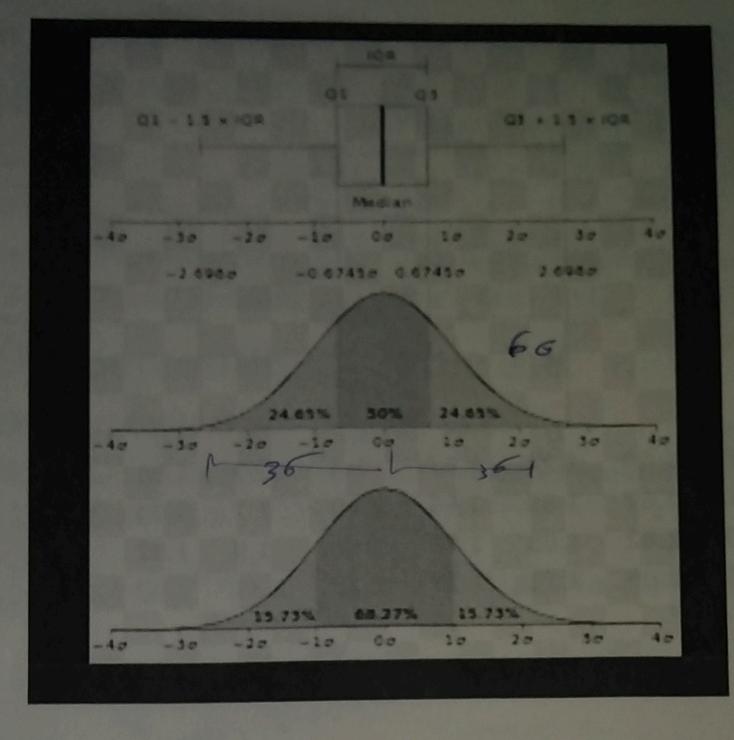


Definitions:

- The lower half of a data set is the set of all values that are to the left of the median value when the data has been put into increasing order.
- The upper half of a data set is the set of all values that are to the right of the median value when the data has been put into increasing order.
- The first quartile, denoted by Q_1 , is the median of the lower half of the data set. This means that about 25% of the numbers in the data set lie below Q_1 and about 75% lie above Q_1 .
- The third quartile, denoted by Q_3 , is the median of the upper half of the data set. This means that about 75% of the numbers in the data set lie below Q_3 and about 25% lie above Q_3 .

23



Le 15

تنعق عندال 1.5

IPR-+36

لعين

25 (n+1)+025 Location value (CBO of Find the first and third quartiles of the data set {3, 7, 8, 5, 12, 14, 21, 13, 16, 18}. in increasing order: 3, 5, 7, 8, 12, 13, 14, 16, 18, 21. Location of Q1: (10+1)*0.25=2.75 n4 Interpolation Q1=value of location 2+0.75*(value of location 3- value of location 2) Q1=5+0.75*(7-5)=6.5 Location of Q2: (10+1)*0.5=5.5 Q2= (12+13)/2=12.5 Location of Q3: (10+1)*0.75=8.25 25 10361 Q3=value of location 8+0.25*(value of location 9- value of location 8) Q3=16+0.25*(18-16)=16.5 Inter quartile range (IQR)= Q3-Q1 9.3-9.1 Q 3 UL= 16.5-6.5=10 > 7 9 K UL= 16.5+ (1.5*10) = 31.5 > Q3 > L(n+1)+0.75 1 11+0.75=8.25 LL=6.5-(1.5*10)=31.5 Q. 1 | 1.5*10) = -8.5 | 1. point

4) Box-and-Whisker Plot or Box Plot -You have to know to estimate the percentile and quartile

e.g., Nicotine content was measured in a random sample of 40 cigarettes. The data are displayed in Table 1.8.

Table 1.8: Nicotine Data for Example 1.5

			oune i				1.07
1.09	1.92	2.31	1.79	2.28	1.74	1.47	1.51
	1 24	1.58	2.03	1.70	2.17	2.55	2.11
1.86	1.90	1.68	1.51	1.64	0.72	1.69	1.85
1.82			1.88	2.08	1.67	1.37	1.93
1.40	1.64	2.09	1.75	1.63	2.37	1.75	1.69

In order

0.72 0.85 1.09							CONN 1		
-	72	3	18	5	5	7	8	158	1.63
0.72	0.85	1.09	1.24	1.37	1.4	1.47	1.51	1.50	
11000	0.03	1.05		4.60	1 60	17	1.74	1.75	1.75
11.64	1.64	1.67	1.68	1.69	1.05	1.,		1 02	1973
2 1 79	1 79	1 82	1 85	1.86	1.88	1.9	1.92	1.55	
	2.08	1.02	1.00		2.20	2 21	2 37	2.46	2.55
2.03	2.08	2.09	2.11	2.17	2.28	2.51	2.57		
31									

27

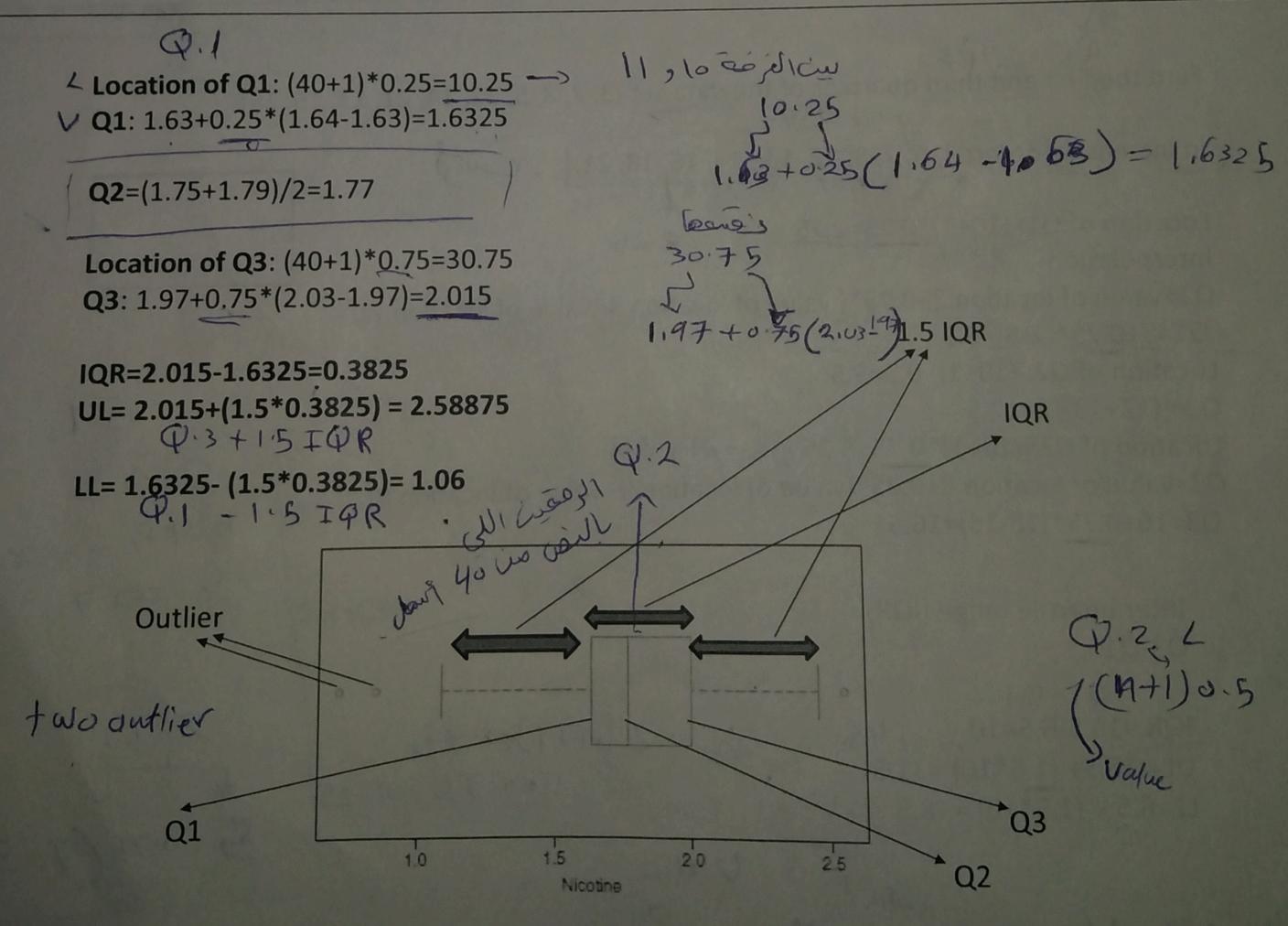
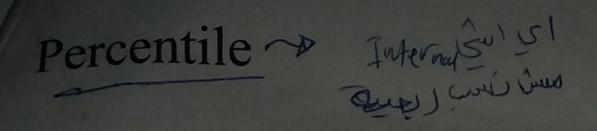


