutation

Permutation (n) with

reference point Permutation (n)

without reference
n! point

(n-1)!

39

Permutation of n

objects where n1
repeated items,n2

repeated items

n!

n,'n,

= ===

L

!

=

Permutation [n) taken (r)

nPr =

n!

(n—r)!

Permtutation (n)

n!
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Permutations and Combinations

Number of permutations
(order matters) of n things
taken r at a time:

1!

(n—r)!

P(n,r)=

Number of combinations
(order does not matter) of n
things taken r at a time:

7!

C(n,r) :(n*——r.)!r!

Number of different permutations of n
objects where there are n,repeated items,
n, repeated items, ... n, repeated items

n!

n!n,! . n!




Ex 2.32:

a)How many distinct permutations can be made from the
letters of the word columns?,

5040

b) How many of these permutations start with the let-
ter m:

720



EX.2.31

If a multiple-choice test consists of 5 questions each with
4 possible answers of which only 1 is correct,

(a) In how many different ways can a student check off
one answer to each question?

1024
(b) In how many ways can a student, check off one
answer to each question and get all the answers wrong ?
243



Ex. 2.40
In how many ways can 5 starting positions on a

basketball team be filled with 8 men who can
play any of the positions?

6720



Ex.2.44

In how many ways can a caravan of 8 covered
wagons from Arizona be arranged in a circle?

5040



Ex 2.46

In how many ways can 3 oaks, 4 pines, and 2
maples be arranged along a property line if
one does not distinguish among trees of the
same kind?

1260



Ex. 2.47

A college plays 12 football games during a
season. In how many ways can the team end
the season with 7 wins, 3 losses, and 2 ties?

7920



Ex 2.49

How many ways are there to select 3 candidates
from 8 equally qualified recent graduates for
openings in an accounting firm

56 ways



Definition 2.9: | The probability of an event A 1s the sum of the weights of all sample points in
A. Therefore,

0=<PA)=<1, Pl¢)=0, and P(S)=1.
Furthermore, if 4;, A2, As, ... 15 a sequence of mutually exclusive events, then

P(AJUA; UAzU---) = P(A)) + P(Ay) + P(A3) +--- .

Example 2.24:| A coin is tossed twice. What is the probability that at least 1 head occurs?
Solution: The sample space for this experiment is

S={HH HT.TH,TT}.

If the coin is balanced, each of these outcomes 1s equally likely to occur. Therefore,
we assign a probability of w to each sample point. Then dw =1, orw=1/4. It A
represents the event of at least 1 head occurring, then

1 1 1 3
A={HHHT.TH}and P(A) = 7+ 7+ 7 =7 r
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txample 2.25:| A die is loaded in such a way that an even number is twice as likely to occur as an
odd number. If E is the event that a number less than 4 occurs on a single toss of

the die, find P(E).

Solution: The sample space 1s § = {1,2,3,4,5,6}. We assign a probability of w to each
odd number and a probability of 2w to each even number. Since the sum of the
probabilities must be 1, we have Qw = 1 or w = 1/9. Hence, probabilities of 1/9
and 2/9 are assigned to each odd and even number, respectively. Therefore,

1 2 1 4

E={1,23}ad PE)=5+5+5 =75 r
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Example 2.26:|In Example 2.25, let A be the event that an even number turns up and let B he
the event that a number divisible by 3 occurs. Find P(AU B) and P(A N B).

Solution: For the events A = {2,4,6} and B = {3,6}, we have
AUB=1{2,3,4,6} and AN B = {6}.

By assigning a probability of 1/9 to each odd number and 2/9 to each even number,

we have
2 1 2 2 71 2
If the sample space for an experiment contains N elements, all of which are
equally likely to occur, we assign a probability equal to 1/N to each of the N
points. The probability of any event A contaiming n of these N sample points is
then the ratio of the number of elements in A to the number of elements in §.

50



Rule 2.3:

If an experiment can result in any one of N different equally likely outcomes, and
it exactly n of these outcomes correspond to event A, then the probability of event

A s

Example 2.27:

Solution:

51

A statistics class for engineers consists of 25 industrial, 10 mechanmical, 10 electrical,
and 8 civil engineering students. If a person i1s randomly selected by the instruc-
tor to answer a question, find the probability that the student chosen is (a) an
industrial engineering major and (b) a civil engineering or an electrical engineering
A JOT.

Denote by I, M, E, and ' the students majoring in industrial, mechanical, electri-
cal, and civil engineering, respectively. The total number of students in the class
is 53, all of whom are equally likely to be selected.

(a) Since 25 of the 53 students are majoring in industrial engineering, the prob-
ahility of event I, selecting an industrial engineering major at random, is

25
Pl =—.
) 53
(b) Since 18 of the 53 students are civil or electrical engineering majors, it follows
that
P(CUE) = E o |
53
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Theorem 2.7:

If A and B are two events, then

P(AUB) = P(A) + P(B) — P(ANB).

Figure 2.7: Additive rule of probability.




Example:

John is going to graduate from an industrial engineering
department in a university by the end of the semester.
Alter being interviewed at two companies he likes, he
assesses that his probability of getting an offer from
company A is 0.8, and the probability that he gets an
offer from company B is 0.6. If on the other hand, he
believes that the probability that he will get offers from
both companies is 0.5, what is the probability that he
will get at least one offer from these two companies?

P(AUB)=P(A)+P(B)-P(AflB)=0.8+0.6-0.5=0.09.



Corollary 2.1:

Corollary 2.2:

If A and B are mutually exclusive, then

P(AUB) = P(A) + P(B).

Corollary 2.1 is an immediate result of Theorem 2.7, since if A and B are
mutually exclusive, AN B =0 and then P(AN B) = P(¢) = 0. In general, we can
write Corollary 2.2.

Corollary 2.3:

If 4;, As, ..., A, are mutually exclusive, then

P(A,UAU---UAp) = P(A;) + P(A2) +- - + P(A4y).

of Sif A, . 44..... Ay are mutually exclusive and A4, U A, U--- U A, = 5. Thus,
we have

A collection of events {A4,, 4,,..., A, } of a sample space S is called a partition

Theorem 2.8:

If A;, As, ..., A, 15 a partition of sample space S, then

P(A,UA,U---UA,) = P(A;) + P(A2) + -+ + P(A,) = P(S) = 1.

As one might expect, Theorem 2.7 extends in an analogous fashion.

54

For three events A, B, and

P(AUBUC) = P(A) + P(B) + P(C)
— P(ANB) - P(ANC)—P(BNC)+P(ANBNC).




Example 2.30:

Solution:

What i1s the probability of getting a total of 7 or 11 when a pair of fair dice is
tossed?

Let A be the event that 7 occurs and B the event that 11 comes up. Now, a total
of T occurs for 6 of the 36 sample points, and a total of 11 occurs for only 2 of the
sample points. Since all sample points are equally likely, we have P(A) = 1/6 and
P(B) = 1/18. The events A and B are mutually exclusive, since a total of 7 and
11 cannot both occur on the same toss. Therefore,

P(AUB) = P(A) + P(B) =%+1—1E =§.

This result could also have been obtained by counting the total number of points
for the event A U B, namely 8, and writing

P(AUB) = — =

82
N3 9

Example 2.31:| If the probahilities are, respectively, 0.09, 0.15, 0.21, and 0.23 that a person pur-

95

chasing a new automobile will choose the color green, white, red, or blue, what is
the probability that a given buyer will purchase a new automobile that comes in
one of those colors?

Solution: Let G, W, R, and B be the events that a buyer selects, respectively, a green,

white, red, or blue automobile. Since these four events are mutually exclusive, the
probability is

P(GUW U RU B) = P(G) + P(W) + P(R) + P(B)

= 0.09 +0.15 + 0.21 + 0.23 = 0.65. 3

Often it 1s more difficult to calculate the probability that an event occurs than
it is to calculate the probability that the event does not occur. Should this be the

case for some event A, we simply find P(A") first and then, using Theorem 2.7,
find P(A) by subtraction.



Theorem 2.9:|If A and A’ are complementary events, then

P(A) + P(A") = 1.

Proof: Since AU A" = S and the sets A and A’ are disjoint,

1 = P(S)= P(Au A") = P(A) + P(A). .

Example ‘2.3‘2:| If the probabilities that an automobile mechanic will service 3, 4, 5, 6, 7, or 8 or
more cars on any given workday are, respectively, 0.12, 0.19, 0.28, 0.24, 0.10, and

0.07, what 1s the probability that he will service at least 5 cars on his next day at

b P(E)= P(5)+P(6)+P(7)+P(8)
P(E)= 0.28+0.24+0.1+0.07
P(E) = 0.69

OR
Let E be the event that at least 5 cars are serviced. Now, P(F) =1 — P(E’),

where E’ is the event that fewer than 5 cars are serviced. Since

P(E') =0.12+0.19 = 0.31,

it follows from Theorem 2.9 that

P(E)=1-0.31 = 0.69.

56
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2.58 An automobile manutfacturer 1s concerned about
a possible recall of its best-selling four-door sedan. If
there were a recall. there 1s 0.25 probability that a de-
fect 1s 1n the brake system, 0.18 i the transmission,
0.17 in the fuel system, and 0.40 in some other area.

(a) What is the probability that the defect is the brakes
or the fueling system 1f the probability of defects n
both systems simultaneously 1s 0.15?

(b) What 1s the probability that there are no defects
in either the brakes or the fueling system?

(a)=0.27
(b)=0.73



Example 2.33:| Suppose the manufacturer’s specifications for the length of a certain type of com-
puter cable are 2000 £ 10 millimeters. In this industry, it is known that small cable
is just as likely to be defective (not meeting specifications) as large cable. That is,

the probahility of randomly producing a cable with length exceeding 2010 millime-
ters is equal to the probahility of producing a cable with length smaller than 1990

millimeters. The probability that the production procedure meets specifications is
known to be (.99,

(a) What is the probability that a cable selected randomly is too large?

(b) What is the probability that a randomly selected cable is larger than 1990
millimeters?

Solution: Let M be the event that a cable meets specifications. Let § and L be the events
that the cable i1s too small and too large, respectively. Then

(a) P(M) =099 and P(5) = P(L) = (1 - 0.99)/2 = 0.005.
(b) Denoting by X the length of a randomly selected cable, we have

P(1990 < X < 2010) = P(M) = 0.99.
Since P(X = 2010) = P(L) = 0.005,
P(X =1990) = P(M) 4+ P(L) = 0.995.
This also can be solved by using Theorem 2.0:
P(X =1990) + P(X < 1990) = 1.
Thus, P(X = 1990) =1 — P(5) =1 — 0.005 = 0.995. . |
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Definition 2.10: | The conditional probability of B, given A, denoted by P(B|A), is defined by

P(ANB)

PIBIA) =)

provided P(A) > 0.

Table 2.1: Categorization of the Adults in a Small Town

Employed Unemployed Total

Male 460 40) 500
Female 140 260 400
Total 600 300 900
P(M|E)
P(M/E)=P (E' M)
P (E)
600 2 460 23
P(E) = 500 = 3 and P(ENM)= 500 = o
460 23
P(M|E) = &5 = 35-

99



Conditional Probability

Question:

In a group of 100 sports car buyers, 40 bought
alarm systems, 30 purchased bucket seats, and 20
purchased an alarm system and bucket seats. If a
car buyer chosen at random bought an alarm
system, what is the probability they also bought
bucket seats?



Answer:

P(B|A) = P(ANB) / P(A)=0.2/0.4=0.5

The probability that a buyer bought bucket
seats, given that they purchased an alarm
system, is 50%



Example 2.34: | The probability that a regularly scheduled flight departs on time is P(D) = 0.83;
the probability that it arrives on time 1s P(A) = 0.82; and the probability that it
departs and arrives on time is P(D M A) = 0.78. Find the probability that a plane

(a) arrives on time, given that it departed on time, and (b) departed on time, given
that it has arrived on time.
Solution: Using Definition 2.10, we have the following.

(a) The probability that a plane arrives on time, given that it departed on time,

18
P(DNnA) 0.78
P(A|D) = — = (0.94.
(41D) P(D) 0.83
(b) The probability that a plane departed on time, given that it has arrived on
time, 1s
P(DNA 0.78
P(D|A) = ( ) _ = 0.95.

P(A) 082
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Example 2.35:

Solution:

63

Consider an industrial process in the textile industry in
which strips of a particular type of cloth are being produced. These strips can be
defective in two ways, length and nature of texture. For the case of the latter, the
process of identification is very complicated. It is known from historical information
on the process that 10% of strips fail the length test, 5% fail the texture test, and
only 0.8% fail both tests. If a strip is selected randomly from the process and a
quick measurement identifies it as failing the length test, what is the probability
that it is texture defective?

Consider the events

L: length defective, T': texture defective.

Given that the strip is length defective, the probability that this strip is texture
defective 1s given by
_P(T'nL) 0.008

P(T|L) = P~ 01 — 0.08.




Definition 2.11;

Theorem 2.10:

Two events A and B are independent if and only if
P(B|A)=P(B) or P(A|B)= P(A),

assuming the existences of the conditional probabilities. Otherwise, A and B are
dependent.

If in an experiment the events A and B can both occur, then

P(AN B) = P(A)P(B|A), provided P(A) > 0.

Example 2.36:| Suppose that we have a fuse box containing 20 fuses, of which 5 are defective. If

64

Solution:

2 fuses are selected at random and removed from the box in succession without
replacing the first, what 1s the probability that both tuses are defective?

We shall let A be the event that the first fuse 1s defective and B the event that the
second fuse 1s defective; then we interpret A M B as the event that A occurs and
then B occurs after A has occurred. The probability of first removing a defective
fuse is 1/4: then the probability of removing a second defective fuse from the
remaining 4 is 4/19. Hence,

panm= (1) ()= & ,




Example 2.37:] One bag contains 4 white balls and 3 black balls, and a second bag contains 3 white
balls and 5 black balls. One ball 1s drawn from the first bag and placed unseen n
the second bag. What is the probability that a ball now drawn from the second
bag 1s black?

Solution: Let By, By, and W represent, respectively, the drawing of a black ball from bag 1,
a black ball from bag 2, and a white ball from bag 1. We are interested in the union
of the mutually exclusive events By M Bz and Wy M Bz, The various possibilities
and thewr probabilities are illustrated in Figure 2.8. Now

P[{Bl M Bz) or (W1 N Bg}] — P(B1 N B2) + P(Wi N Bs)
= P(B;)P(B3|By) + P(W1)P(B|Wy)

-5)6)G)6) -5

Bag1 Bag 2

P(B1[]B2)=(3/7)"(6/9)

W (3/9)

P(B1[1 W2)=(3/7)*(3/9)

B (5/9 P(W1(1B2)=(4/7)*(5/9)

/o) P{ w1llw2)=(4/7)*(a/9)
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Theorem 2.11: | Two events A and B are independent if and only if

P(ANB) = P(A)P(B).

Therefore, to obtain the probability that two independent events will both occur,
we simply find the product of their individual probabilities.