Figure 1.9: Box-and-whisker plot for Example 1.5.



12) 3 11 jul & 11 Jones

• Find 62% percentile of {3, 7, 8, 5, 12, 14; 21, Location 3/5/7/8/12/13/14/16/18/21 13, 16, 18}.

Location of 62% percentile is (n+1)*0.62=6.82

62% percentile=Value of location 6+0.82*(Value of location 7-Value of location 6)=13+0.82*(14-13)=13.82

134082/14-18

Find 29% percentile of Table 1.8 n=40

Location of 29% percentile is (40+1)*0.29=11.89

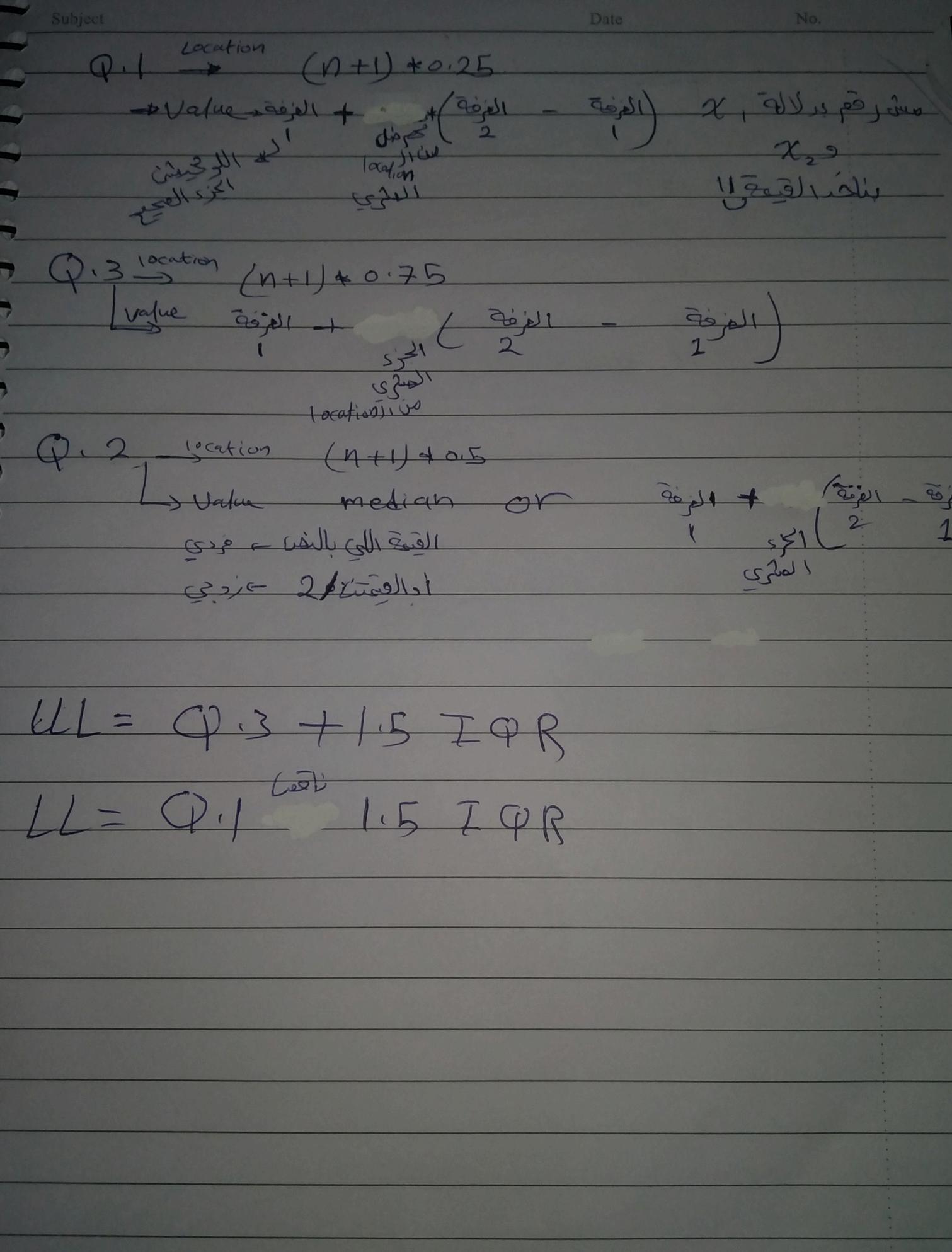
29% percentile=Value of location 11+0.89*(Value of location 12-Value of location 11)=1.64+0.29*(1.64-1.64)=1.64

عن الراق المحاصر المرقة عن الرقة المرقة الم

1 PH+0.89 (6)

29

Slide 22 Jewick Der also III frequency/12003/51 1) f = B 25 = 40 = 0.125 RA = 1-0.5-0.L. (U



اليان سليمان احمد ياسين

Probability and Statistics

مه عمان احتمالیه حدل معین

Chapter 2

Department of Industrial Engineering

Sample singulary space singulary space singulary space singulary space singulary spaces spaces singulary spaces s

- Statisticians use the word experiment to describe any process that generate a set of data.
- Example of a statistical experiment is the tossing of a coin.

S ~ Sample Space

الففاء العبني

aules Diasil element les Mis (so lipse assesso

The set of all possible outcomes of a statistical experiment is called the sample Definition 2.1: space and is represented by the symbol S.