Example 2.38:] A small town has one fire engine and one ambulance available for emergencies. The
probability that the fire engine 1s available when needed 1s (.98, and the probability
that the ambulance 1s available when called 1s 0.92. In the event of an injury
resulting from a burning building, find the probahility that both the ambulance
and the fire engine will be available, assuming they operate independently.

Solution: Let A and B represent the respective events that the fire engine and the ambulance
are available. Then

P(AN B) = P(A)P(B) = (0.98)(0.92) = 0.9016. A
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Ex. 2.95

One overnight case contains 2 bottles of aspirin and 3
bottles of thyroid tablets. A second tote bag contains
3 bottles of aspirin, 2 bottles of thyroid tablets and |
bottle of laxative tablets. If 1 bottle of tablets is taken
at random from each piece of luggage, find the
probability that:

(a) both bottles contain thyroid tablets:
(b) neither bottle contains thyroid tablets;
(c) the 2 bottles contain different tablets.



Answer Ex. 2.95:

Al: aspirin tablets are selected from the overnight case,

A2: aspirin tablets are selected from the tote bag,

L2: laxative tablets are selected from the tote bag,

T1: thyroid tablets are selected from the overnight case,

T2: thyroid tablets are selected from the tote bag.

(a) P(T1 nT2)=P(T1)P(T2)=(3/5)(2/6) = 1/5.

(b) P(T'1 nT'2) =P(T'1)P(T'2) = (2/5)(4/6) = 4/15.

(c) 1-P(A1 NnA2)-P(T1 nT2) = 1-P(A1)P(A2)-P(T1)P(T2)
=1-(2/5)(3/6)-(3/5)(2/6) = 3/5.



Example 2.39:| An electrical system consists of four components as illustrated m Figure 2.9, The

Solutzon:
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system works 1if components A and B work and either of the components €' or D
works. The reliability (probability of working) of each component is also shown
in Figure 2.9. Find the probability that (a) the entire system works and (b) the
component C' does not work, given that the entire system works. Assume that the
four components work immdependently.

In this configuration of the system, A, B, and the subsystem ' and D constitute
a serial ciremit system, whereas the subsystem C' and D itself 15 a parallel ciremit
system.

(a) Clearly the probability that the entire system works can be caleulated as
P AnNBnN(CuD)]=PA)P(B)P(CUD)=P(A)P(B)[1 — P(C'nD")]
= P(A)P(B)[1 - P(C")P(D')]
= (0.9)(0.9)[1 — (1 — 0.8)(1 — 0.8)] = 0.7776.
The equalities above hold because of the independence among the four com-
ponents.
(b) To calculate the conditional probability in this case, notice that
P(the system works but C' does not work)

P(the system works)
P(AnBNC' nD) (0.9)(0.9)(1 — 0.8)(0.8)

P=

= — — 0.1667.
P(the system works) 0.7776 N
0.8
C
_[os 0.9
A B
0.8
Figure 2.9:




Ex. 2.99

A circuit system is given in Figure 2.11. Assume the
components fail independently.

(a) What is the probability that the entire system
works?

(b) Given that the system works, what is the probability that
the component A is not working?
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Answer Ex. 2.99
(a) P=1—[1-(0.7)(0.7)][1 — (0.8)(0.8)(0.8)] = 0.75112.
P=0.75112
(b) =
P=P(A'nCNDNE)

Psystem works

= (0.3)(0.8)(0.8)(0.8) = 0.2045
0.75112
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 2.98 Suppose the diagram of an electrical
system is given in Figure 2.10. What is the
probability that the system works? Assume
the components fail independently.

0.7

B

0.8
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e EX:2.98

P =(0.95)[1— (1 —0.7)(1 — 0.8)](0.9) = 0.8037.

74



EX. 2.93

A town has 2 fire engines operating
independently. The probability that a specific
engine is available when needed is 0.96.

* (a) What is the probability that neither is
available when needed?

* (b) What is the probability that a fire engine is
available when needed?




76

(a) P(A'N B') = P(A")P(B') = (0.04)(0.04) = 0.0016.

(b) P(AUB)=1— P(A'N B') =1 — 0.0016 = 0.9984.



EX. 2.89 The probability that a doctor correctly
diagnoses a particular illness is 0.7. Given that
the doctor makes an incorrect diagnosis, the
probability that the patient enters a law suit is
0.9. What is the probability that the doctor
makes an incorrect diagnosis and the patient
sues?



Answer of EX. 2.89:

P(A' n B) =P(A")P(B | A") =(0.3)(0.9) =0.27



T'heorem 2.12: |If, in an experiment, the events Ay, Aa,..., A can occur, then

P(A1NAanN---NAg)

= P(A1)P(A2|A;1)P(A3|A1 N Ag)--- P(Ag|]A1 N A N---NAg_yq).
If the events Ay, Ao, ..., Ay are independent, then

P(AiNnAanN---NAg) = P(A1)P(A2)--- P(Ag).
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Jayes’ Rule

Table 2.1: Categorization of the Adults in a Small Town

Employed Unemployed Total

36 of Employees and

Male 160 10 500

12 of Unemployed are . ... 140 960 400

members of the Total 600 300 900

Rotary Club _
PA)=P[(ENA)U(E'NA) =P(EFENnA)+ P(E'NnA)

_ - — P(E)P(A|E) + P(E’)P(A|E").
Find the probability of

the event A that the
individual selected is a
member of the Rotary
Club?

A= EnAUE M

Figure 2.12: Venn diagram for the events A, F, and E’.
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Table 2.1: Categorization of the Adults in a Small Town

Employed Unemployed Total

Male 160 10 500
Ggoo 2 36 3 Female 140 260 400
P(E)=——=2, P(AE)=—=_, . :
(E) =300 =30 FPUIE)=t5 =50 Total 600 300 900
1 12 1
PE) -3, PAIE) === & 36 of Employees and
? 12 of Unemployed are
members of the
Rotary Club
E PAIE)=350 A
+ P(E)P(AIE)
. * P(E)P(AIE
E" P{AIE) =128 A’ (EIFAIE)

Figure 2.13: Tree diagram for the data on page 63, using additional information
on page T2.

the probahility P(E")P(A|E"), it follows that

2 3 1 1 4
81 r=(3) (%) () (5) =%



Theorem 2.13:

If the events By, B, ..., B constitute a partition of the sample space 5 such that
PB;)#Z0fori=1,2,..., k. then for any event A of &,

k k
P(A) =" P(B:NA) =3 P(B)P(A|B).

i=1 i=1

54 EE

B

Figure 2.14: Partitioning the sample space 5.

The event A is seen to be the union of the mutually exclusive events
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Proof: Consider the Venn diagram of Figure 2.14. The event A is seen to be the union of

83

the mutually exclusive events
BinA, BonA, ..., B.nA;
that 1s,
A=(BinA)u(B:2nA)U---U(BrnA).
Using Corollary 2.2 of Theorem 2.7 and Theorem 2.10, we have
PlAy=P[(BinA)U(B2nA)U---U (B nA)]
=P(BinA)+P(B:2nA)+---+ P(Bpn A)

ke
=Y P(B;nA)

k
= P(B;)P(A|By).

i=1



Example 9.41:|In a certain assembly plant, three machines, B,, B,, and B;, make 30%, 45%, and
257, respectively, of the products. It is known from past experience that 2%, 3%,
and 2% of the products made by each machine, respectively, are defective. Now,
suppose that a finished product 1s randomly selected. What 1s the probahility that
it 1s defective?

Solution: Consider the following events: 5. AA[B.)-002A
1 117w
A: the product 1s defective, ;{?
N
By: the product is made by machine B, &
, , PB,)=045 PiA|B,)=003 A
By: the product 18 made by machine Bs, N B .
Ba: the product 1s made by machine Bs. /63)\\
. T . 9 A
Applying the rule of elimination, we can write By AA|B.-00
g)=0.

P(A} - P{BIJF{A|BI} + P[BE)P[A|BE) T P(BE}P{A|BE} Figure 2.15: Tree diagram for Example 2.41.

Referring to the tree diagram of Figure 2.15, we find that the three branches give

the probahilities
P(B,)P(A|By) = (0.3)(0.02) = 0.006,
P(B,)P(A|B;) = (0.45)(0.03) = 0.0135,
P(Bs)P(A|B5) = (0.25)(0.02) = 0.005,
and hence

P(A) =0.006 4 0.0135 + 0.005 = 0.0245, 1
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Theorem 2.14: | (Bayes’ Rule) If the events By, B, . ... B;. constitute a partition of the sample

space S such that P(B;) # 0 for i = 1,2,... k. then for any event A in S such
that P(A) # 0,

P(B,.NA P(B,)P(A|B
P(B,|A) = = (B.04) _ _P(B)PAIB) forr=1,2,... .k

> P(B,nA) ¥ P(B)P(AIB)

Proof: By the definition of conditional probahility,
P(B,nA)
pP(4)
and then using Theorem 2.13 in the denominator, we have
P(B.nA)  P(B,)P(A|B,)

i F(B;n A) ZL: P{BJP[A|BJ.

P(B,|A) =

P(B,|A) =

which completes the proof. | |

Example 2.42:| With reference to Example 2.41, if a product was chosen randomly and found to
be defective, what is the probability that it was made by machine Bs?
Solution: Using Bayes™ rule to write
P(B3)P(A|Bs)
P(B1)P(A|By) + P(Bz) P(A|Bz) + P(Bs) P(A|Bs)’

P(Bs]A) =

and then substituting the probabilities calculated in Example 2.41, we have

0.005 0.005 10
P(Bs|A) = _ _ v
(Bal4) = 3006 10.0135 10005~ 0.0245 19

In view of the fact that a defective product was selected, this result suggests that
it probably was not made by machine B;. o |
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Example 2.43:|

Solution:
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A manufacturing firm employs three analytical plans for the design and dewvel-
opment of a particular product. For cost reasons, all three are used at varyving
times. In fact, plans 1, 2, and 3 are used for 30%, 20%, and 50% of the products,

respectively. The defect rate is different for the three procedures as follows:
P(D|P,) = 0.01, FP(D|F;) =10.03, P(D|Py) = 0.02,

where FP(D)|F;) 1s the probability of a defective product, given plan j. If a random
product was observed and found to be defective, which plan was most likely used
and thus responsible?

From the statement of the problem

P(P) =030, P(P:)=020, and P(Py)=0.50,

we must find P(F;|D) for j =1,2,3. Bayes’ rule (Theorem 2.14) shows

_ Pl P(D|P)
PUhID) = P(P,)P(D|P,) + P(P,)P(D|P:) + P(P3)P(D|Fs)
B (0.30)(0.01) _ 0003 _ g
~(0.3)(0.01) + (0.20)(0.03) + (0.50)(0.02) — 0.010
Simualarly,
P(P,|D) = % = 0.316 and P(P;|D) = % — 0.526.

The conditional probahility of a defect given plan 3 is the largest of the three; thus
a defective for a random product 1s most likely the result of the use of plan 3. _ii

Using Bayes’ rule, a statistical methodology called the Bayesian approach has
attracted a lot of attention in applications. An introduction to the Bayesian method

will be discussed in Chapter 18.



EX 2.105:

Suppose that the four inspectors at a film factory are
supposed to stamp the expiration date on each package of
film at the end of the assembly line. John, who stamps 20%
of the packages, fails to stamp the expiration date once in
every 200 packages: Tom, who stamps 60% of the packages,
fails to stamp the expiration date once in every 100
packages; Jeff, who stamps 15% of the packages, fails to
stamp the expiration date once in every 90 packages; and
Pat, who stamps 5% of the packages, fails to stamp the
expiration date once in every 200 packages. If a customer
complains that her package of film does not show the
expiration date, what is the probability that it was
inspected by John?



Answer to EX 2.105

A: no expiration date,

B1: John is the inspector, P(B1) = 0.20 and P(A | B1) = 0.005,

B2: Tom is the inspector, P(B2) = 0.60 and P(A | B2) = 0.010,

B3: Jeff is the inspector, P(B3) = 0.15 and P(A | B3) =0.011,

B4: Pat is the inspector, P(B4) = 0.05 and P(A | B4) = 0.005,
P(B1 | A) = (0.005)(0.20)

(0.005)(0.20)+(0.010)(0.60)+(0.011)(0.15)+(0.005)(0.05)

P(B1 | A)=0.1124



EX. 2.115:

A large industrial firm uses 3 local motels to provide
overnight accommodations for its clients. From past
experience it is known that 20%: of the clients are
assigned rooms at the Ramada Inn, 50% at. the
Sheraton, and 30% at the Lake view Motor Lodge. If
the plumbing is faulty in 5% of the rooms at the
Ramada Inn, in 4% of the rooms at the Sheraton, and
in 8% of the rooms at the Lakeview Motor Lodge,
what, is the probability that (a) a client will be
assigned a room with faulty plumbing? (b) a person
with a room having faulty plumbing was assigned
accommodations at the Lakeview Motor Lodge?



E2.115

(a) P(F) = P(F | R)P(R) + P(F | S)P(S) + P(F | L)P(L) = (0.05)(0.2) +
(0.04)(0.4) + (0.08)(0.3) = 0.054.

0.08)(0.3
(b) P(L| F)= 0203 _ 4
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Probability and Statistics

Chapter 3



Chapter 3

Random Variables and Probability
Distributions



Three electrical components are tested:

S ={NNN,NND,NDN,DNN,NDD,DND,DDN,DDD}

If we are concerned with the number of
defectives that occur?

0,1,2,or 3
E={DDN,DND,NDD}



Definition 3.1: | A random variable is a function that associates a real number with each element
in the sample space.

Example 3.1:| Two balls are drawn in succession without replacement from an urn containing 4
red balls and 3 black balls. The possible outcomes and the values y of the random
variable Y, where Y is the number of red balls, are

Sample Space vy

RR 2
RB 1
BR 1
BB 0 F

Example :5‘2:| A stockroom clerk returns three safety helmets at random to three steel mill em-
ployees who had previously checked them. If Smith, Jones, and Brown, in that
order, receive one of the three hats, list the sample points for the possible orders
of returning the helmets, and find the value m of the random wvariable M that
represents the number of correct matches.

Solution: If S, J, and B stand for Smith’s, Jones’s, and Brown’s helmets, respectively, then
the possible arrangements in which the helmets may be returned and the number
of correct matches are

Sample Space m
SJB
SBJ
BJS
JSB
JBS
BSJ

=R R




Example 3.3:| Consider the simple condition in which components are arriving from the produe-
tion line and they are stipulated to be defective or not defective. Define the random

variable X by

_ {1, if the component is defective,

0, if the component is not defective.

Example 3.4:] Statisticians use sampling plans to either accept or reject batches or lots of
material. Suppose one of these sampling plans involves sampling independently 10
items from a lot of 100 items in which 12 are defective.