> Each outcome in a sample space is called an element or a member of the sample space, or simply a sample point. If the sample space has a finite number of elements, we may list the members separated by commas and enclosed in braces. Thus, the sample space S, of possible outcomes when a coin is inpped, may be written

COIN = S (H.T).

where H and T correspond to heads and tails, respectively.

Lesling, reisi N Estrellaviol cello iso lo 50 doi la 10 10 - M - W - WIED 11

1

Example 2.1: Consider the experiment of tossing a die. If we are interested in the number that shows on the top face, the sample space is

 $S_1 = \{1, 2, 3, 4, 5, 6\}.$

If we are interested only in whether the number is even or odd, the sample space is simply

النزد (even, odd). حر النزد

** More than one sample space can be used to describe the outcomes of an experiment.

In some experiment it is helpful to list the elements of the sample space by means of a tree diagram.

> Graph retize use lausen space complerated

4

التجاز بالإحمانية نسطيع التمسر عنفا بأغرض طريقه مله ١١ كالحر النر رص ١-١

Example 2.2 An experiment consists of flipping a coin and then flipping it a second time if a head occurs. If a tail occurs on the first flip, then a die is tossed once. To list the elements of the sample space providing the most information, we construct the tree diagram of Figure 2.1. The various paths along the branches of the tree give the distinct sample points. Starting with the top left branch and moving to the right along the first path, we get the sample point IIII, indicating the possibility that heads occurs on two successive flips of the coin. Likewise, the sample point T3 indicates the possibility that the coin will show a tail followed by a 3 on the toss of the die. By proceeding along all paths, we see that the sample space is

 $S = \{HH, HT, T1, T2, T3, T4, T5, T6\}.$

dipgram dipgram complecated sample space vital

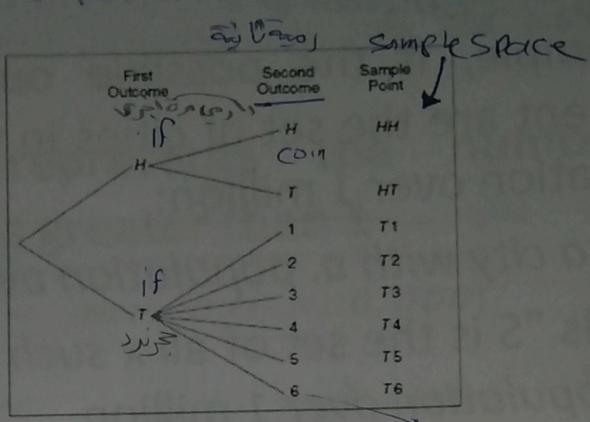


Figure 2.1: Tree diagram for Example 2.2.

5

Propability: Unison solyphaste Sample space

المعنى عسورات مساورة عورات مساورة المعاددة المع

Example 2.3: Suppose that three items are selected at random from a manufacturing process. Each item is inspected and classified defective, <u>D</u>, or nondefective, <u>N</u>. To list the elements of the sample space providing the most information, we construct the tree diagram of Figure 2.2. Now, the various paths along the branches of the tree give the distinct sample points. Starting with the first path, we get the sample point <u>DDD</u>, indicating the possibility that all three items inspected are defective. As we proceed along the other paths, we see that the sample space is

 $S = \{DDD, DDN, DND, DNN, NDD, NDN, NND, NNN\}.$

for too items

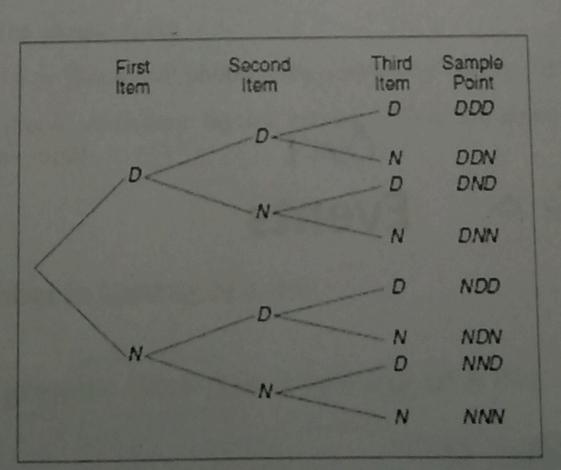


Figure 2.2: Tree diagram for Example 2.3.

(N) 8 mm

فالله المرابع المرابع المولاد المولى المرابع المولى المرابع ا

A rule plient element Telis ice évalement

• Sample spaces with a large or infinite number of sample points are best described by a statement or rule.

• For example, if the possible outcomes of an experiment are the set of cities in the world with

a. population over 1 million:

 $S = \{x \mid x \text{ is a city with a. population over 1 million}\},$ which reads "S is the set of all x such that x is a city with a population over 1 million.

Us a city with al

Sample 1105/2000 Events

7

Definition 2.2: An event is a subset of a sample space.

 $S = \{DDD, DDN, DND, DNN, NDD, NDN, NND, NNN\}.$

• Event B represents the number defectives is greater than 1 ->

 $= \{DDN, DND, NDD, DDD\}$ $S = \{1/2/3/4/5/6\}$ like more than

at less one > villes 3 de 7 = A = 12,1, vient lemes 210 8

at least = = 3DNN/NDN/NND/NNNS two N

والمكار و المحار المحار و ال

electronic component, then the event A that the component fails before the end of the fifth year is the subset $A = \{t \mid 0 \le t < 5\}$. Dolalmous S 200161

Definition 2.3: The complement of an event A with respect to S is the subset of all elements of S that are not in A. We denote the complement of A by the symbol A'.

Example 2.6: Consider the sample space

 $S = \{\text{book, cell phone, mp3, paper, stationery, laptop}\}.$

Let $A = \{book, stationery, laptop, paper\}$. Then the complement of A is A' ={cell phone, mp3}.

S={ 1,2,3,4,5,6}

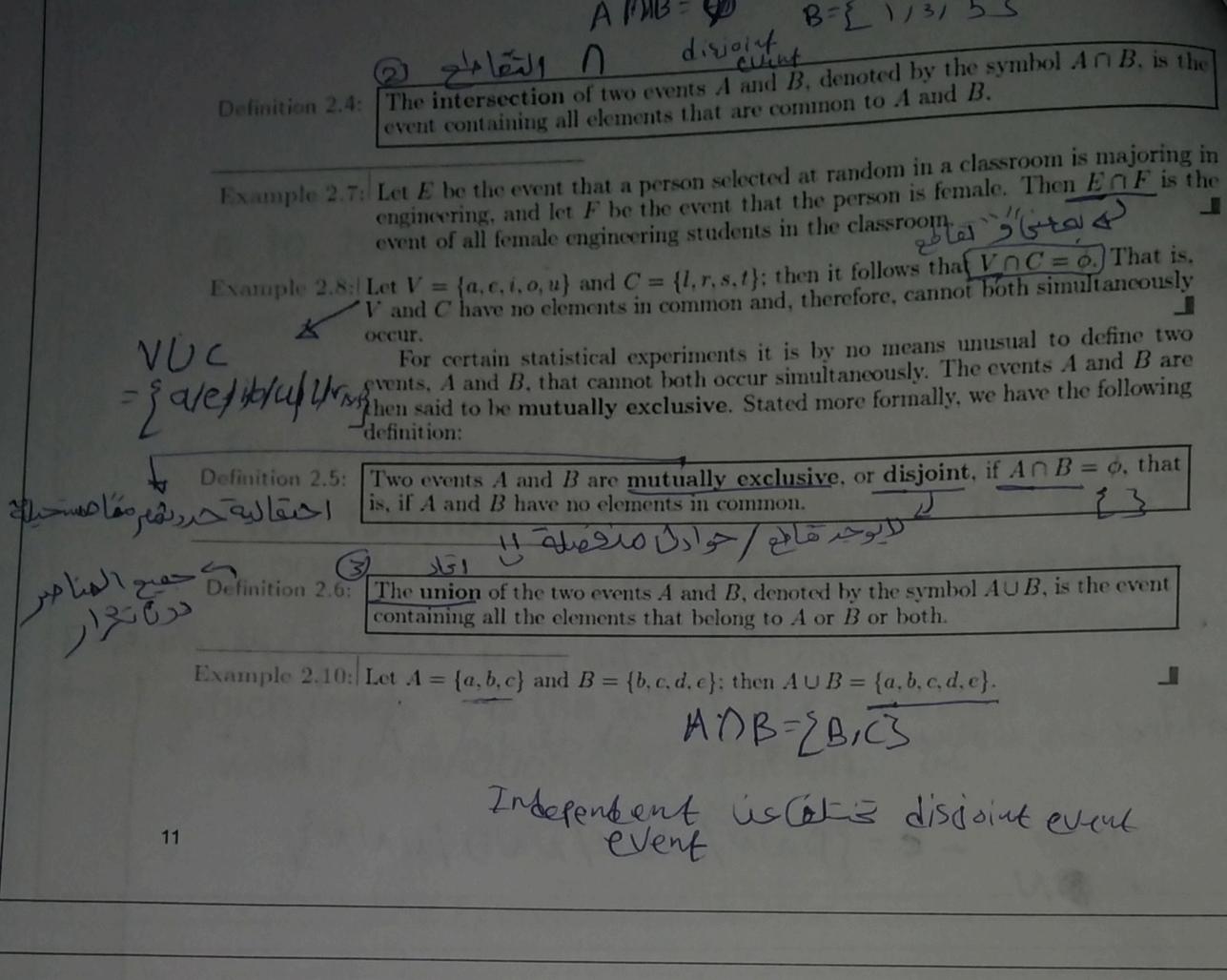
If event A is the even number in tossing of a die

 $A=\{2,4,6\}, A'=\{1,3,5\}$

more than If event B is a number greater than 3 in a tossing of a die

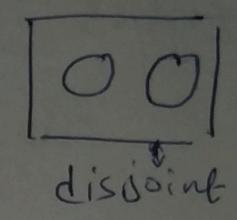
 $B=\{4,5,6\}, B'=\{1,2,3\}$ 3 (10 25 i

review (1003) 3)12



Example 2.12: If $M = \{x \mid 3 < x < 9\}$ and $N = \{y \mid 5 < y < 12\}$, then $M \cup N = \{z \mid 3 < z < 12\}.$ $M \cup N = \{z \mid 3 < z < 12\}.$ $M \cup N = \{z \mid 3 < z < 12\}.$ $M \cup N = \{z \mid 3 < z < 12\}.$ $M \cup N = \{z \mid 3 < z < 12\}.$ $M \cup N = \{z \mid 3 < z < 12\}.$ $M \cup N = \{z \mid 3 < z < 12\}.$ $M \cup N = \{z \mid 3 < z < 12\}.$ $M \cup N = \{z \mid 3 < z < 12\}.$ $M \cup N = \{z \mid 3 < z < 12\}.$ $M \cup N = \{z \mid 3 < z < 12\}.$ $M \cup N = \{z \mid 3 < z < 12\}.$ $M \cup N = \{z \mid 3 < z < 12\}.$ $M \cup N = \{z \mid 3 < z < 12\}.$ $M \cup N = \{z \mid 3 < z < 12\}.$ $M \cup N = \{z \mid 3 < z < 12\}.$ $M \cup N = \{z \mid 3 < z < 12\}.$ $M \cup N = \{z \mid 3 < z < 12\}.$ $M \cup N = \{z \mid 3 < z < 12\}.$ $M \cup N = \{z \mid 3 < z < 12\}.$ $M \cup N = \{z \mid 3 < z < 12\}.$ $M \cup N = \{z \mid 3 < z < 12\}.$ $M \cup N = \{z \mid 3 < z < 12\}.$ $M \cup N = \{z \mid 3 < z < 12\}.$ $M \cup N = \{z \mid 3 < z < 12\}.$ $M \cup N = \{z \mid 3 < z < 12\}.$ $M \cup N = \{z \mid 3 < z < 12\}.$ $M \cup N = \{z \mid 3 < z < 12\}.$ $M \cup N = \{z \mid 3 < z < 12\}.$ $M \cup N = \{z \mid 3 < z < 12\}.$ $M \cup N = \{z \mid 3 < z < 12\}.$ $M \cup N = \{z \mid 3 < z < 12\}.$ $M \cup N = \{z \mid 3 < z < 12\}.$ $M \cup N = \{z \mid 3 < z < 12\}.$ $M \cup N = \{z \mid 3 < z < 12\}.$ $M \cup N = \{z \mid 3 < z < 12\}.$ $M \cup N = \{z \mid 3 < z < 12\}.$ $M \cup N = \{z \mid 3 < z < 12\}.$ $M \cup N = \{z \mid 3 < z < 12\}.$ $M \cup N = \{z \mid 3 < z < 12\}.$ $M \cup N = \{z \mid 3 < z < 12\}.$ $M \cup N = \{z \mid 3 < z < 12\}.$ $M \cup N = \{z \mid 3 < z < 12\}.$ $M \cup N = \{z \mid 3 < z < 12\}.$ $M \cup N = \{z \mid 3 < z < 12\}.$ $M \cup N = \{z \mid 3 < z < 12\}.$ $M \cup N = \{z \mid 3 < z < 12\}.$ $M \cup N = \{z \mid 3 < z < 12\}.$ $M \cup N = \{z \mid 3 < z < 12\}.$ $M \cup N = \{z \mid 3 < z < 12\}.$ $M \cup N = \{z \mid 3 < z < 12\}.$ $M \cup N = \{z \mid 3 < z < 12\}.$ $M \cup N = \{z \mid 3 < z < 12\}.$ $M \cup N = \{z \mid 3 < z < 12\}.$ $M \cup N = \{z \mid 3 < z < 12\}.$ $M \cup N = \{z \mid 3 < z < 12\}.$ $M \cup N = \{z \mid 3 < z < 12\}.$ $M \cup N = \{z \mid 3 < z < 12\}.$ $M \cup N = \{z \mid 3 < z < 12\}.$ $M \cup N = \{z \mid 3 < z < 12\}.$ $M \cup N = \{z \mid 3 < z < 12\}.$ $M \cup N = \{z \mid 3 < z < 12\}.$ $M \cup N = \{z \mid 3 < z < 12\}.$ $M \cup N = \{z \mid 3 < z < 12\}.$ $M \cup N = \{z \mid 3 < z < 12\}.$ $M \cup N = \{z \mid 3 < z < 12\}.$ $M \cup N = \{z \mid 3 < z < 12\}.$ $M \cup N = \{z \mid 3 < z < 12\}.$ $M \cup N = \{z \mid 3 < z < 12\}.$ $M \cup N = \{z \mid 3 < z < 12\}.$ $M \cup N = \{z$

 The relationship between events and the corresponding sample space can be illustrated graphically by means of Venn diagrams.