Let X be the random variable defined as the number of items found defec-

tive in the sample of 10. In this case, the random variable takes on the values
0,1,2,...,9,10. . |

Example 3.5:| Suppose a sampling plan involves sampling items from a process until a defective
is observed. The evaluation of the process will depend on how many consecutive
items are observed. In that regard, let X be a random variable defined by the
number of items observed before a defective is found. With N a nondefective and
D a defective, sample spaces are S = {D} given X =1, S = {ND} given X = 2,
S ={NND} given X = 3, and so on. o |




Example 3.6:] Interest centers around the proportion of people who respond to a certain mail

Definition 3.2:

Definition 3.3:

order solicitation. Let X be that proportion. X is a random wvariable that takes
on all values x for which 0 < o < 1. o |

If a sample space contains a finite number of possibilities or an unending sequence

with as many elements as there are whole numbers, it is called a discrete sample
space.

If a sample space contains an infinite number of possibilities equal to the number
of points on a line segment, it is called a continuous sample space.




Discrete Probability Distributions

Sample Space m

The probability that no employee gets back his right helmet Sz 7
SBJ 1
BJS 1
m_ 0 1 3 o
I — . 1 1 1 BSJ 0
PM=m)| 1 1 1

Definition 3.4: | The set of ordered pairs (z, f(z)) is a probability function, probability mass
function. or probability distribution of the discrete random variable X if, for
each possible outcome x,

1. f(z) =0,
2.3 f(z) =1,

3. P(X =2) = f(z).




Example 3.8 A shipment of 8 similar microcomputers to a retail
outlet contains 3 that are defective. If a school makes a random
purchase of 2 of these computers, find the probability
distribution for the number of defectives?

3y /5
) = PYX = ::( )(2) = E)
f(0) = P(x =0) 41——® 55"

f)=P(X=1 = Q()T()Q .-%g.
26 _ 3
() 28

f(2) = P(X =2) =

Thus the probability distribution of X 1s
z | 0 L 2
. 10 15 3
@) | B B




Example 3.9:/If a car agency sells 50% of its inventory of a certain foreign car equipped with side
airbags, find a formula for the probahility distribution of the number of cars with
side airbags among the next 4 cars sold by the agency. The number of ways of selling 3 cars with side airbags
Solution: Since the probability of selling an automobile with side airbags is 0.5, the 2* = 16
points in the sample space are equally likely to occur. Therefore, the denominator
for all probabilities, and also for our function, is 16. To obtain the number of
ways of selling 3 cars with side airbags, we need to consider the number of ways
of partitioning 4 outcomes into two cells, with 3 cars with side airbags assigned
to one cell and the model without side airbags assigned to the other. This can be
done in {:;1): 4 ways. In general, the event of selling  models with side airbags
and 4 — » models without side airbags can occur in (i) ways, where > can be 0, 1,
2, 3, or 4. Thus, the probability distribution f(r) = P(X = z) is

1 (4
flx) = E(T), for x =0,1,2,3,4.

A

There are many problems where we may wish to compute the probability that
the observed value of a random variable X will be less than or equal to some real
number z. Writing F'(z) = P(X < ) for every real number =, we define F(z) to
be the cumulative distribution function of the random variable X.



Definition 3.5:

10

The cumulative distribution function F(zx) of a discrete random variable X
with probability distribution f(z) is

Fz)=P(X <2)=) f(t), for —oco <z <.

t<r

For the random variable M, the number of correct matches in Example 3.2, we

have

F(2)= P(M <2) = f(0) + f(1) =

Lol =

The cumulative distribution funection of M is

F(m) = «

r{j}!

= oo e

for m < 0,
for0<m < 1,
for 1 <m < 3,
for m = 3.

b | =

>
-

Sample Space

m

SJB
SBJ
BJS
JSB
JBS
BSJ

=R R

P(M =m)

=

3

b= |t

(o] [l W



Example :5,1I]:| Find the cumulative distribution function of the random variable X in Example
3.9. Using F'(z), verify that f(2) = 3/8.
Solution: Direct calculations of the probability distribution of Example 3.9 give f(0)= 1/16,
f(1)=1/4, f(2)=3/8, f(3)=1/4, and f(4)=1/16. Therefore,

F{D}:f(i}}:%, f(:c):%(i), for  =0,1,2,3,4.
F(1)= £(0) + f(1) = =,
F(2) = £(0) + (1) + f(2) = 7.

F(3) = 1(0) + f(1) + f(2) + [(3) = 1o,
F(4) = £(0) + f(1) + f(2) + f(3) + f(4) = 1.

Hence,

for r < 0,
for 0 <o <1,
for 1 <z <2,
for 2 < x < 3.
for 3 <z <4,
for » = 4.

=t ,_.|H ,_.l,_. ,_.| ,_.| =
ol o= |9 |
. . . -

Now

@ =F@) - F)= 15— ==




f(x) f(x)

6/16
5/16
4/16
3/16
2/16
1/16

12

6/16 -
B ¢
i | 516
|
B e i g 4/16
: . e
| | |
I | | | 2/16
| | |
- | | | ’ 116~
| | | | |
] 1 ] ] 1 X
0 1 2 3 - 0 1 2 3 -
Figure 3.1: Probability mass function plot. Figure 3.2: Probability histogram.
Fix)
1 .
374
112
174 '
0 1 2 3 FEEE

Figure 3.3: Diserete cumulative distribution function.



EX. 3.13: The probability distribution of A, the
number of imperfections per 10 meters of a
synthetic fabric in continuous rolls of uniform width,
IS given by:

2 I 0 1 2 3 4
flz) | 041 0.37 0.16 0.05 0.01

i

(). for @ < (.
0.41, for0 <z < 1,
.78, forl <z <2,
0.94, for 2 <z < 3,
0,99, ford <z <4,
1. for x = 4.

%
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* 3.2 An overseas shipment of 5 foreign
automobiles contains 2 that have slight paint
blemishes. If an agency receives 3 of these
automobiles at random, list the elements of the
sample space S using the letters B and N for
blemished and nonblemished, respectively; then
to each sample point assign a value x of the
random variable X representing the number of
automobiles purchased by the agency with paint
blemishes.
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Sample Space | =
NNN 0
NN 1
NEBN 1
BNN 1
NBEB 2
BN B 2
BEN 2




3.3 Let W be a random variable giving the
number of heads minus the number of tails in
three tosses of a coin. List the elements of the
sample space S for the three tosses of the coin
and to each sample point assign a value w of W.
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Sample Space

HIHH
HHT
HTH
THH
HTT
THT
T"TH
TTT




Continuous Probability Distributions

18

f(x)

(b)

P(a < X <b) :/bf(:c) dz.

(c)

Figure 3.4: Typical density functions.

a b

Figure 3.5: P(a < X < b).

(d)




Definition 3.6: | The function f(z) is a probability density function (pdf) for the continuous
random variable X, defined over the set of real numbers, if

1. f(z) =0, forall z € R.
2. [T f(z)dz=1.

3. Pla< X <b)= [’ f(z) de.

Example 3.1 l:| Suppose that the error in the reaction temperature, in °C, for a controlled labora-
tory experiment is a continuous random variable X having the probability density

funetion
2
=, —l<xr<?2,
ﬂf‘ — 3 r r
f(z) {U, elsewhere.

(a) Verify that f(z) is a density function.
(b) Find P(0 < X <1).
Solution: We use Definition 3.6.
(a) Obviously, f(z) = 0. To verify condition 2 in Definition 3.6, we have

(b) Using formula 3 in Definition 3.6, we obtain

lﬂf?
19 P{U{Xiil}:/?dm:
Ja



Definition 3.7: | The cumulative distribution function F(z) of a continuous random variable
X with density function f(z) is

Flz)=P(X <z)=| f(t)dt, for —oo <2< 0.

As an immediate consequence of Definition 3.7, one can write the two results
dF (z)
dr ’

Pla <X <b)=F(b) - F(a) and f(z) =

if the derivative exists.

ixample 3.12: (), and use it to evaluate

P< X <1).
Solution: For -1 <z < 2,
I L
/ fi(t) dt = /—dt—— _It
1 9
Therefore,
0, r< -1
F(z)={ £, —1<z<?,
1, r>2

The cumulative distribution function F(z) is expressed in Figure 3.6. Now

2 1 1

PO X{].:F].—FD:———:—
which agrees with the result obtained by using the density function in Example
3.11. A

VAV

i
10

057

Figure 3.6: Continuous cumulative istribution function.



Example 3.13:] The Department of Energy (DOE) puts projects out on bid and generally estimates

what a reasonable bid should be. Call the estimate b. The DOE has determined
that the density function of the winning (low) bid is

2 Zp<y<2
_Je sV=d =4
fy) = {D._ elsewhere.

Find F(y) and use it to determine the probability that the winning bid is less than
the DOE’s preliminary estimate b.
Solution: For 2b/5 <y < 2b,

Y 5 5t | 5y 1
ﬂm:f Sgy= 2t _w_1
Thus,
0, Yy < gb,
Fly)=qs—1 2b=y<2b
1, y=>2b

To determine the probability that the winning bid is less than the preliminary bid
estimate b, we have

21
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3.6 The shelf lite, in days, for bottles of a certain
prescribed medicine 1s a random wvariable having the
density function

20,000
f(z) = ¢ (z+100)7 "’ z >0,
elsewhere.

*

Find the probability that a bottle of this medicine will
have a shell life of

(a) at least 200 days:
(b) anywhere from 80 to 120 days.

(a)=1/9
(b)= 0.1020
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3.7 The total number of hours, measured 1 units of
100 hours. that a family runs a vacuum cleaner over a

period of one year 1s a continuous random variable X
that has the density function

. 0Lz,
fl@y=4¢2-x 1=zx<2
. elsewhere.

Find the probability that over a period of one year, a
tamily runs their vacuum cleaner

(a) less than 120 hours:
(b) between 50 and 100 hours,

(a) 0.68
(b) =0.375
23



Definition 3.8:

The flunction f{r,y) is a joint probability distribution or probability mass
function of the discrete random variables X and Y if

L. fiz,y) =0 for all (z,y),
2. VY flry) =1,
E

3. PIX=z2.¥ =vy) = fiz,u).
For any region A in the ry plane, P[(X.Y ) A| =33 fizx,u).
A

Example 3.1—'1:' Two ballpoint pens are selected at random from a box that contains 3 blue pens,

2 red pens, and 3 green pens. If X i1s the number of blue pens selected and Y is
the number of red pens selected, find

(a) the joint probability function f(r,y),
(b) P[(X.Y) e A], where A is the region {(z,y)|r + v < 1}.

Solution: The possible pairs of values (x, y) are (0,0), (0,1), (1,0}, (1,1}, (0,2), and (2,0).

24

(a) Now, f(0,1), for example, represents the probability that a red and a green
pens are selected. The total number of equally likely ways of selecting any 2
pens from the B is {g] — 28. The number of wavs of selecting 1 red from 2
red pens and 1 green from 3 green pens is ﬁ} {?] = 6. Hence, f{0,1) = 6/28
— 3/14. Similar calculations yield the probabilities for the other cases, which
are presented in Table 3.1. Note that the probabilities sum to 1. In Chapter
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5, it will become clear that the joint probahility distribution of Table 3.1 can
be represented by the formula

BO6-2y)
(2) |
forr=0,1,2;y=0,1,2;and 0 < xr+ 9y < 2.
(b) The probability that (X.Y") fall in the region A is

fir,u) =

P(X,.Y)eA|=P(X+Y <1)= f(0,0)+ f(0,1)+ f(1,0)
3 R d 9

R TutTETIW =

Table 3.1: Joint Probability Distribution for Example 3.14

T Riowr
flz.y) 0 1 2 | Totals
0 a2 8 3 15
78 28 I8 I8
Y 1 7 o 0| 3
2 % 0 1] %
Column Totals % % z_sa 1

When X and ¥ are continuous random variables, the joint density function
flx,y) is a surface lying above the ry plane, and P[(X.Y) € A], where A iz any
region in the ry plane, is equal to the volume of the right evlinder bounded by the
base A and the surface.



Definition 3.9: | The function f{z,y) is a joint density function of the continuous random
variables X and ¥ if

1. f(z,u) =0, for all {z,y),

2. 55 flzoy) de dy =1,

3 PlIX.Y)eA|l = [ [, flr,v) dz dy, for any region A in the ry plane.

facility and a walk-in facility.
On a randomly selected day, let X and Y, respectively, be the proportions of the
time that the drive-in and the walk-in facilities are in use, and suppose that the
joint demsity function of these random variables is

Example 3.15:

2(2x4+3y), 0<zr<10<y<1,
flay) =g EE WL D= LOSust
0, elsewhere.

(a) Verify condition 2 of Definition 3.9.
(b) Find P[(X.Y) € A], where A = {(z,y) | 0<r< 1, T <y <1}

26
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Solution:

(a) The integration of f{r,y) over the whole region is

f f fle,y) dx dy = f f —{EI + 3y) dz dy

2r*  br
=/ (? I rI.l') E.-?_..l'
i ol =k =i
1 3 z 1
SACS/ERCIS SIRE
o Lo ] a0 2 Jlg 2 9

(b) To calculate the probability, we use

11 1
:F(Diifﬁ,di}r{i)

/2 p1/2 4
f f —(2r + 3y) dr dy
g B

P(X.Y) e A]

r=1/2

W2 (22?6 WTeopoo3
=f (T+ ry) dy:f (—+—y)dy
1/4 o . xr=i] 1/4 10
LW 22 1/2
1:] 10 /1,
_ L1 o8y _(1, 3Y\]_13
T2 4 1 16/| 160



Given the joint probability distribution f{=z, y) of the discrete random variables
X and Y, the probability distribution g(z) of X alone is obtained by summing
f{x,y) over the values of ¥'. Similarly, the probability distribution h(y) of ¥ alone
is obtained by summing f(z,y) over the values of X. We define g(x) and h{y) to
be the marginal distributions of X and Y, respectively. When X and Y are
continuons random variables, summations are replaced by integrals. We can now

make the following general definition.

Definition 3.10: | The marginal distributions of X alone and of ¥ alone are

g(r) =Y flr.y) and hly)= f(r.v)
u T
for the discrete case, and

g(r) =./_ flz,y)dy and Rly) = -/: flzr,y) dx

for the continuous case.

The term marginal is used here because, in the discrete case, the values of g{z)
and A(y) are just the marginal totals of the respective columns and rows when the

values of f(z,y) are displayed in a rectangular table.

28



Example 3.16:| Show that the column and row totals of Table 3.1 give the marginal distribution
of X alone and of ¥ alone.