13

The relationship between events and the corresponding sample space can be illustrated graphically by means of Venn diagrams. In a Venn diagram we let the sample space be a rectangle and represent events by circles drawn inside the rectangle. Thus, in Figure 2.3, we see that

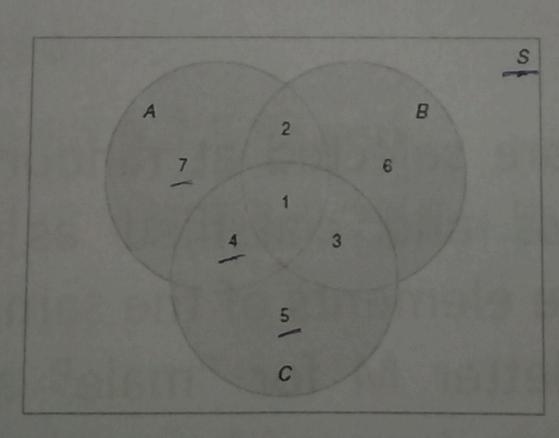
$$A \cap B = \text{regions 1 and 2},$$

 $B \cap C = \text{regions 1 and 3},$

$$A = \left\{ \frac{1}{2}, \frac{1}{4}, \frac{7}{5} \right\}$$

$$B = \left\{ \frac{1}{2}, \frac{2}{4}, \frac{1}{5} \right\}$$

$$C = \left\{ \frac{1}{3}, \frac{3}{4}, \frac{1}{5} \right\}$$



event 11 Mai jul 1

Figure 2.3: Events represented by various regions.

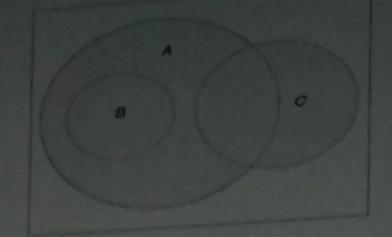


Figure 2.4: Events of the sample space S.

In Figure 2.4, we see that events A, B, and C are all subsets of the sample space S. It is also clear that event B is a subset of event A; event $B \cap C$ has no elements and hence B and C are mutually exclusive; event $A \cap C$ has at least one element; and event $A \cup B = A$. Figure 2.4 might, therefore, depict a situation where we select a card at random from an ordinary deck of 52 playing cards and observe whether the following events occur:

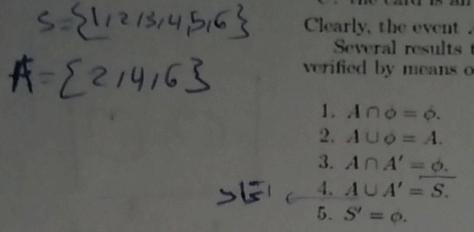
A: the card is red.

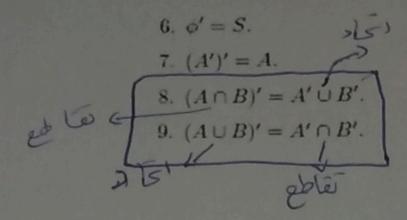
B: the card is the jack, queen, or king of diamonds,

verified by means of Venn diagrams, are as follows:

C: the card is an ace.

Clearly, the event $A \cap C$ consists of only the two red aces. Several results that follow from the foregoing definitions, which may easily be





15

• Exercise 2.7:

Four students are selected at random from a chemistry class and classified as male or female. List the elements of the sample space S₁ using the letter M for "male" and F for "female." Define a second sample space S2 where the elements represent the number of females selected.

S₁={MMMM,MMMF,MMFM,MFMM, FMMM,MMFF,MFMF,MFFM,FMFM,FFMM, FMMF,MFFF,FMFF,FFMF,FFFM,FFFF}

S₂ = {0, 1, 2, 3, 4}

Sample space

Sample space

Si up Bours

Senale 3000

Senal

tree free

17

• Exercise 2.14:

If $S = \{0,1,2,3,4,5,6,7,8,9\}$ and $A = \{0,2,4,6,8\}$, $B = \{1,3,5,7,9\}$, $C = \{2,3,4,5\}$, and

$$D = \{1, 6, 7\}$$

- (a) $A \cup C := \{0,2,3,4,5,6,8\}.$
- (b) $A \cap B = \phi$.
- (c) C'; = {0,1,6,7,8,9}.
- (d) $(C' \cap D) \cup B$; $C' \cap D = \{1,6,7\}$, $(C' \cap D) \cup B = \{1,3,5,6,7,9\}$
- (e) $(S \cap C)'$; $C' = \{0,1,6,7,8,9\}$. $(5 \cup C)$
- (f) AnCnD': {2,4}, so AnC nD' = {2,4}.

Rule 2.1: If an operation can be performed in n_1 ways, and if for each of these ways a second operation can be performed in n_2 ways, then the two operations can be performed together in n_1n_2 ways,

thrown once?

عنارات عاملة = خيارات به حيالة عاملة عامل

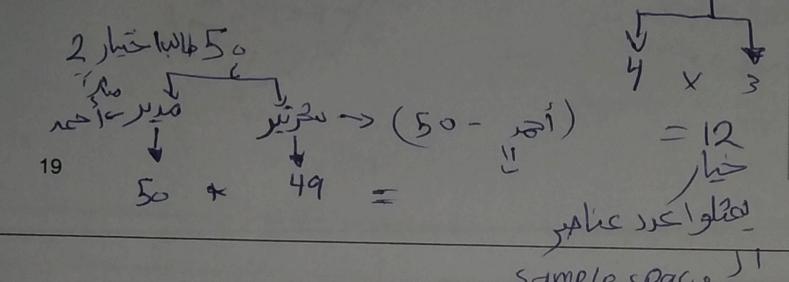
Solution: The first die can land face-up in any one of $n_1 = 6$ ways. For each of these 6 ways, the second die can also land face-up in $n_2 = 6$ ways. Therefore, the pair of dice can land in $n_1 n_2 = (6)(6) = 36$ possible ways.

Example 2.14: A developer of a new subdivision offers prospective home buyers a choice of Tudor, rustic, colonial, and traditional exterior styling in ranch, two-story, and split-level floor plans. In how many different ways can a buyer order one of these homes?

Solution:

Since $n_1 = 4$ and $n_2 = 3$, a buyer must choose from

 $n_1 n_2 = (4)(3) = 12$ possible homes.



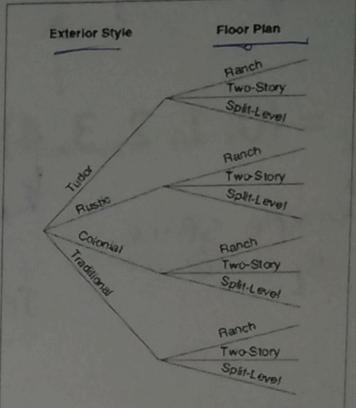


Figure 2.6: Tree diagram for Example 2.14.

Q.

Example 2.15: If a 22-member club needs to elect a chair and a treasurer, how many different ways can these two to be elected?

22 Solution Chair & treasure

Solution: For the chair position, there are 22 total possibilities. For each of those 22 possibilities, there are 21 possibilities to elect the treasurer. Using the multiplication rule, we obtain $n_1 \times n_2 = 22 \times 21 = 462$ different ways.

The multiplication rule, Rule 2.1 may be extended to cover any number of operations. Suppose, for instance, that a customer wishes to buy a new cell phone and can choose from $n_1 = 5$ brands, $n_2 = 5$ sets of capability, and $n_3 = 4$ colors. These three classifications result in $n_1n_2n_3 = (5)(5)(4) = 100$ different ways for a customer to order one of these phones. The generalized multiplication rule covering k operations is stated in the following.

Rule 2.2:

If an operation can be performed in n_1 ways, and if for each of these a second operation can be performed in n_2 ways, and for each of the first two a third operation can be performed in n_3 ways, and so forth, then the sequence of k operations can be performed in $n_1 n_2 \cdots n_k$ ways.

Example 2.16: Sam is going to assemble a computer by himself. He has the choice of chips from two brands, a hard drive from four, memory from three, and an accessory bundle from five local stores. How many different ways can Sam order the parts?

Solution: Since $n_1 = 2$, $n_2 = 4$, $n_3 = 3$, and $n_4 = 5$, there are

 $n_1 \times n_2 \times n_3 \times n_4 = 2 \times 4 \times 3 \times 5 = 120$

different ways to order the parts.

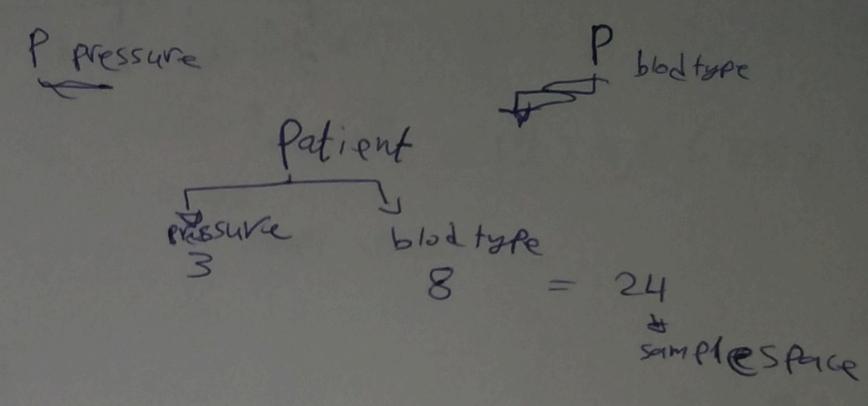
5×5×4 = 100 U)

brand H.D menocal

2 4 4 4 3 45

= 120

2.22 In a medical study patients are classified in 8 ways according to whether they have blood type AB^+ , AB^- , A^- , A^- , B^+ , B^- , O^+ , or O^- , and also according to whether their blood pressure is low, normal, or high. Find the number of ways in which a patient can be classified.

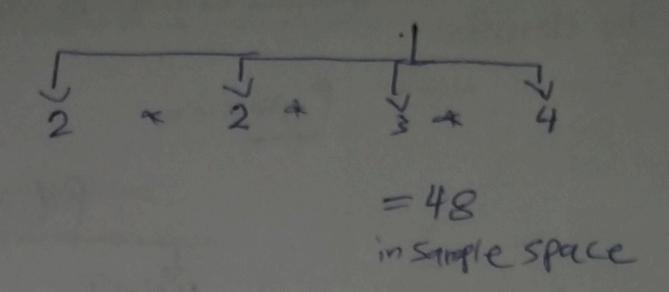


21

Answer (Ex. 22)

n₁n₂= 8*3=24 classification

2.27 A developer of a new subdivision offers a prospective home buyer a choice of 4 designs. 3 different heating systems, a garage or carport, and a patio or screened porch. How many different plans are available to this buyer?



23

Answer (Ex. 27)

 $n_1 n_2 n_3 n_4 = 4*3*2*2=48$ different house plans

20 La Colo Caroli

lice that the license number contained the letters RLH ness cannot recall the last 2 digits but is certain that all 3 digits are different find the maximum number of check.

RLH 5[--]
5 Cho 47

6 Cho

(3) En lot 151 x - - 9 8

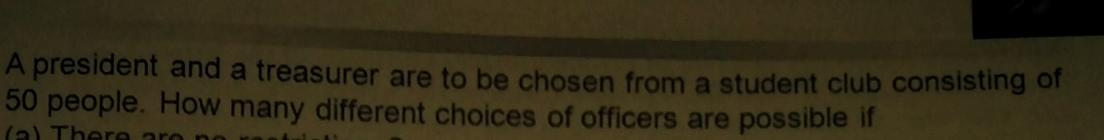
Caro 5 5 1 1 Kess 10 9 8

Similar

Answer (Ex. 33)

 $n_1n_2 = 9*8=72$ registrations to be checked.

Example 4



(a) There are no restrictions?

(b) A will serve only if he is president?

(c) B and C will serve together or not at all?

Solution:

(a)
$$_{50}P_2 = \frac{501}{(50-2)!} = \frac{50!}{48!} = \frac{50 \cdot 49 \cdot 48!}{48!} = 50 \cdot 49 = 2450$$

- (b) Since A will serve only if he is president, we have two situations here: A is selected as the president, which yields 49 possible outcomes for the treasurer's position, or officers are selected from the remaining 49 people without A, which has the number of choices $_{49}P_2 = 49 \times 48 = 2352$. Therefore, the total number of choices is 49 + 2352 = 2401.
- (c) The number of selections when B and C serve together is 2. The number of selections when both B and C are not chosen is $_{48}P_2 = 2256$. Therefore, the total number of choices in this situation is 2 + 2256 = 2258.