Solution: For the random variable X, we see that
3 3 1 5
9(0) = £(0,0)+ (0, 1) + £(0,2) = oo + 53 + 55 = 13-

9 3 15
g(1) = f(1,0) + f(1.1) + f(1,2) = 2t ﬁ"’ﬂ =3

and
g(2) = f(2,0)+ f(2, 1)+ F(2,2) = ;_E +0+0= 35

which are just the column totals of Table 3.1. In a similar manner we could show

that the values of hi{y) are given by the row totals. In tabular form, these marginal
distributions may be written as follows:

r |0 1 2 y |0 1 2
o) | & B & R L 2 & I

Table 3.1: Joint Probability Distribution for Example 3.14

T Row
f(x,y) 0 1 2 | Totals

0 3 5 3| B

28 28 28 28

y 1 % % 0| %
. 1 1

2 £ 0 o] &
Column Totals | & £ & 1




Example E.lT:l Find g(r) and h{y) for the joint density function of Example 3.15.
Solution: By definition,

oo :|_,3 4

for 0 <z <1, and g(z) = 0 elsewhere. Similarly,
o L a 2H1+3
= [Crewyde= [ e @ =T
—_— o

f(e.4) = -5(.1'+3y), 0<z<1,0<y <],
0, elsewhere.

=1 4r+3
=—,

y=>0

5 E)

for 0 <y <1, and hiy) = 0 elsewhere. o |

The fact that the marginal distributions g(x) and h{y) are indeed the proba-
bility distributions of the individual variables X and Y alone can be verfied by
showing that the conditions of Definition 3.4 or Definition 3.6 are satisfied. For
example, in the continuous case

j::g{r}dzzj:j:zﬂfay]dydzzl,

Pla<X <b)= E{X{B—m{}’{m]

ffmffr;r riydz—f g{r) dr.

In Section 3.1, we stated that the value r of the random variable X represents
an event that is a subset of the sample space. If we use the definition of conditional
probability as stated in Chapter 2,

P(AN B)
F{A)

and

P(B|A) = , provided P(A) >0,

30



Definition 3.11:

31

where A and B are now the events defined by X = r and ¥ = vy, respectively, then

PX=zY=y) fir,u)
P(X=zx) = alx)

PlY=y|A =x= . provided g(z) = 0,

where X and ¥ are discrete random variables,

It is not difficult to show that the function f(z,y)/g(z), which is strictly a func-
tion of v with r fixed, satisfies all the conditions of a probability distribution. This
15 also true when f{r,y) and g(zr) are the joint density and marginal distribution,
respectively, of continuous random variables. As a result, it is extremely important
that we make use of the special type of distribution of the form f{r,y)/g(x) in
order to be able to effectively compute conditional probabilities. This type of dis-
tribution is called a conditional probability distribution; the formal definition
follows.

Let X and Y be two random variables, discrete or continuous. The conditional
distribution of the random variable ¥ given that X =z is

flz.v)
gi(x)

flulx) = , provided g(x) = 0.

Similarly, the conditional distmbution of X given that ¥ =y 18

flz,y)

flz|ly) = . provided hi{y) = 0.

hiy)




If we wish to find the probahility that the discrete random variable X falls between
a and b when it is known that the discrete vanable ¥ =y, we evaluate

Pa<X<b|Y=u)= Y flzu).

acreh

where the summation extends over all values of X between o and b, When X and
Y are continuous, we evaluate

b
F(E{X{Mi’zy}:f f(z|y) d.

Example 3.18:| Referring to Example 3.14, find the conditional distribution of X, given that ¥ =1, ‘ ' P '
and use it to determine P(X =0[Y =1). Table 3.1 Joint Probaility Distribution for Example 3.4
Solution: We need to find f(r|y), where y = 1. First, we find that

) ro | Row

5 3 3 ,
A(1)=) fla )=+ +0==. Jlog) |01 2| Toal

= HEEHE

o EE1R
1 7 J | i ( 3
f'[ﬂﬂ:%:(s)f{r,ﬂ, r=0,1,2. ‘) 114 [ ;

Therefore, v "')j 0 0 ‘2.5

T 3 1 T T 3 1

o=@ ren- (@) b -Qroo-O@) -5 Taa[T T3

s = (5) 12.1) = @ (0) =0,

and the conditional distribution of X, given that ¥ =1, is
T | o 1 2

flzy [ 1 1 o

Finally, 1
P{X:ﬂ|Y:1]=j‘[[l|1}=§.

Therefore, if it iz known that 1 of the 2 pen refills selected is red, we have a
probability equal to 1/2 that the other refill is not blue. . |



Example 3.19:| The joint density for the random variables (X, Y), where X is the unit temperature
change and Y is the proportion of spectrum shift that a certain atomic particle

roduces, i
s 10ry?, O<zr<y<],

Jzy) = {0, elsewhere.
(a) Find the marginal densities g(z), h(y), and the conditional density f(y|z).

(b) Find the probability that the spectrum shifts more than half of the total
observations, given that the temperature is increased by 0.25 unit.

Solution: (a) By definition,

1
g(z) = F f(z,y) dy = / 10xy* dy

y=1
=l—f?:ry3 =%Ox(l—r’), 0<zr<l,

y=x

v o
h(y) = f(z,y) dr = / 102y? dr = 522 5 =5y', 0<y< 1.
-0 0

Now

flz.y) 10y 32
glx)  Fr(1-23) 1-12°

fly|lz) = ICECY L.

(b) Therefore,

1 1 b 3y 8
- =025 = = 0.25) dy = —_—dy = —.
P(Y>2|X 020) szmz 25) dy [/21_0.253 v=:

33
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Example S.E'D:l Given the joint density function

2
243 per<2 0<y<l,

(0, elsewhere,

J'III~1|']={

find g(z), h(y), f(z|y), and evaluate P(; <X < 31 |V =3).
Solution: By definition of the marginal density. for 0 < = < 2,

o 1 2
o) = [ sy a= [ T gy

—io0 0
_ (I!.r+ ry“) =g
4 4 y=0 2*

and for 0 <y < 1,

o 2 2
h{y) = [_ flz.y) dr = ’{ wdx

= 3'::21=3
_ (= 2
8 8

Therefore, using the conditional density definition, for 0 < x < 2,

flr.y) =z(1+3/°)/4 =

1+ 32
TR

=0

Tyl = = =—.
T =T = Urma)yz 2
and
1 1 1 12 o 3
F(E{K{E ?:E)zl/;u Elii‘zﬁ-




Statistical Independence

If f(x|y) does not depend on y, as is the case for Example 3.2, then f(z|y) = g(x)
and fiz,y) = giz)h{y). The proof follows by substituting

flx.y) = fiz|v)hy)

into the marginal distribution of X. That is,
o) = [ s dy= [ falwhw) dv
If fiz|y) does not depend on y, we may write
o() = faly) [~ n(w) du.
Now
f_ ) h{y) dy =1,

since hiy) is the probability density function of ¥. Therefore,

g(r) = flzrly) andthen f(r y)=g(z)hiy).

35



Definition 3.12: |Let X and ¥ be two random variables, discrete or continmous, with joint proba-
bility distribution f{r,y) and marginal distributions g{z) and h(y), respectively.
The random variables X and ¥ are said to be statistically independent if and
only if

flz.y) = glz)hiy)

for all (z,y) within their range.

Example :3.21:| Show that the random variables of Example 3.14 are not statistically independent. Tyble 3.1: Joint Probability Distribution for Example 3,14
Proof: Let us consider the point (0,1). From Table 3.1 we find the three probabilities

£10,1), g(0), and k(1) to be ! Row
3 flzy) 10 1 2| Totals
f0.0) =1 383 B
: H ik
3 1 2 ] I == 0| z
— i TR T M U 1
g(0) _ﬂf{ﬂ',y] T RETRE T ¢ [B% ol
F; - ] ]
_ 3.3 .23 |5 B3
h[lj_z=uﬂr‘1]_14+14 0=~ Column Totals | 77 % % | !

Clearly,
f(0,1) £ g{0)A(1),

and therefore X and Y are not statistically independent. A
All the preceding definitions concerning two random variables can be general-

ized to the case of n random variables. Let f(xy,29,..., ;) be the joint probahility
function of the random variables X, Xa, ..., X,. The marginal distribution of X',

for example, is

g(z1) =Y Y flzrza,... 20
3] In

36
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for the discrete case, and

glry) = / f flr1,T2,...,Ty) dra dxg---dx,

for the continuous case. We can now obtain joint marginal distributions such
as g(ry,ra), where

VY Ty, T, 1) (discrete case),
g{r.,_rg} —E n

1= - [0 flzi.zs,....2,) drs dry---dr, (continuous case).

We could consider numerous conditional distributions. For example, the joint con-
ditional distribution of X1, X2, and X3, given that X4 =24, Xs = 25,..., Xn =
Tn. 15 written
flz1.7a, ... 1)
g(Ta,T5, ..., Tn)
where g{z4,T5,...,Tq) 15 the joint marginal distribution of the random wvariables
‘ri:xﬁr' - 1xl'l'

A peneralization of Definition 3.12 leads to the following definition for the mu-
tual statistical independence of the variables X, Xa, ...  X,.

f{IhI‘l:Iﬂ. | 3411‘5,.-..,1'"] —



Definition 3.13:

Let X1, X2,....Xn be n random wvariables, discrete or continuous, with
joint  probability distribution  f(ry,T2,...,7,) and marginal distribution
filz1), falzs),. .., falzn), respectively. The random variables X, Xo, ..., X, are

gaid to be mutually statistically independent if and only if

flzy, o, . 7)) = filz) falza) - fulZn)

for all (z1,Ta,...,7,) within their range.

Example 3.22:' Suppose that the shelf life, in years, of a certain perishable food product packaged

Solution:

38

in cardboard containers is a random variable whose probability density function is

riven by
e F, x>0,
T =
I(z) {El, elsewhere,

Let Xy, Xs, and X5 represent the shelf lives for three of these containers selected
independently and find P(X; < 2,1 < X5 < 3, X3 = 2).

Since the containers were selected independently, we can assume that the random
variables X, X+, and X4 are statistically independent, having the joint probability
density

fl::Il,Tg,:l_'g:I = I{Tl]_f[-'l‘z}fl::l.'gzl — g TlgT T TER —_ pTEITIITIR

for 1y > 0, 73 = 0, r3 > 0, and f({x, T3, 75) = 0 elsewhere. Hence

oo 3 2
PlX, <21<X:<3,X;5 }‘3]=f f f g 1 TFTE gy drs dxg
2 1 D

= (1 —e (e ! —e e 2 = 0.0372. 1



 Ex. 3.47

* The amount of kerosene, in thousands of liters, in a
tank at the beginning of any day is a random amount
Y from which a random amount X is sold during that
day. Suppose that the tank is not resupplied during
the day so that x <y, and assume that the joint

density |
R !z <zrx<y<l

'G{(E{ y] = ].Dr

(a) Determine 1f X and Y are independent.
(b) Find P(1/4 < X < 12 | Y = 3/4).

elsewhere.
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(a)

gla) =2 [ dy=2(1—x) for 0 <z < 1;
h(y _zjzy do = 2. for 0 < y < 1.
gmce f(x,y) # g(x)h(y), X and Y are not independent.

(b)
f(xly) = f(x,y)/h(y) = 1/y, for 0 <z < y.

Therefore, P(1/4 < X <1/2|Y =3/4) =3 [/} dv = }.



Mathematical Expectation



4.1 Mean of a Random Variable

In Chapter 1. we discussed the sample mean, which is the arithmetic mean of the
data. Now consider the following. If two coins are tossed 16 times and X is the
number of heads that occur per toss, then the values of X are 0, 1, and 2. Suppose
that the experiment yields no heads, one head, and two heads a total of 4, 7, and 5
times, respectively. The average number of heads per toss of the two coins is then

(0)(4) + (1)(7) + (2)(5)
16

= 1.06.

This is an average value of the data and yet it is not a possible outcome of {0, 1, 2}.
Hence, an average is not necessarily a possible outcome for the experiment. For
Instance, a salesman’s average monthly income is not likely to be equal to any of
his monthly paychecks.

Let us now restructure our computation for the average number of heads so as
to have the following equivalent form:

(0) (146) + (1) (176) +(2) (13'6) = 1.06.



Assuming that 1 fair coin was tossed twice, we find that the sample space for
our experiment 1is

S={HH.HT,TH.TT}.

Since the 4 sample points are all equally likely, it follows that

P(X =0)=P(IT) = % P(X=1)=P(TH)+P(HT)=

o | —

and
1
P(XZQ):P(HH):If

where a typical element, say T'H, indicates that the first toss resulted in a tail
followed by a head on the second toss. Now, these probabilities are just the relative
frequencies for the given events in the long run. Therefore,

w=E(X) = (0) G) + (1) (%) +(2) G) — 1.



Definition 4.1:

Let X be a random variable with probability distribution f(z). The mean, or
expected value, of X is

if X is discrete,

if X is continuous.

p=EX)=)Y =f(x)

xr

and

p=FEX)= /00 rf(x) dr

— o0

Example 4.1:/ A lot containing 7 components is sampled by a quality inspector; the lot contains

Solution:

4 good components and 3 defective components. A sample of 3 is taken by the
inspector. Find the expected value of the number of good components in this
sample.

Let X represent the number of good components in the sample. The probability
distribution of X 1is

4\( 3
(:{:) (3—1‘)
7 )
(5)
Simple calculations yield f(0) = 1/35, f(1) = 12/35, f(2) = 18/35, and f(3) =
4/35. Therefore,

j=E(X) = (0) (%) +(1) (%) +(2) (%) +(3) (%) - g —1.7.

Thus, if a sample of size 3 is selected at random over and over again from a lot
of 4 good components and 3 defective components, it will contain, on average, 1.7
good components. A

flx) = r=20,1,2,3.



Example 4.2:/ A salesperson for a medical device company has two appointments on a given day.

Solution:

At the first appointment, he believes that he has a 70% chance to make the deal,
from which he can earn $1000 commission if successful. On the other hand, he
thinks he only has a 40% chance to make the deal at the second appointment,
from which, if successtul, he can make $1500. What is his expected commission
based on his own probability belief? Assume that the appointment results are
independent of each other.

First, we know that the salesperson, for the two appointments, can have 4 possible
commission totals: $0, 51000, $1500, and $2500. We then need to calculate their
associated probabilities. By independence, we obtain

£(80) = (1 —0.7)(1 — 0.4) = 0.18,  £($2500) = (0.7)(0.4) = 0.28,
£($1000) = (0.7)(1 — 0.4) = 0.42, and f($1500) = (1 — 0.7)(0.4) = 0.12.

Therefore, the expected commission for the salesperson is

B(X) = ($0)(0.18) + ($1000)(0.42) + ($1500)(0.12) + ($2500)(0.28)
= $1300. N



Example 4.3:/ Let X be the random variable that denotes the life in hours of a certain electronic
device. The probability density function is

20,000
—— x> 100,
ﬂﬂ{$3

0, elsewhere.

Find the expected life of this type of device.
Solution: Using Definition 4.1, we have

n=FEX) :/ x 20’200 dx :/ 20, (2)00 dr = 200.
100 T 100 *

Therefore, we can expect this type of device to last, on average, 200 hours. A

Now let us consider a new random variable g(X'), which depends on X; that
is, each value of g(X) is determined by the value of X. For instance, g(X) might
be X2 or 3X — 1, and whenever X assumes the value 2, g(X) assumes the value
g(2). In particular, if X is a discrete random variable with probability distribution

f(x), for = —=1,0.1,2, and g(X) = X2, then

0] = P(X = 0) = /(0).
Plg(X)=1]=P(X = -1) + P(X
=P(X =2) = f(2).

1) = f(=1)+ f(1).

and so the probability distribution of g(X') may be written
g(x) ‘ 0 1 4
Plg(X) =g(0)] | f(0)  f(=1)+f(1) [f(2)
By the definition of the expected value of a random variable, we obtain
po(x) = Elg(x)] = 0f(0) + 1[f(=1) + fF(1)] +4f(2 )
= (=1)2f(=1) + (0)2f(0) + (1)* f(1) + (2)*f Zg ) f(x).




Theorem 4.1: |Let X be a random variable with probability distribution f(x). The expected

value of the random variable g(X') is
Igx) = Elg(X)] = ZQ(iP)f(T-)
it X is discrete, and

o) = Bla(0] = [ g(@)f(@) da

— 2

1t X 1s continuous.

Example 4.4:] Suppose that the number of cars X that pass through a car wash between 4:00
p.M. and 5:00 p.M. on any sunny Friday has the following probability distribution:

x ‘ 4 5 6 7 8 9

PX=1) | &5 1 1 & &
Let g(X) = 2X —1 represent the amount of money, in dollars, paid to the attendant
by the manager. Find the attendant’s expected earnings for this particular time

period.
Solution: By Theorem 4.1, the attendant can expect to receive

9

Elg(X)] = EQX - 1) =3 (2¢ - 1)f(x)

r=4

= (7) (112) +(9) (%) + (11) G) +(13) G)
)(5) +an (§) =107 )

+(15



Example 4.5:1 Let X be a random variable with density function

2

f(r){%" —1 <z <2,

0, elsewhere.

Find the expected value of g(X) =4X + 3.
Solution: By Theorem 4.1, we have

2 ‘ 2 2

4z + 3)z 1 .

E(4X+3):/ ( ‘H; )3 d:t:§/ (42° + 322) dx = 8.
—1 —1

A
We shall now extend our concept of mathematical expectation to the case of
two random variables X and Y with joint probability distribution f(x,y).

Definition 4.2: | Let X and Y be random variables with joint probability distribution f(x,y). The
mean, or expected value, of the random variable g(X,Y) is

fex,yy = Elg(X.Y)] ZZQ r, 1)

if X and Y are discrete, and

'u“Q'(X:Y) — E[Q(X~ }r)] — [ /_ Q(I’ y)f(:l y) dr dy

if X and Y are continuous.




Example 4.6:]1 Let X and Y be the random variables with joint probability distribution indicated
in Table 3.1 on page 96. Find the expected value of g(X,Y ) = XY. The table is
reprinted here for convenience.

T Row
flz,y) 0 1 2 | Totals
0 3 U 3 5
238 238 28 238
2 55 0 0 55
’ . 5 5 3
Column Totals 14 28 58 1

Solution: By Definition 4.2, we write

2 2
EXY) =33 ayf(r.y)

xz=0y=0
= (0)(0)£(0,0) 4 (0)(1)£(0,1)
£ O)F(1,0) + (1)L 1) + (2)(0)£(2,0)
= fL1) = .



Example 4_.7:‘ Find E(Y/X) for the density function

%‘33’2)? [] <T < [) < i < 1
fle,y) = )
0 elsewhere.

Solution: We have
- 1 2 .2 1 3 -
E }— ff y(l—i_gy)d:r.dy/ y+3y dyzi.
X o Jo 4 0 2 8 1
Note that if g(X,Y ) = X in Definition 4.2, we have

Z Z rf(r,y) Z rg(x) (discrete case),
f f vf(x,y) dy de = [~ _xg(x) dz (continuous case),

where g(x) is the marginal distribution of X. Therefore, in calculating F(X) over
a two-dimensional space, one may use either the joint probability distribution of
X and Y or the marginal distribution of X. Similarly, we define

Z Z yf(x,y) =3 yh(y) (discrete case),
E(Y) = y

f_ [Z yf(x.y) dedy = [Z2_yh(y) dy (continuous case),

where A(y) is the marginal distribution of the random variable Y .



Exercises

4.23 Suppose that X and Y have the following joint
probability function:

X
fix,v) 2 4

1 0.10 0.15

y 3 (020 030

5 0.10 0.15

(a) Find the expected value of gXY) = D, &
(b) Find ux and puy.



Answer 4.23: X

; fix,v) 2
(a):Elg(XY )] = E(xy?) = 2.2 oy /() g O O
: 0.10

5

=2%(1)°* f(2,2)+2%(3)* * f(2,3)+ 2%(5)* * f(2,5)+ 4%(1)* * f(4,1)+ 4%(3)* * f(4,3)+ 4%(5)* * f(4,5)
=35.2

(b)
uX = E(X) =(2)(0.1+0.2+0.1 ) + (4)(0.15+0.3+0.15) = 3.20
uY =E(Y)=(1)(0.1+0.15) + (3)(0.2+0.3) + (5)(0.1+0.15) = 3



4.2 Variance and Covariance of Random Variables

The mean, or expected value, of a random variable X is of special importance in
statistics because it describes where the probability distribution is centered. By
itself, however, the mean does not give an adequate description of the shape of the
distribution. We also need to characterize the variability in the distribution. In
Figure 4.1, we have the histograms of two discrete probability distributions that
have the same mean, p = 2, but differ considerably in variability, or the dispersion
of their observations about the mean.

A9] e

B
—
T

Figure 4.1: Distributions with equal means and unequal dispersions.



Definition 4.3:

Let X be a random variable with probability distribution f(z) and mean p. The

variance of X is

0> =FE[(X —p)? = Z(a’ — )% f(x), if X is discrete, and

0’ =FE[(X —p)? = / (x — p)%f(x) dr, if X is continuous.

The positive square root of the variance, o, is called the standard deviation of

X.

T

— o0

Example —18‘ Let the random variable X represent the number of automobiles that are used for

Solution:

official business purposes on any given workday. The probability distribution for
company A [Figure 4.1(a)] is

r |1 2 3
f(xr) | 0.3 0.4 03

and that for company B [Figure 4.1(b)] is
r | 0 1 2 3 4
f(x) \ 0.2 0.1 03 03 0.1
Show that the variance of the probability distribution for company B is greater

than that for company A.
For company A, we find that

pa = E(X) = (1)(0.3) + (2)(0.4) + (3)(0.3) = 2.0,

and then
3
ch=> (r—2)"=(1-2)%03) + (2 - 2)%(0.4) + (3 — 2)?(0.3) = 0.6.
=1

For company I3, we have
pp = E(X) = (0)(0.2) + (1)(0.1) + (2)(0.3) + (3)(0.3) + (4)(0.1) = 2.0,

and then

4
on = > _(r—2)f(x)
r=0

= (0: 2)2(0.2) + (1 — 2)%(0.1) + (2 — 2)%(0.3)
(3 —2)2(0.3) = (4 — 2)2(0.1) = 1.6.



calculations, 18 stated 1 the tollowing theorem.

Theorem 4.2:| The variance of a random variable X 1s

o2 = E(X?) — 12

Proof: For the discrete case, we can write
0’ = Z(r — ) f(x) = Z(r — 2+ p?) f ()
—Zr flx —QI.LLZiI?f(I)—I—,LLQZf(I)

r

Since 1 = Z f(x) by definition, and Z f(x) = 1 for any discrete probability

distribution, 1t follows that

0% = Z:r.gf(:r.) — %= B(X?) - pu*

I - . - -
For the continuous case the proof i1s step by step the same, with summations
replaced by integrations. |



Example 4.9:‘ Let the random variable X represent the number of defective parts for a machine
when 3 parts are sampled from a production line and tested. The following is the
probability distribution of X.
x | 0 1 2 3
f(x) ‘ 0.51 0.38 0.10 0.01
Using Theorem 4.2, calculate o2.
Solution: First, we compute

= (0)(0.51) 4+ (1)(0.38) + (2)(0.10) 4+ (3)(0.01) = 0.61.
Now,
E(X?) = (0)(0.51) 4+ (1)(0.38) + (4)(0.10) 4 (9)(0.01) = 0.87.
Therefore,

0? =0.87 — (0.61)% = 0.4979. 1

Example 4.10:] The weekly demand for a drinking-water product, in thousands of liters, from
a local chain of efficiency stores is a continuous random variable X having the
probability density

f() = {2(17—1)._ 1 <r<?2,

0, elsewhere.

Find the mean and variance of X .

and

Therefore,



Definition 4.3:

Let X be a random variable with probability distribution f(z) and mean p. The
variance of X is

o? = E[(X — p)? = Z(r — )2 f(x), it X is discrete, and
0? = E[(X —p)?] = / (x— ) f(x) de, if X is continuous.

The positive square root of the variance, o, is called the standard deviation of

X.

The variance of a random variable X is

o’ = E(X?) - u°




Theorem 4.3:

Let X be a random variable with probability distribution f(z). The variance of
the random variable g(X) is

UE(XJ = E{[g(X) — .‘U‘g(X]]Q} = Z[Q(I) — Hg(x)]gf(ﬂ"—)
if X is discrete, and
oaix) = B{[9(X) = ngx))*} = f ) = pgx))* f () dx

1t X 1s continuous.

Proof: Since g(X) is itself a random variable with mean f¢4(x) as defined in Theorem 4.1,

1t follows from Definition 4.3 that

g(X) E{lg(X) - P’»g(x)]}-

Now, applying Theorem 4.1 again to the random variable [g(X') —tq4(x }]2 completes
the proof.




Example 4.11:] Calculate the variance of g(X) = 2X + 3, where X is a random variable with
probability distribution

r |0 1 2 3
. 1 1 1 1
f(x) ‘ 1 8 2 8§
ﬁﬁl.\'; ZZ’”[” - f’_-n.\’n]z.”!'}
3
pox+3 = EQ2X +3) = ) (2r +3)f(x) =6,
r=0

Now, using Theorem 4.3, we have

0ox+s = E{[(2X 4 3) — pos43]’} = E[(2X + 3 — 6)7]
3
= E(4X? - 12X +9) =) (42® — 1204 9)f(x) = 4.

=0



Example 4.12:Let X be a random variable having the density function given in Example 4.5 on
page 115. Find the variance of the random variable g(X) = 4X + 3.
Solution: Tn Example 4.5, we found that pyy13 = 8. Now, using Theorem 4.3,

Phes = B{4X +3) - 8P} = E[4X ~ 5
2 PoLr 51
:/ (4r - B)ZT— dr = —/ (161“.4 — 4078 -I—QBIZ) dr = —,
-1 3 3 1 5 1

[Fo(X,Y) = (X =px)(Y —py), where px = E(X) and piy = E(Y), Definition
4.2 yields an expected value called the covariance of X and V', which we denote
hy oy or Cov(X,Y).

Definition 4.4: | Let X and Y he random variables with joint probahility distribution f(z,y). The
covariance of X and V" s

rxr = EIX =)V =) = YYo= )y = g (o)
Ty
if X and Y are discrete, and

oy = E0X = )Y = )] = / / (e )y ) ,3) e dy

if X and Y are continuous.

Let X be a random variable with density function

& ilen.
flz)=¢ 3
(), elsewhere,

Find the expected value of g(X) = 4X + 3.

9



Theorem 4.4: | The covariance of two random variables X and Y with means py and j,, respec-

tively, is given by

Oxy = E(XY) = pxpiy.

Proof: For the discrete case, we can write

Txvy :Z Z(r — 11x )Y — py ) f(2,y)
=3 wyf(ry) —px > Y yf(,y)
— My Z Z rf(x,y) + pxpiy Z Z f(z,y).
T Y r Y

Since

px = xf(zy), py =Y yf(r,y), and Y Ny flr,y) =1
y T Y

for any joint discrete distribution, it follows that

For the continuous case, the proof is identical with summations replaced by inte-

orals. o |



Example 4.13:| Example 3.14 on page 95 describes a situation involving the number of blue refills
X and the number of red refills Y. Two refills for a ballpoint pen are selected at
random from a certain box, and the following is the joint probability distribution:

T
fley) [0 T 27 h(y)
0 39 3 15
238 238 28 238
- R
g(x) 14 98 98 1

Find the covariance of X and Y.
Solution: From Example 4.6, we see that E(XY) =3/14. Now

iy = ézg(r) ~0(35) 0 (z) @ (%) -1
and
> = gth) ~0(5) 0 (3)+@(5) -5

Therefore,

EXY) = Z Z.r!;f(.r._l/)

r=0y=0
= (0)(0)£(0,0) + (0)(1)f(0, 1)

+(1)(0)f(1,0)+ (1)(1)f(1, 1) + (2)(0) f(2,0)
3

= f(LL1)=—.
(L 1) T



Example 4.14:] The fraction X of male runners and the fraction Y of female runners who compete

Solution:

in marathon races are described by the joint density function

8ry, 0<y< <1,

ﬂmm={a

elsewhere.

Find the covariance of X and Y.
We first compute the marginal density functions. They are

(z) = 4%, 0<z <1,
I\ = 0, elsewhere,

and

dy(1 —y?), 0<y <1,
hiy) = '
(v) { 0, elsewhere.

From these marginal density functions, we compute

8
15

(8]

1 1
4
fx = E(X) :/ 4zt dr = — and py :/ 42(1 — y?) dy =
0 0

From the joint density function given above, we have

1 el
E(XY) = f / 8x2y? dr dy = —.
0 Y 9

Then

Q
e
|-<
I
Js3
=
|
=
=
=
L<
I
e
|
o~
[ WINTEN
~
P
| o0
S—
I
)
b | H=
T



Correlation Coefficient

Positive Correlation No correlation Negative



Definition 4.5: | Let X and Y be random variables with covariance oy, and standard deviations
ox and oy, respectively. The correlation coefficient of X and Y is

Oxy

Pxy — .
Ox0y

Example 4.15: Find the correlation coefficient between X and Y in Example 4.13

Solution: Since

5 3 27
1‘(\2)-(02)(“)“1)((\) (’2>(;) 8

and

_ OXxy —Hfﬁﬁ B ]

The variance of a random variable X is

o = B(X?) — 1.