Example

- A president and a treasurer are to be chosen from a student club consisting of 50 people.
 How many different choices of officers are possible if
 - (c) B and C will serve together or not at all:

(1) B present.
$$C - Treasmen - 1$$
 $C = Presid$
 $N = 48$, $N = 2$
 $N = 48$, $N = 2$

27

Example:

How many even three digit numbers can be performed from the digits 1,2,5,6 and 9 if each digit can be used only once?

$$n_1 n_2 n_3 = (4)(3)(2) = 24$$

(معنى ترى ع) منطقة الزلام 0/1/2/5/6/9 mple 2.17: How many even four-digit numbers can be formed from the digits 0, 1, 2, 5, 6, and 9 if each digit can be used only once? **Solution:** Since the number must be even, we have only $n_1 = 3$ choices for the units position. However, for a four-digit number the thousands position cannot be 0. Hence, we consider the units position in two parts, 0 or not 0. If the units position is 0 (i.e., $n_1 = 1$), we have $n_2 = 5$ choices for the thousands position, $n_3 = 4$ for the hundreds position, and $n_4 = 3$ for the tens position. Therefore, in this case we have a total $n_1 n_2 n_3 n_4 = (1)(5)(4)(3) = 60$ even four-digit numbers. On the other hand, if the units position is not 0 (i.e., $n_1 = 2$), we have $n_2 = 4$ choices for the thousands position, $n_3 = 4$ for the hundreds position, and $n_4 = 3$ for the tens position. In this situation, there are a total of $n_1 n_2 n_3 n_4 = (2)(4)(4)(3) = 96$ Since the above two cases are mutually exclusive of each other, the total number 0/1 of even four-digit numbers can be calculated by 60 + 96 = 156Definition 2.7: A permutation is an arrangement of all or part of a set of objects. Consider the three letters a, b, and c. The possible permutations are abc, acb, bac, bca, cab, and cba. Thus, we see that there are 6 distinct arrangements. Using Rule 2.2, we could arrive at the answer 6 without actually listing the different orders by the following arguments: There are $n_1 = 3$ choices for the first position. No matter which letter is chosen, there are always $n_2 = 2$ choices for the second position. No matter which two letters are chosen for the first two positions, there is only $n_3 = 1$ choice for the last position, giving a total of $n_1 n_2 n_3 = (3)(2)(1) = 6$ permutations by Rule 2.2. In general, n distinct objects can be arranged in linear $n(n-1)(n-2)\cdots(3)(2)(1)$ ways. There is a notation for such a number. 1) no biect states n! - so abc 3) nobuect bis different object **Theorem 2.1:** The number of permutations of n objects is n!. The number of permutations of the four letters a, b, c, and d will be 4! = 24. Now consider the number of permutations that are possible by taking two letters at a time from four. These would be ab, ac, ad, ba, bc, bd, ca, cb, cd, da, db, and

dc. Using Theorem 2.1 again, we have two positions to fill with $n_1 = 4$ choices for the first and then $n_2 = 3$ choices for the second for a total of

$$n_1n_2 = (4)(3) = 12$$

permutations. In general, n distinct objects taken r at a time can be arranged in

$$n(n-1)(n-2)\cdots(n-r+1)$$

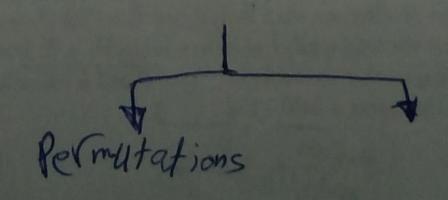
ways. We represent this product by the symbol

$$_{n}P_{r}^{s}=\frac{n!}{(n-r)!}.$$

As a result we have the theorem that follows.

The number of permutations of n distinct objects taken r at a time is Theorem 2.2:

$$\int_{n} P_r = \frac{n!}{(n-r)!}.$$



واجن کی فی اکل

Example 2.18: In one year, three awards (research, teaching, and service) will be given to a class of 25 graduate students in a statistics department. If each student can receive at most one award, how many possible selections are there?

Solution: Since the awards are distinguishable, it is a permutation problem. The total number of sample points is

$$N = 25$$

$$R = \frac{25!}{(25-3)!} = \frac{25!}{22!} = (25)(24)(23) = 13,800.$$

$$25 = \frac{25!}{25!} = \frac{25 \times 24 \times 23!}{23!}$$

$$= 13800$$

31

a bleo 9

+660001

Example 2.19: A president and a treasurer are to be chosen from a student club consisting of 50 people. How many different choices of officers are possible if

(a) there are no restrictions;

(b) A will serve only if he is president; >> projection by

(d) D and E will not serve together?

Solution: (a) The total number of choices of officers, without any restrictions, is

$$_{50}P_2 = \frac{50!}{48!} = (50)(49) = 2450.$$

(b) Since A will serve only if he is president, we have two situations here: (i) A is selected as the president, which yields 49 possible outcomes for the treasurer's position, or (ii) officers are selected from the remaining 49 people without A, p which has the number of choices $_{49}P_2 = (49)(48) = 2352$. Therefore, the total number of choices is $_{49}P_2 = 2401$.

(c) The number of selections when B and C serve together is 2. The number of selections when both B and C are not chosen is $_{48}P_2 = 2256$. Therefore, the total number of choices in this situation is 2 + 2256 = 2258.

(d) The number of selections when D serves as an officer but not E is (2)(48) = 96, where 2 is the number of positions D can take and 48 is the number of selections of the other officer from the remaining people in the club except E. The number of selections when E serves as an officer but not D is also (2)(48) = 96. The number of selections when both D and E are not chosen is ${}_{48}P_2 = 2256$. Therefore, the total number of choices is (2)(96) + 2256 = 2148. This problem also has another short solution: Since D and E can only serve together in 2 ways, the answer is 2450 - 2 = 2448.

101/2 = 16 = 24 L

Start again with the 2450 permutations. If B 1

other than C who might be treasurer. And if E other than C who might be president. We multiple also eliminate the 96 outcomes in which C w 2450 - 96 - 96 = 2258

pt

so
en

other than C who might be treasurer. And if E other than C who might be president. We multiple also eliminate the 96 outcomes in which C w 2450 - 96 - 96 = 2258

The number of selections when both D and E are not chosen. Therefore, the total number of choices is (2)(96) + 2256 = blem also has another short solution: Since D and E can only in 2 ways, the answer is 2450 - 2 = 2448.

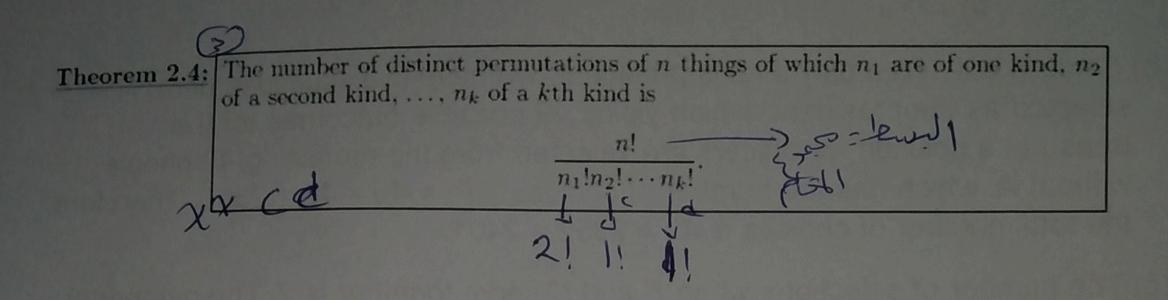
22 48×47 11 + 1=2

الصدوهمال كا

2 48+47

Theorem 2.3: The number of permutations of n objects arranged in a circle is (n-1)!.