4 M
fay) [T T 77 hiy)
0 39 3
238 238 28 238
;. 28 ”. f) 35
g(z) [ 2 3| 1

E(XY)= ZZH}[(: y)

r=0y=0

= (0)(0)£(0,0) + (0)(1)£(0,1)
+(D0)f(L,0)+ (1)(D)f(L,1) + (2)(0) £(2,0)

=f(1.1)=ﬁ-



Example 4.16: Find the correlation coefficient of X and Y in Example 4.14. flz.y) = {:‘;ﬂ: :Efl;_i“: <1,
Solution: Because - -
1 1 o* = B(X?) - i?
- 2 5 2 - 2 3 2 2 1
E(X®) = 42° dr = = and E(Y~") = Wl=y)dy=1—- - = —,
0 3 0 3 3
e [ 08281
we conclude that J 0 .IJ.,,..;...,..
i
ke | oat dr =
o3 ¥ (4)2 : nd o3 l (8)2 5 m-h{.’u-i s
X=3 7 \5) =71 Yy =3 " |35] = 99r"
-3 i ] 7-.) 3 ].rJ 22-.‘ hiy) = {-l.ﬂ'“ _ n<y<l,
i, el hweree.
) e 2 A (1) ()
Txy —b':-X} } ﬂx“r—g (5) (15) = 225 m=[.| |y7“_b.1“,ly=%_
1/225 1 )= [ [ st e an=
PXY =

J2/T5)(11/225) 66
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Some Discrete Probability
Distributions



Discrete Uniform Distribution

Example 5.1:' When a light bulb is selected at random [rom a box that contains a 40-watt bulb,

a 60-watt bulb, a 75-watt bulb, and a [(()-watt bulb, each element of the sample

space § = {40, 60, 75, 100} occurs with probability 1/4. Therefore, we have a
uniform distribution. with

f(@:d)= =, x = 40,60, 75,100,

Example 5.2:] When a fair die is tossed, each element of the sample space § = {1,2,3,4,5,6}
occurs with probability 1/6. Therefore, we have a uniform distribution, with

|
/(.r;6) = i z=1,2,3.4.5,6. _I

f(x;6)

-

1 2 3 B 5 6

Figure 5.1: Histogram for the tossing of a die.



The Bernoulli Process

Strictly speaking, the Bernoulh process must possess the following properties:
1. The experiment consists of repeated trials.
2. Each trial results in an outcome that may be classified as a success or a failure.
3. The probahlity of success, denoted by p, remains constant from trial to tral
4. The repeated trials are independent.

Consider the set of Bernoull trials where three items are selected at random
from a manufacturing process, ispected, and classified as defective or nondefective.
A defective item 18 designated a success. The number of successes 18 a random
variable X assuming integral values from 0 through 3. The eight possible outcomes
and the corresponding values of X are

Outcome | NNN NDN NND DNN NDD DND DDN DDD
x 0 1 1 1 2 2 2 3

Since the items are selected independently and we assume that the process produces
25% defectives, we have

P(NDN) = P(N)P(D)P(N) = G) G) G) = 5—4.

Similar calculations yield the probabilities for the other possible outcomes. The
probability distribution of X 1s therefore

s 0 102
2

27 27 1
f(l']'|ﬁ 64 64 ©4

L2




Probability of successes Probability of failuresn_x
PP..P =P (1-p)... (1-p) = (1-p)

x times (n—x) times



The probability distribution

of Xis
X f(x)=P(X=x)
0 27
64
1 o 9 9 27
64 64 64 64
2 3,3, 392
64 64 64 64
3 1
64

Outcome | Probability | x
NNN 33 3 27100
— N — —
4 4 4 64
NND 3 3. 1_9 11
4 4 4 64
NDN i1 3 911
—_—— N — = —
4 4 4 64
NDD i 11 3 |2
—_— — — T —
4 4 4 64
DNN |1 3 3 9]
4 4 4 64
DND 1 3 1_32
4 4 4 64
DDN 1 1 3 3 |2
—_——— = —
4 4 4 64
DDD 1 1 1 1|3
— — — T —
4 4 4 64




Binomial Distribution

The number X of successes in n Bernoulli trals 1s called a binomial random
variable. The probability distribution of this discrete random varable 1s called
the binomial distribution, and its values will be denoted by b(x:n,p) since they
depend on the number of trials and the probability of a success on a given trial.
Thus, for the probability distribution of X, the number of defectives 1s

P(X=2)=f(2)=b (2;3, %) = %.

Bimomial A Bernoulli trial can result in a success with probability p and a failure with
[Distribution  probability ¢ = 1 —p. Then the probability distribution of the binomial random
variable X, the number of successes in n independent trials, 1s

T

i) = (

Note that when n = 3 and p = 1/4, the probahility distribution of X, the number
of defectives, may be written as

() - Q) () wmnas

rather than in the tabular form on page 144.

)qun_r-. r=0,1,2,... n.

.




Example 5.1: The probability that a certain kind of component will survive a shock fest is 3/4.
Find the probability that exactly 2 of the next 4 components tested survive.
Solution: Assuming that the tests are independent and p = 3/4 for each of the 4 tests, we

obtain
3 1\ /3\% /1\* Al [/32\ 27
(203) - () () () - (72) (&) - i .



FExample 5.2:| The probability that a patient recovers from a rare blood disease 1s 0.4. If 15 people
are known to have contracted this disease, what is the probability that (a) at least
10 survive, (b) from 3 to 8 survive, and (c) exactly 5 survive?
Solution: Let X be the number of people who survive.

]
(a)  P(X>10)=1-P(X <10)=1-Y b(z;15,0.4) = 1 — 0.9662
r=0

= 0.0338

B fa] 2
(b) PB<X <8) =) b(x;15,04) = Y b(x;15,04) — > " b(x;15,0.4)
=3 x=I(

x=0
= 0.9050 — 0.0271 = 0.8779

(c) P(X =5) =b(5;15.04) = ZE: b(x:15,0.4) — Zd: b(x:15,0.4)

=0

=0.1859



Example 5.2:] 1'he probability that a patient recovers from a rare blood disease 1s U.4. 1 15 people
are known to have contracted this disease, what is the probability that (a) at least
10 survive, (b) from 3 to B survive, and (¢) exactly 5 survive?
1 - v i . " T " . W IV IVE T
Solution: Let X be the number of people who survive. b(x;n, p) = ( ) r n—z

(a) P(X = 10) P(X=10)+P(X=11)+P(X=12)+P(X=13) +P(X=14)+P(X=15) - n.0us

(15) (0.4)2 (0.6)5+ (13) (0.4)1 (0.6)%+ (13) (0.4)12 (0.6)% +(3) (0.4)2= (0.6)2+ (I5) (0.4)*¢ (0.6)* + (12) (0.4)** (0.6)°

(b) P(3 =X <8) = p(X=3)+P(X=4)+P(X=5)+P(X=6) +P(X=7)+P(X=8)

() (0.4)3(0.6)2+ (%) (0.4)4(0.6)1+ (%) (0.4)° (0.6)1 +(%°) (0.4)5 (0.6)11+ (%) (0.4)7 (0.6)3+ () (0.4)2 (0.6)7

(C) (P X=5)= (') (0.4)> (0.6)°=0.1859

10



Example ;3.3:| A large chain retailer purchases a certain kind of electronic device from a manu-
facturer. The manufacturer indicates that the defective rate of the device 1s 3%.

Solution:

11

(a)
(b)

(a)

(b)

The mspector randomly picks 20 items from a shipment. What is the proba-
bility that there will be at least one defective item among these 207

Suppose that the retailer receives 10 shipments in a month and the imspector
randomly tests 20 devices per shipment. What 1s the probability that there
will be exactly 3 shipments each containing at least one defective device among
the 20 that are selected and tested from the shipment?

Denote by X the number of defective devices among the 20. Then X follows
a b(x; 20, 0.03) distribution. Hence,
P(X>1)=1—P(X =0)=1—5(0;20,0.03)
=1 — (0.03)"(1 — 0.03)2°7° = 0.4562.
In this case, each shipment can either contain at least one defective 1item or

not. Hence, testing of each shipment can be viewed as a Bernoulli trial with
p = 0.4562 from part (a). Assuming independence from shipment to shipment

and denoting by Y the number of shipments containing at least one defective
item, Y follows another binomial distribution b(y:; 10.0.4562). Therefore,

P(Y =3) = (13?) 0.4562%(1 — 0.4562)7 = 0.1602. r



Example 5.4:11t 1s conjectured that an mimpurity exists in 30% of all drinking wells in a certain
rural community. In order to gain some insight into the true extent of the problem,
it is determined that some testing is necessary. It is too expensive to test all of the
wells in the area, so 10 are randomly selected for testing.

(a) Using the binomial distribution, what is the probability that exactly 3 wells
have the impurity, assuming that the conjecture is correct?

(b) What is the probability that more than 3 wells are impure?
Solution: (a) We require 3 2
b(3:10,0.3) = Z b(x:10,0.3) — Z b(x:10,0.3) = 0.6496 — 0.3828 = 0.2668.
=0 =0

(b) In this case, P(X > 3) = 1 — 0.6496 = 0.3504. .

(@) (%) (0.3)3(0.7)7=0.2668

P(X >3)=1-P(X <£3)

=1- Z B(x:;10,0.3)

x=0

1-{0.0282+0.1211+0.2335+0.2668}

12



Theorem 5.1:

13

~r ~r

Since the probability distribution of any binomial random variable depends only
on the values assumed by the parameters n, p, and ¢, it would seem reasonable
to assume that the mean and variance of a binomial random variable also depend
on the values assumed by these parameters. Indeed, this is true, and in the proof
of T'heorem 5.1 we derive general formulas that can be used to compute the mean
and variance of any binomial random variable as functions of n, p, and q.

The mean and variance of the binomial distribution b(z;n, p) are
1= np and 0 = npyq.




Example 5.5:' Find the mean and variance of the binomial random variable of Example 5.2, and
then use Chebyshev’s theorem (on page 137) to interpret the interval p + 20.
Solution: Since Example 5.2 was a binomial experiment with n = 15 and p = 0.4, by Theorem
5.1, we have

= (15)(0.4) = 6 and o2 = (15)(0.4)(0.6) = 3.6.

Taking the square root of 3.6, we find that o = 1.897. Hence, the required interval is
6+ (2)(1.897), or from 2.206 to 9.794. Chebyshev’s theorem states that the number
of recoveries among 15 patients who contracted the disease has a probability of at
least 3/4 of falling between 2.206 and 9.794 or, because the data are discrete,
between 2 and 10 inclusive. . |

There are solutions in which the computation of binomial probabilities may
allow us to draw a scientific inference about population after data are collected.
An 1illustration i1s given in the next example.

Example 5.2:11The probabiity that a patient recovers Irom a rare blood disease 1s U.4. 11 15 people
are known to have contracted this disease, what is the probability that (a) at least
10 survive, (b) from 3 to 8 survive, and (c) exactly 5 survive?

14



Example 5.6:

Solution:

15

Consider the situation of Example 5.4. The notion that 30% of the wells are impure
15 merely a conjecture put forth by the area water board. Suppose 10 wells are
randomly selected and 6 are found to contain the impurity. What does this imply
about the conjecture? Use a probability statement.

We must first ask: “If the conjecture 1s correct, 1s 1t likely that we would find 6 or
more lmpure Wells‘?”

5

P(X > 6) Z b(x;10,0.3) = 3 " b(r; 10,0.3) = 1 — 0.9527 = 0.0473,
=0

As a result, it is very unlikely (4.7% chance) that 6 or more wells would be found
mnpure 1f only 30% of all are impure. This casts considerable doubt on the conjec-
ture and suggests that the impurity problem is much more severe. 1

As the reader should realize by now, in many applications there are more than
two possible outcomes. To borrow an example from the field of geneties, the color of
guinea pigs produced as offspring may be red, black, or white. Often the “defective”
or “not defective” dichotomy 1s truly an oversimphification i engineering situations.
Indeed, there are often more than two categories that characterize items or parts
coming off an assembly line.



Suppose a large urn contains 400 red
marbles and 600 blue marbles.

A random sample of 10 marbles is
drawn without replacement. What is
the probability exactly 3 are red?




Hypergeometric Distribution

Hypergeometric
Distribution

The probahility distribution of the hypergeometric random variable X, the num-
ber of successes in a random sample of size n selected from N items of which k
are labeled success and N — k labeled failure. 1s

by N —Fk
h(x:N,n, k) = M, max{l0,n — (N — k)} < r < min{n, k}.

()

Example 5.9 :|

Solution:

17

Lots of 40 components each are deemed unacceptable if they contain 3 or more
defectives. The procedure for sampling a lot is to select 5 components at random
and to reject the lot if a defective i1s found. What is the probahility that exactly 1
defective 1s found in the sample if there are 3 defectives in the entire lot?

Using the hypergeometric distribution withn =5, N =40, k=3, and z = 1, we
find the probability of obtaining 1 defective to be

W)
(%)

Once again, this plan 1s not desirable since it detects a bad lot (3 defectives) only

h(1;40,5,3) = — 0.3011.

about 30% of the time. o |
N=40 components 40
K=3
defectives @ 3 37 37
I 3
(D[RS e
X 5—x
N-K=37 \/

non-defectives 5




Exercise 5. 31

A homeowner plants 6 bulbs selected at random
from a box containing 5 tulip bulbs and 4
daffodil bulbs. What is the probability that he
planted 2 daffodil bulbs and 4 tulip bulbs?

h(2;9,6,4) = G()E_I.{}U = 2.



Exercise 5.32

From a lot of 10 , 4 are selected at random and
fired. If the lot contains 3 defective missiles that
will not fire, what is the probability that (a) all 4
will fire? (b) at most 2 will not fire?

(a) h(4;10,4,7) = 1/6 / _((Z%()Qﬂ/e
(b) i h(x;10,4,3) % '



Theorem 5.2: | The mean and variance of the hypergeometric distribution A{x; N, n, k) are

N N -1 N N

pzﬁandﬂzzh_n-ﬂ-i(l—i).

Example 5.10:] Let us now reinvestigate Example 3.4 on page 83. The purpose of this example was
to illustrate the notion of a random variable and the corresponding sample space.
In the example, we have a lot of 100 items of which 12 are defective. What is the
probability that in a sample of 10, 3 are defective?

Solution: Using the hypergeometric probahility function, we have

124 fBE
h(3:100,10,12) = G _gos

(10)

Example 3.4:‘ Statisticians use sampling plans to either accept or reject batches or lots of
material. Suppose one of these sampling plans involves sampling independently 10
items from a lot of 100 items in which 12 are defective.

Let X be the random variable defined as the number of items found defec-
tive in the sample of 10. In this case, the random variable takes on the values
Iy S RSN 0 8 11 B J

20



Example 5,11:| Find the mean and wvariance of the random wvariable of Example 5.9 and then use
Chebyshev's theorem to interpret the interval p + 20.

Solution: Since Example 5.9 was a hypergeometric experiment with N = 40, n = 5, and
k=3, by Theorem 5.2, we have

_(B)3) _3_
= =g =037

o= (590 (3) (- 3) -oms

Taking the square root of 0.3113, we find that & = 0.558. Hence, the required
interval 1s 0.375 £ (2)(0.558), or from —0.741 to 1.491. Chebyshev’s theorem
states that the number of defectives obtained when 5 components are selected at
random from a lot of 40 components of which 3 are defective has a probability of
at least 3/4 of falling between —0.741 and 1.491. That is, at least three-fourths of
the time, the 5 components include fewer than 2 defectives. o |

and

Example 5.9:| Lots of 40 components each are deemed unacceptable if they contain 3 or more
defectives. The procedure for sampling a lot is to select 5 components at random
and to reject the lot if a defective is found. What is the probability that exactly 1
defective is found in the sample if there are 3 defectives in the entire lot?
Solution: Using the hypergeometric distribution withn =5, N =40, k=3, and z = 1, we
find the probability of obtaining 1 defective to be

@)
(5)

21 h(1:40,5,3) = = 0.3011.



Negative  If repeated independent trials can result in a success with probability p and
Binomial a failure with probahility ¢ = 1 — p, then the probability distribution of the

[hstribution  random variable X, the number of the trial on which the kth success occurs, 1s
the probability that, the k'th success

occurs on the xth trial. Experimen ?E k.p) = r—1
this kind are called negative binomial™ ’ P = E—1
experiments.

)p’”q""", r=kk+1.k+2, .. ..

Example 5.14:|In an NBA (National Basketball Association) championship series, the team that
wins four games out of seven is the winner. Suppose that teams A and B face each

other in the championship games and that team A has probability (.55 of winming
a game over team .

(a) What is the probability that team A will win the series in 6 games?
(b) What is the probability that team A will win the series?

(c) If teams A and B were facing each other in a regional playoff series, which is
decided by winning three out of five games, what 1s the probahility that team
A would win the series?

Solution: (a) b*(6:4,0.55) = (3)0.55(1 — 0.55)5~* = 0.1853

(b) P({team A wins the championship series) is

b*(4:4,0.55) + b*(5;4,0.55) + b*(6;4,0.55) + b*(7; 4,0.55)
= 0.0015 + 0.1647 + 0.1853 + 0.1668 = 0.6083.

(c) P(team A wins the playoff) is

b*(3;3,0.55) + b*(4; 3,0.55) + b*(5;3,0.55)
= 0.1664 + 0.2246 + 0.2021 = 0.5031. A
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Geometric  If repeated independent trials can result in a success with probability p and
Distribution  a failure with probahility ¢ = 1 — p, then the probahility distribution of the
random variable X, the number of the trial on which the first success occurs, is

E{I;p}zmz_lr r=123,....

Example 5.15:| For a certain manufacturing process, it is known that, on the average, 1 in every
100 items 1s defective. What 1s the probahility that the fifth item inspected is the

first defective item found?
Solution: Using the geometric distribution with = 5 and p = 0.01, we have

g(5;0.01) = (0.01)(0.99)* = 0.0096. 1

Example 5,lﬂ:| At a “busy time,” a telephone exchange is very near capacity, so callers have
difficulty placing their calls. It may be of interest to know the number of attempts
necessary in order to make a connection. Suppose that we let p = (L05 be the
probability of a connection during a busy time. We are interested in knowing the
probability that 5 attempts are necessary for a successful call.

Solution: Using the geometric distribution with z = 5 and p = 0.05 vields

P(X = x) = g(5;0.05) = (0.05)(0.95)* = 0.041. o |

(uite often, in applications dealing with the geometric distribution, the mean

and variance are important. For example, in Example 5.16, the erpected number

of calls necessary to make a connection is quite important. The following theorem
states without proof the mean and variance of the geometric distribution.
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Theorem 5.3:| The mean and variance of a random variable following the geometric distribution

are

1 9
p=—and 07° = —
p pe

The binomial distribution is the X~
distribution of the number of successes in a
fixed number of independent Bernoulli
A

trials. 7N

The geometric distribution is the
distribution of the number of trials needed
to get the first success in repeated
independent Bernoulli trials.

The negative binomazal distribution is the

The negative binomial distribution is the distribution of the number of trials needed

to get a fixed number of successes. X
e —

distribution of the number of trials needed

to get the rth success.



Poisson The probability distribution of the Poisson random variable X, representing
Distribution  the number of outcomes occurring in a given time interval or specified region

denoted by i, is 3 (M)

plas M) = — ——,
where A is the average number of outcomes per unit time, distance, area, or
volume and e = 2. 71828 .. ..

Table A.2 contains Poisson probability sums,

P(r; At) Zp:r:.hf}

for selected values of At ranging from 0.1 to 18.0. We illustrate the use of this table
with the following two examples.

T'heorem ﬁ,d:| Both the mean and the variance of the Poisson distribution ple; M) are Af. |
Example 5.17:| During a laboratory experiment, the average number of radioactive particles pass-
ing through a counter in 1 millisecond 1s 4. What is the probahility that 6 particles
enter the counter in a given millisecond?
Solution: Using the Poisson distribution with x = 6 and At = 4 and referring to Table A .2,
we have

p(6:4) =

]

—d 46 b
Ef4 — Zp[a::_d} — Zp[.}:;wi} = (0.88093 — 0.7851 = 0.1042. e
' =0 =0
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Example 5,1ﬂ:| In a certain industrial facility, accidents occur infrequently. It i1s known that the
probability of an accident on any given day 1s 0.005 and accidents are independent
of each other.

(a) What is the probability that in any given period of 400 days there will be an
accident on one day?

(b) What 1s the probability that there are at most three days with an accident?

Solution: Let X be a binomial random variable with n = 400 and p = 0.005. Thus, np = 2.
Using the Polsson approximation,
(a) P(X =1) =221 =0.271 and

3

(b) P(X <3) =3 ¢ 227/21 = (.857. 0.135335+0.270671 +0.27067140.180447
7=

Example 5,?ﬂ:| In a manufacturing process where glass products are made, defects or bubbles
occur, occasionally rendering the piece undesirable for marketing. It 15 known
that, on average, 1 in every 1000 of these items produced has one or more bubbles.
What is the probahility that a random sample of 8000 will yvield fewer than T items
possessing bubbles?

Solution: This is essentially a binomial experiment with n = 8000 and p = 0.001. Since
p 18 very close to 0 and n is quite large, we shall approximate with the Poisson
distribution using

p = (8000)(0.001) = 8.

Hence, if X represents the number of bubbles, we have

G
P(X <7)="" b(x;8000,0.001) ~ p(x:8) = 0.3134.

x=Il
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Chapter 6

Some Continuous Probability
Distributions



Umiform  The density function of the continnous uniform random variable X on the -
Distribution terval [4, B] is

'Hi_‘_'u AE-'TEB-

flz: A, B) = {l]

elsewhere.

F(x)

I I
I I
I I
I I
I I
I I
I I
| |
1 3

0

Figure 6.1: The density function for a random variable on the interval [1, 3].



Example 6.1:| Suppose that a large conference room at a certain company can be reserved for no
more than 4 hours. Both long and short conferences oceur quite often. In fact, it
can be assumed that the length X of a conference has a uniform distribution on

the interval [0, 4].

(a) What 1s the probability density function?
(b) What is the probability that any given conference lasts at least 3 hours?

Solution: (a) The appropriate density function for the uniformly distributed random vari-
able X in this situation is

ﬁﬂ={lﬂ5r5*

4 ]
0, elsewhere.

(b) PIX 23] = [ fdr=

4

=] =
=

Theorem 6.1:| The mean and variance of the uniform distrnibution are

A+ EB E_{B—A}?
p=—s and o =15




Normal Distribution

Normal  The density of the normal random variable X, with mean g and variance o2, is

Distribution

1 —uy?
e HBTE M oo x < oo,

ﬂ{l‘;#rg}: mﬂ_
where m = 3.14159. .. and e = 2. 71828 . ...
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Figure 6.3: Normal curves with pu; < pz and o = 3.

Two normal curves having the same standard deviation but different means. The two
curves are identical in form but are centered at different positions along the horizontal
axis
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Ly = ltg
Figure 6.4: Normal curves with gy = p2 and oy < o3,

Two normal curves with the same mean but different standard deviations
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Figure 6.5: Normal curves with p; < gz and oy < 3.

Two normal curves having different means and different standard deviations



Properties of the normal curve:

1.

The mode, which is the point on the horizontal axis where the
curve is a maximum, occurs at x = \..

The curve is symmetric about a vertical axis through the mean .

The curve has its points of inflection at x = pto; it is concave
downward if p—o<X<p+ o and is concave upward otherwise.

The normal curve approaches the horizontal axis asymptotically
as we proceed in either direction away from the mean.

The total area under the curve and above the horizontal axis is
equal to 1.



Theorem 6.2: | The mean and variance of n(x;pu,o) are p and o, respectively. Hence, the stan-

dard dewviation 18 o.

Areas under the Normal Curve

The curve of any continuous probability distribution or density function is con-
structed so that the area under the curve bounded by the two ordinates r = x,
and r = x; equals the probability that the random variable X assumes a value
between = = x; and x = x;. Thus, for the normal curve in Figure 6.6,

T 1 To 1 a
Plr, < X < 33) = o) dr = —mT(TH g
(a1 Tz) .[._-] n(rip, o) dr v"rﬁtff £ T

is represented by the area of the shaded region.

Tl

X H Xz

Figure 6.6: P(zy < X < x3) = area of the shaded region.



Figure 6.7: P(x, < X < z3) for different normal curves.

of a normal random variable Z with mean 0 and variance 1. This can be done by
means of the transformation

Definition 6.1: | The distribution of a normal random variable with mean 0 and variance 1 1s called
a standard normal distribution.

i

!
|

-

I
I
Iy
A
o
T\ o=t
A\ )
| kY | \
| 'H.l.'ﬂ' | |I
I LY | I|
| W | |
| \ L
N\ B
| \ o
I
_ ' — // I \. 2
Xy X2 U Zy 220

Figure 6.8: The original and transformed normal distributions.




Example 6.2:| Given a standard normal distribution, find the area under the curve that lies
(a) to the right of z = 1.84 and
(b) between z = —1.97 and z = (0.86.

D e o — . — ——

1.84

=

Figure 6.9: Areas for Example 6.2.

Solution: See Figure 6.9 for the specific areas.

(a) The area in Figure 6.9(a) to the right of z = 1.84 is equal to 1 minus the area
in Table A.3 to the left of z = 1.84, namely, 1 — 0.9671 = 0.0329,

(b) The area in Figure 6.9(b) between z = —1.97 and z = (.86 is equal to the
area to the left of z = 0.86 minus the area to the left of z = —1.97. From
Table A3 we find the desired area to be 0.8051 — 0.0244 = 0.7807. N |
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Example G.S:| Given a standard normal distribution, find the value of k such that
(a) P(Z = k) =0.3015 and
(b) Pk < Z < —0.18) = 0.4197.

T,

T

-

L
\

T

\

e,

i,

AN

03015~ 04197
k k -0.18
) (b)

X

—

Figure 6.10: Areas for Example 6.3.

Solution: Distributions and the desired areas are shown in Figure 6.10.

(a) In Figure 6.10(a), we see that the k value leaving an area of 0.3015 to the
right must then leave an area of 0.6985 to the left. From Table A.3 1t follows
that k& = 0.52.

(b) From Table A.3 we note that the total area to the left of —0.18 is equal to
0.4286. In Figure 6.10(b), we see that the area between k and —0.18 15 0.4197,
so the area to the left of & must be 0.4286 — 0.4197 = 0.0089. Hence, from
Table A3, we have k = —2.37. o |



Example 6.4:| Given a random variable X having a normal distribution with g = 50 and & = 10,
find the probabhility that X assumes a value between 45 and 62.

|
|
|
|
|
|
|
|
|
|
|
|
|
|
0

— 05 1.2 -
Figure 6.11: Area for Example 6.4.
Solution: The 2 values corresponding to x; = 45 and x: = 62 are
- 1_[}5[} = —0.5 and 2, = 521_[}50 =1.2.

Therefore,
P45 <= X <62)=P(-0.5 < Z < 1.2).

P(—0.5 < Z < 1.2) i1s shown by the area of the shaded region in Figure 6.11. This
area may be found by subtracting the area to the left of the ordinate z = —0.5
from the entire area to the left of z = 1.2. Using Table A.3, we have

P(45 < X < 62) = P(—0.5 < Z < 1.2) = P(Z < 1.2) — P(Z < —0.5)
— 0.8849 — 0.3085 = 0.5764. A



Example 6.5:/ Given that X has a normal distribution with g = 300 and ¢ = 50, find the
probability that X assumes a value greater than 362.

Solution: The normal probahility distribution with the desired area shaded i1s shown in
Figure 6.12. To find P(X > 362), we need to evaluate the area under the normal
curve to the right of x = 362. This can be done by transforming r = 362 to the
corresponding z value, obtaining the area to the left of z from Table A.3, and then
subtracting this area from 1. We find that

,_ 362-300 .,
50
Hence,
P(X >362) = P(Z > 120) =1 - P(Z < 124) =1 - 08025 = 0.1075.
T
|
I o= 50
|
|
|
|
|
|
- 300 362 X

Figure 6.12: Area for Example 6.5.
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Example G.G:| Given a normal distribution with g = 40 and ¢ = 6, find the value of x that has
(a) 45% of the area to the left and
(b) 14% of the area to the right.

Figure 6.13: Areas for Example 6.6.

Solution: (a) An area of 0.45 to the left of the desired x value is shaded in Figure 6.13(a).
We require a z value that leaves an area of (.45 to the left. From Table A.3
we find P(Z < —0.13) = 0.45, so the desired z value 1z —0.13. Hence,

r=(6)(—0.13) + 40 = 39.22,
(b) In Figure 6.13(b), we shade an area equal to 0.14 to the right of the desired
x value. This time we require a z value that leaves (.14 of the area to the

right and hence an area of 0.86 to the left. Again, from Table A.3, we find
P(Z < 1.08) = 0.86, so the desired z value is 1.08 and

z = (6)(1.08) + 40 = 46.48. 1



Example G.T:I A certain type of storage battery lasts, on average, 3.0 years with a standard

15

Solution:

deviation of 0.5 year. Assuming that battery life is normally distributed, find the
probability that a given battery will last less than 2.3 years.

First construct a diagram such as Figure 6.14, showing the given distribution ol
battery lives and the desired area. To find P(X < 2.3), we need to evaluate the
area under the normal curve to the left of 2.3. This is accomplished by finding the
area to the left of the corresponding 2 value. Hence, we find that

23-3
0.5

and then, using Table A.3, we have

-~
-

= —1.4,

P(X < 2.3) = P(Z < —1.4) = 0.0808.

|
|
|
|
|
|
|
|
|
|
|
|
|
_ |
23 3

Figure 6.14: Area for Example 6.7.



Example 6.8:| An electrical firm manufactures light bulbs that have a life, before burn-out, that
18 normally distributed with mean equal to 800 hours and a standard deviation of
40 hours. Find the probability that a bulb burns between 778 and 834 hours.
Solution: The distribution of ight bulb life is illustrated in Figure 6.15. The 2 values corre- /E\,_ ~”
sponding to x; = 778 and x; = 834 are FN
778 — 800 834 — 800

= —0.55 and 2z, = ———— =0.85. /

3= m 10 /

Hence,

Figure 6.15: Area for Example 6.8.
P(T78 < X < 834) = P(—0.55 < Z < 0.85) = P(Z < 0.85) — P(Z < —0.55)

= 0.8023 - 0.2012 = 0.5111. o |

Example l’llﬂ:' Gauges are used to reject all components for which a certain dimension is not
within the specification 1.50 £ d. It is known that this measurement is normally
distributed with mean 1.50 and standard dewviation 0.2. Determine the value d
such that the specifications “cover” 95% of the measurements.