So far we have considered permutations of distinct objects. That is, all the objects were completely different or distinguishable. Obviously, if the letters b and objects were completely different or distinguishable. Obviously, if the letters b and c become c are both equal to x, then the 6 permutations of the letters a, b, and c become axx, axx, xax, xax, xxa, and xxa, of which only 3 are distinct. Therefore, with 3 axx, axx, xax, xax, xax, xax, xax, xax, xax, and xxa, of which only 3 are distinct. Therefore, with 3 axx, axx

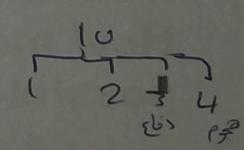


35

Example 2.20: In a college football training session, the defensive coordinator needs to have 10 players standing in a row. Among these 10 players, there are 1 freshman, 2 sophomores, 4 juniors, and 3 seniors. How many different ways can they be arranged in a row if only their class level will be distinguished?

Solution: Directly using Theorem 2.4, we find that the total number of arrangements is

$$\frac{10!}{1! \ 2! \ 4! \ 3!} = 12,600.$$



Theorem 2.5: The number of ways of partitioning a set of n objects into r cells with n_1 elements in the first cell, n_2 elements in the second, and so forth, is

$$\binom{n}{n_1, n_2, \dots, n_r} = \frac{n!}{n_1! n_2! \cdots n_r!},$$

where $n_1 + n_2 + \dots + n_r = n$.

Example 2.21: In how many ways can 7 graduate students be assigned to 1 triple and 2 double hotel rooms during a conference?

Solution: The total number of possible partitions would be

$$\binom{7}{3,2,2} = \frac{7!}{3!\ 2!\ 2!} = 210.$$

Juis Mosto

Example 2.23: How many different letter arrangements can be made from the letters in the word

Solution: Using the same argument as in the discussion for Theorem 2.6, in this example we can actually apply Theorem 2.5 to obtain

$$\binom{10}{3,3,2,1,1} = \frac{10!}{3!\ 3!\ 2!\ 1!\ 1!} = 50,400.$$

Here we have 10 total letters, with 2 letters (S, T) appearing 3 times each, letter I appearing twice, and letters A and C appearing once each. On the other hand, this result can be directly obtained by using Theorem 2.4.

37

In many problems, we are interested in the number of ways of selecting r objects from n without regard to order. These selections are called **combinations**. A combination is actually a partition with two cells, the one cell containing the r objects selected and the other cell containing the (n-r) objects that are left. The number of such combinations, denoted by

$$\binom{n}{r,n-r}$$
, is usually shortened to $\binom{n}{r}$,

since the number of elements in the second cell must be n-r.

The number of combinations of n distinct objects taken r at a time is Theorem 2.6:

select $\binom{n}{r} = \frac{n!}{r!(n-r)!}$

Example 2.22: A young boy asks his mother to get 5 Game-Boy TM cartridges from his collection of 10 arcade and 5 sports games. How many ways are there that his mother can get 3 arcade and 2 sports games?

Solution: The number of ways of selecting 3 cartridges from 10 is

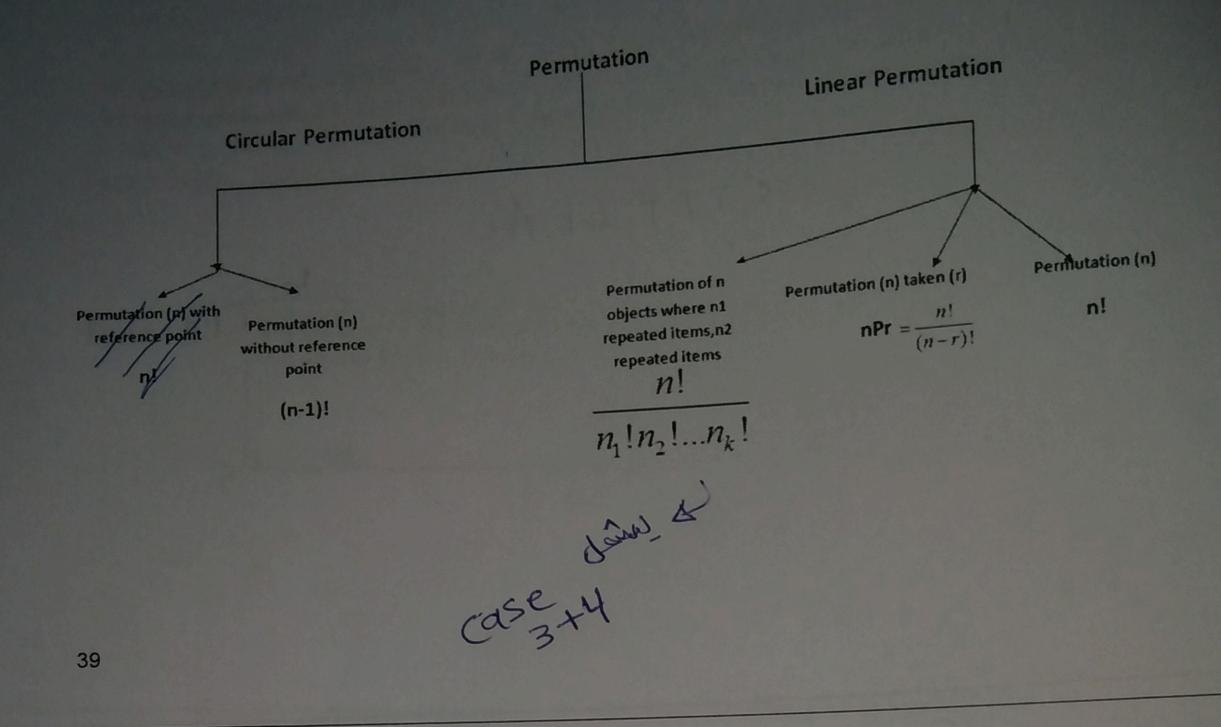
 $\binom{10}{3} = \frac{10!}{3! (10-3)!} = 120.$

The number of ways of selecting 2 cartridges from 5 is

$$\binom{5}{2} = \frac{5!}{2! \ 3!} = 10.$$

Using the multiplication rule (Rule 2.1) with $n_1 = 120$ and $n_2 = 10$, we have

Osing the multiplication rule (Rule 2.1) with $n_1 = 120$ and $n_2 = 10$, where $n_2 = 120$ and $n_3 = 120$ and $n_4 = 12$



Permutations and Combinations

Number of permutations (order matters) of *n* things taken *r* at a time:

$$P(n,r) = \frac{n!}{(n-r)!}$$

Number of combinations (order does not matter) of *n* things taken *r* at a time:

$$C(n,r) = \frac{n!}{(n-r)!r!}$$

Number of different permutations of n objects where there are n_1 repeated items, n_2 repeated items, ... n_k repeated items

$$\frac{n!}{n_1!n_2!...n_k!}$$

• If an experiment consists of throwing a die and then drawing a letter at random from the English alphabet, how many points are there in the sample space?

41

Ex 2.32:

a) How many distinct permutations can be made from the letters of the word columns?,

5040

b) How many of these permutations start with the letter m:

columns (3 m 620)

6!=720

ab cd * 4

EX. 2.31

If a multiple-choice test consists of 5 questions each with 4 possible answers of which only 1 is correct,

(a) In how many different ways can a student check off one answer to each question?

(b) In how many ways can a student, check off one answer to each question and get all the answers wrong?

43

Ex. 2.40

In how many ways can 5 starting positions on a basketball team be filled with 8 men who can play any of the positions?