P(X> 1. =0.02 P(X< 1. =0.97
Solution: From Table A .2 we know that (> 1.5+d)= 0.025 < P(X< 1.5+d)= 0.975

P(X< 1.5-d)= 0.025
P(—1.96 < Z < 1.96) = 0.95,

(L5-d)-p)_ .
Mis o =0.02) Therefore, |
15-d _ (1.504+d) — 1.50 |
pridd }0025 196 = 55— |
020 | | |
p from which we obtain 0.025 |

P 0]_0025 d= [:'DE:]I:IQ‘E} = ().302. 1.108 1.500 1.892 x

-d 106 An illustration of the specifications i1s shown in Figure 6.17. Figure 6.17: Specifications for Example 6.10.

020



Example 6.9:/In an industrial process, the diameter of a ball bearing i1s an important measure-
ment. The buyer sets specifications for the diameter to be 3.0 £ 0.01 cm. The

implication is that no part falling outside these specifications will be accepted. It
is known that in the process the diameter of a ball bearing has a normal distribu-
tion with mean g = 3.0 and standard deviation & = 0.005. On average, how many
manufactured ball bearings will be scrapped?

Solution: The distribution of diameters is illustrated by Figure 6.16. The values correspond-
ing to the specification limits are z; = 2.99 and z, = 3.01. The corresponding 2

values are
=200 = 20and 5 = 2020 = 420, L0 <T0)=1-PL )+ PE <20

Henes, = P(2>20)+ P(Z < -20) =008 = 004,
P(2.99 < X < 3.01) = P(-2.0 < Z < 2.0).

From Table A.3, P(Z < —2.0) = 0.0228. Due to symmetry of the normal distribu-
tion, we find that

P(Z < —2.0) + P(Z > 2.0) = 2(0.0228) = 0.0456.

As a result, it is anticipated that, on average, 4.56% of manufactured ball bearings
will be scrapped. .

2.99 3.0 3.01

Figure 6.16: Area for Example 6.9.
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Example 6.1 1:| A certain machine makes electrical resistors having a mean resistance of 40 ohms
and a standard deviation of 2 ohms. Assuming that the resistance follows a normal
distribution and can be measured to any degree of accuracy, what percentage of
resistors will have a resistance exceeding 43 ohms?

Solution: A percentage is found by multiplying the relative frequency by 100%. Since the
relative frequency for an interval is equal to the probability of a value falling in the
interval, we must find the area to the right of # = 43 in Figure 6.18. This can be
done by transforming x = 43 to the corresponding =z value, obtaining the area to
the left of 2z from Table A.3, and then subtracting this area from 1. We find

_ 43-40
— -

1.5.

13
I

Therefore,

P(X >43) = P(Z > 1.5) =1 — P(Z < 1.5) = 1 — 0.9332 = 0.0668.

Hence, 6.68% of the resistors will have a resistance exceeding 43 ohms. - |

T

I

| 6 =20

!

|

|

I

I

I

I

1

:

20 a3 X

Figure 6.18: Area for Example 6.11.
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Example 6.12:| Find the percentage of resistances exceeding 43 ohms for Example 6.11 if resistance
1s measured to the nearest ohm.

Solution: This problem differs from that in Example 6.11 in that we now assign a measure-
ment of 43 ohms to all resistors whose resistances are greater than 42.5 and less
than 43.5. We are actually approximating a discrete distribution by means of a
continous normal distribution. The required area is the region shaded to the right

of 43.5 in Figure 6.19. We now find that

43.5 — 40

z=——""=1.75.

2

Hence,
P(X >435)=P(Z =1.75)=1—- P(Z < 1.75) =1 — 0.9599 = 0.0401.

Therefore, 4.01% of the resistances exceed 43 ohms when measured to the nearest
ohm. The difference 6.68% — 4.01% = 2.67% between this answer and that of
Example 6.11 represents all those resistance values greater than 43 and less than
43.5 that are now being recorded as 43 ohms. o |

o

8

43.5

Figure 6.19: Area for Example 6.12.
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Example 6.13:| The average grade for an exam i1s 74, and the standard deviation is 7. If 12% of
the class 1s given As, and the grades are curved to follow a normal distribution,
what 1s the lowest possible A and the highest possible B?

Solution: In this example, we begin with a known area of probability, find the 2 value, and
then determine x from the formula r = g2 + . An area of 0.12, corresponding
to the fraction of students receiving As, 15 shaded in Figure 6.20. We require a =
value that leaves (.12 of the area to the right and, hence, an area of (.88 to the
left. From Table A3, P(Z < 1.18) has the closest value to (.88, so the desired =

value 15 1.18. Hence,
r=(T7)(1.18) + 74 = 82.26.

Therefore, the lowest A 1s 83 and the highest B 1s 82, A

Figure 6.20: Area for Example 6.13. Figure 6.21: Area for Example 6.14.
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Gamma and Exponential Distributions

Definition 6.2: | The gamma function 1s defined by

['e) = / r* e dr, for o = 0.
0

The following are a few simple properties of the gamma function.
(a) '(n) =(n—1)(n —2).--(1)I'(1), for a positive integer n.

To see the proof, integrating by parts with u = ®~! and dv = ¢ * dir, we obtain
FNa)=—e" 1‘“‘_1“;“ +[] e Fla—1)r*? dr = (o — 1}[] r* 2e T dzr,

for & > 1, which yields the recursion formula

['(a) = (e —1)T(a—1).

Gamma  The continnous random variable X has a gamma distribution, with param-
Distribution  eters & and 3, if its density function is given by

1 a—1_—=x/83
F=ra e e h, x = [,

(0, elsewhere,

flz; e, B) = {

where a = 0 and 3 = (.

21



) specific number of events is the parameter a in the gamma density function

a (alpha) is known as the shape parameter, while b (beta) is referred to as the
1 scale parameter
1

05

f —— —|-- 1
0 1 2 3 4 5 B

Figure 6.28: Gamma distributions.

Faxponential - The contimious random variable X has an exponential distribution, with
Distribution  parameter A, if its density function is given by

1.
flz:8) = { 3¢

ﬂ_. elsewhere,

I | )

where 3 = (.

22



Theorem 6.4: | The mean and variance of the gamma distribution are

. 2 QZ
iw=afand o° = af”.

The proot of this theorem 1s found in Appendix A.26.

Corollary 6.1:| The mean and variance of the exponential distribution are

p= /3 and 6% = g%

Example 6.17: Suppose that a systein contains a certain type of component whose fime. in years, to
failure is given by I. The random variable T is modeled nicely by the exponential
distribution with mean time to failure J = 5. If 5 of these components are installed
in different systems. what 1s the probability that at least. 2 are still functioning at
the end of § years?

Solution: The probability that a given component 1s still functioning after 8§ years 1s given
by

X

e~ 05t = =815 o5 0.2.

| =

P(T>8) =

] |

A
Jg

Let X represent the number of components functioning after 8 years. Then using
the binomial distribution.

5 1
P(X 22) = YWz 5,02)=1 - Yo(z: 5,02) =1. 0.7373=0.2627.

Xx=92 =i}

23



Example 6.18:

Solution:

24

Suppose that telephone calls arriving at a particular switchboard follow a Poisson
process with an average of 5 calls coming per minute. What is the probability that
up to a minute will elapse by the time 2 calls have come in to the switchboard?
The Poisson process applies, with time until 2 Poisson events following a gamma
distribution with 4 = 1/5 and « = 2. Denote by X the time in minutes that
transpires before 2 calls come. The required probability is given by

1 1
P(X < l)=/ -ﬁ%m(' L ¢Lr=25/ ze™™ de =1 —e (1 + 5) = 0.96.
0

0

While the origin of the gamma distribution deals in time (or space) until the
occurrence of « Poisson events, there are many instances where a gamma distri-
bution works very well even though there is no clear Poisson structure. This is
particularly true for survival time problems in both engineering and biomedical
applications.



Example 6.21:| Consider Exercise 3.31 on page 9. Based on extensive testing, it is determined
that the time Y in years before a major repair is required for a certain washing
machine is characterized by the density function

p—ui
flw) {!' » 920,

0, elsew hoere,

Solutron: Consider the cumulative distribution function F(y) for the exponential distribution,

v
F(y) = lf e B gt — 1 — o8B
-H ]
Then
P(Y >6) =1 F(6) — e * — 0.2231.

Thus, the probability that the washing machine will require major repair after year
six is 0.223. Of course, it will require repair before year six with probability 0.777.
Thus, one might conclude the machine is not really a bargain. The probability
that a major repair is necessary in the first year is

PY <1)=1—e"Y1=1_0.770 = 0.221.

25
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3.31 Based on extensive testing, it is determined by
the manufacturer of a washing machine that the time
¥ (in years) befbore a major repair is required is char-
acterized by the probability density function

v, gz,
flz) = {]i elsewhere.

(a) Critics would certainly consider the product a bar-
gain if it 15 unlikely to require a major repair before
the sixth year. Comment on this by determining
P(Y > 6).

(b) What is the probability that a major repair occurs
in the first year?

(a) Fory = 0, F(y) = %fny e dy =1—e¥. So, P(Y > 6) = e %% =0.2231. This
probability certainly cannot be considered as “unlikely.”

(b) P(Y < 1) =1—e " =0.2212, which is not so small either.



Chi-Squared  The continuous random variable X has a chi-squared distribution, with »
Distribution  degrees of freedom, if its density function 1s given by

mﬂ:ufﬂl_ l'f.'_T"llz. T = ﬂ.
f(;v) = { FPTCD
0, elsewhere,

Theorem 6.5; | The mean and variance of the chi-squared distribution are

i=v and o = 2u.
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Definition 6.3: | A beta function is defined by

E{n._,ﬂ}=fnl:a:“‘l{1 z)P~tdr w for av, 3 = 0,

o+

where I'(@) 1s the gamma function.

Heta Distribution  The contimious random variable X has a beta distribution with parameters
a = 0 and g = 0 1if its density function 1s given by

flz) = W:a:ﬂ "1—z) Y, 0<z<],
elsewhere.

Note that the uniform distribution on (0, 1) is a beta distribution with parameters
a=1and §=1

Theorem 6.6: | The mean and vanance of a beta distribution with parameters o and 5 are

i do? — a3
at+tp i (a+ B a+B+1)

J|'_,|!_:

respectively.

For the uniform distribution on (0, 1), the mean and variance are

11 B |;1;|{1 _ 1
n=qry=gando = A+02(l+1+1) 12°
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The continuous random variable X has a lognormal distribution if the ran-
dom variable ¥ = In(X) has a normal distribution with mean p and standard

Lognormal
Distribution
deviation . The resulting density function of X 1s
i . 2
. _Eﬂ'l]nkrl_lu] 5 I } EI-.

2ror
x = (.

flzip,o) = 0

ffx)

Ilaf-\\'

06 / \ u="0
| o=1
|
|
|
|

0.4 | \
| ,
| N\
| \\\
| ———2

GE —l f//'f X\_\';:::_____ u= 1
|/ ~—— —o=1_
[/ T
[/ —_ —
'/"III 1 1 1 T —— X
0 1 2 3 4 5
Figure 6.20: Lognormal distributions.

The mean and variance of the lognormal distribution are

_1).

I . E E s -
p=e"*" /2 and g% = 7 (7
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Example 6.22:| Concentrations of pollutants produced by chemical plants historically are known to
exhibit behavior that resembles a lognormal distribution. This is important when
one considers issues regarding compliance with government regulations. Suppose
it 1s assumed that the concentration of a certain pollutant, in parts per million,
has a lognormal distribution with parameters p = 3.2 and ¢ = 1. What is the
probability that the concentration exceeds 8 parts per million?

Solution: Let the random variable X be pollutant concentration. Then

P(X >8) =1-P(X <8).

Since In(X) has a normal distribution with mean p = 3.2 and standard dewviation

a=1,

In(8) — 3.2
1

P(X <8) = [ } = ®(—1.12) = 0.1314.

Example 6.23: | The life, in thousands of miles, of a certain type of electronic control for locomotives
has an approximately lognormal distribution with g = 5.149 and o = 0.737. Find
the 5th percentile of the life of such an electronic control.

Solution: From Table A3, we know that P(£ < —1.645) = 0.05. Denote by X the life
of such an electronic control. Since In(X') has a normal distribution with mean
i = 5149 and & = 0.737, the 5th percentile of X can be caleulated as

In(x) = 5.149 + (0.737)( —1.645) — 3.937.

Hence, » = 51.265. This means that only 5% of the controls will have lifetimes less
than 51,265 miles. o |
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Weibull  The continuous random variable X has a Weibull distribution, with param-

[stribution  eters o and 3, if its density function is given by
o A1 —cexB
afz®le ™™ =0,
flria, 3) =
0, elsewhere,

where o > 0 and 3 = (.

Theorem 6.8: | The mean and vanance of the Weitbull distribution are

2
p=a YT (1 - %) and o2 = a~2/F {T (1 - %) - lr (1 N 1{)] } |
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Figure 6.30: Weibull distributions (e = 1).

cdf for Weibull  The ecumulative distribution function for the Weibull distribution 1s
Distribution  given by

Fiz)=1-¢", forz >0,

for ¢ = 0 and 3 = 0.

Example Ifi,".-":-i:| The length of life X, in hours, of an item in a machine shop has a Weibull distri-

bution with o = 0.01 and 5 = 2. What is the probability that it fails before eight
hours of usage?

Solution: P(X < 8) = F(8) =1 — ¢~ ("01& — 1 _ 0,527 = 0.473. N |



Ex:

In a certain city, the daily consumption of
electric power, in millions of kilowatt-hours, is a
random variable X having a gamma distribution
with 1 = 6 and variance o2 = 12.

(a) Find the values of a and B.

(b) Find the probability that on any given day the
daily power consumption will exceed 12
million kilowatthours.




* Answer:

(@)u=ap=6
oZ=0af?=12
So, B =2 and then a = 3.

(b) (X >12) = & [ 2?e /2 da

I I J o o [ %] ®
P(X >12) = 7 [-20¢*/? — 8ze ™/ — 16e 2|7 = 25¢° = 0.0620
i)
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* The length of time for one individual to be
served at a cafeteria is a random variable
having an exponential distribution with a
mean of 4 minutes. What is the probability
that a person is served in less than 3 minutes
on at least 4 of the next 6 days?

P(X <3)=1[le/tde= —e /| =1—e3*=05276

4

P(Y >4) = 5 b(y; 6,1 — e 3/1) = (£)(0.5276)1(0.4724) + (3)(0.5276)%(0.4724)
r=
F(2)(0.5276)% = 0.3968.



End of Chapter 6



